

3D Crowd Counting via Multi-View Fusion with 3D Gaussian Kernels **Computer Science**

Qi ZHANG, Antoni. B. CHAN (City University of Hong Kong)

Introduction

Problems with single-view counting:

- Limited field-of-view of single camera;
- \succ Low resolution in the farther place;
- Severe occlusion, e.g., humans, buildings.

Solution: Multi-view counting

- Previous work fuse multiples views to estimate ground-plane 2D density maps.
- We propose counting with 3D density maps.

3D Crowd Counting

Loss Function

$$l_{all} = l_{3d} + \beta l_{2d} + \gamma l_{3d_2d},$$

3D prediction loss 2D prediction loss

3D-2D consistency loss (PCM)

where $\beta = 0.01$ and γ are hyperparameters for weighting the contributions of each term.

Datasets and Results

- Assume fixed camera, calibrated and synchronized;
- > **Pipeline**: 3D projection, 3D fusion and 3D density map prediction;
- > Losses: Camera prediction, 3D prediction, and 3D-2D projection consistency measure.

1) **3D** projection (multi-height projection)

 \succ The multi-height projection puts feature of the person's body along z-dimension. \blacktriangleright Body features align to form a 3D representation for a person.

2) **3D-2D** projection consistency loss *PCM*:

- > Encourages consistency between 3d prediction and 2d ground-truth.
- Example: There are 4 people in the 3D prediction, while only Persons 2 and 3 are visible in the 2D view *i*. Since Person 1 is occluded by Person 2, and Person 4 is totally occluded in view *i*, they are masked out in the PCM calculation.

View angle 1:	
front	

View angle 2: top

View angle 3: bottom

Experiments and Ablation Study

Counting performance (mean absolute error; lower is better): 1)

Dataset	PETS2009	DukeMTMC	CityStreet
Dmap weighted	8.32	2.12	9.36
Detection+ReID	9.41	27.60	
Late fusion (Zhang and Chan 2019)	3.92	1.27	8.12
Naïve early fusion (Zhang and Chan 2019)	5.43	1.25	8.10
MVMS (Zhang and Chan 2019)	3.49	1.03	8.01
3D counting (ours)	3.15	1.37	7.54

We perform best on two datasets and achieve comparable result on one dataset.

Ablation study on loss weights and ground-truth setting: 2)

Dataset	PETS2009		PETS2009 DukeMTMC			CityStreet			
n * h	3D	3D+2D	3D+2D+PCM	3D	3D+2D	3D+2D+PCM	3D	3D+2D	3D+2D+PCM
7*40cm	4.12	3.20	3.15 ($\gamma = 100$)	1.82	1.71	1.65 ($\gamma = 10$)	8.98	8.49	8.35 ($\gamma = 100$)
14*20cm	4.88	4.57	4.24 ($\gamma = 10$)	2.12	1.63	1.49 ($\gamma = 3$)	8.72	7.89	7.71 ($\gamma = 30$)
28*10cm	5.34	4.27	4.21 ($\gamma = 1$)	2.15	1.41	1.37 ($\gamma = 0.5$)	7.87	7.58	7.54 $(\gamma = 10)$

y is the hyperparameter for *PCM* loss. n is the number of voxels in the z-dimension (height), and *h* is the voxel height in the 3D world. The number of voxels in *z*-dimension is slightly larger (9, 18, 36) for DukeMTMC.

Future Work

A more practical dataset for 3D counting;

Cross-scene ability of the model.

