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Abstract 32 

The hidden Markov model (HMM)-based approach for eye movement analysis is able to 33 

reflect individual differences in both spatial and temporal aspects of eye movements. 34 

Here we used this approach to understand the relationship between eye movements 35 

during face learning and recognition, and its association with recognition performance. 36 

We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., 37 

specifically looking at the two eyes in addition to the face center) patterns during both 38 

learning and recognition. Although for both learning and recognition, participants who 39 

adopted analytic patterns had better recognition performance than those with holistic 40 

patterns, a significant positive correlation between the likelihood of participants’ patterns 41 

being classified as analytic and their recognition performance was only observed during 42 

recognition. Significantly more participants adopted holistic patterns during learning than 43 

recognition. Interestingly, about 40% of the participants used different patterns between 44 

learning and recognition, and among them 90% switched their patterns from holistic at 45 

learning to analytic at recognition. In contrast to the scan path theory, which posits that 46 

eye movements during learning have to be recapitulated during recognition for the 47 

recognition to be successful, participants who used the same or different patterns during 48 

learning and recognition did not differ in recognition performance. The similarity 49 

between their learning and recognition eye movement patterns also did not correlate with 50 

their recognition performance. These findings suggested that perceptuomotor memory 51 

elicited by eye movement patterns during learning does not play an important role in 52 

recognition. In contrast, the retrieval of diagnostic information for recognition, such as 53 

the eyes for face recognition, is a better predictor for recognition performance. 54 

 55 

Keywords: individual difference, eye movement, hidden Markov model, face learning, 56 

face recognition 57 

58 
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Introduction 59 

In human vision, the density of photoreceptors on the retina is not uniform. It is 60 

extremely high at the fovea, and drops dramatically as visual eccentricity increases. Thus, 61 

the fovea has the highest visual acuity, whereas the perifoveal area, which is much larger 62 

than the fovea, is of low visual acuity. In order for an individual to see clearly a region of 63 

interest in a cognitive task, the fovea has to be constantly relocated to the region (Tovee, 64 

1996). Consequently, our eyes are constantly moving, and eye movements are shown to 65 

reflect underlying cognitive processes, or more specifically the way information is 66 

sampled from the environment (Antrobus, Antrobus, & Singer, 1964; Yarbus, 1967; Grant 67 

& Spivey, 2003; Heremans, Helsen, &Feys, 2008). Thus, it is reasonable to speculate that 68 

different eye movement patterns may lead to different performances in cognitive tasks.  69 

Consistent with this speculation, it has been reported that in a cognitive task, experts 70 

and novices typically exhibited different eye movement patterns. For instance, Charness 71 

et al. (2001) reported that expert and intermediate chess players have different eye 72 

movement patterns. Experts made significantly more fixations at empty squares on the 73 

board. They also fixated significantly more often at pieces relevant to the current task 74 

than did the intermediates. Waters and Underwood (1998) compared the eye movement 75 

patterns of expert and novice musicians when they participated in a simple music reading 76 

task. The participants were shown two melodic fragments successively, and asked to 77 

judge whether the two fragments were the same or different. It was found that experts 78 

made significantly more fixations at the first fragment than novices and that their initial 79 

fixations were of significantly shorter duration than the novices. Similar findings were 80 

also reported in the research on reading. Siyanova-Chanturia, Conklin, and Schmitt (2011) 81 

compared the eye movement patterns of native and non-native English speakers when 82 

they were asked to read idioms and novel phrases. It was found that native speakers made 83 

significantly fewer and shorter fixations at idioms than novel phrases. In contrast, the 84 

number and duration of fixations that non-native speakers made at idioms and novel 85 

phrases were similar to each other. This demonstrated that native speakers had a 86 

processing advantage for idioms over novel phrases, which was not presented among 87 

non-native speakers. Hyona, Lorch, &Kaakinen (2002) compared eye movement patterns 88 

of native Finnish speakers when they were reading Finnish texts and found that those 89 
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who fixated more often at the headings and topic-final sentences performed significantly 90 

better than those who showed other eye movement patterns when they were required to 91 

summarize the texts. 92 

Nevertheless, in the literature on face recognition, it remains controversial whether 93 

different eye movement patterns are associated with different recognition performances. 94 

For example, Goldinger, He, and Papesh (2009) found that in a face recognition memory 95 

task, participants made fewer fixations, visited fewer regions of interest, and had shorter 96 

scanning distances on the trials in which they failed to recognize a learned face as 97 

compared with those that led to successful recognition. Glen et al. (2012) found that 98 

among people who suffered from central visual field defects, those who performed better 99 

in face recognition demonstrated a different eye movement strategy as compared with the 100 

ones who performed worse. These findings suggest that eye movement patterns are 101 

associated with performance in face recognition. In contrast, Blais et al. (2008) found that 102 

in face recognition, although Asian participants looked primarily at the center of the faces 103 

(i.e., a holistic scanning pattern) whereas Caucasian participants looked more frequently 104 

at facial features such as the two eyes and the mouth (i.e., an analytic pattern), the two 105 

cultural groups showed comparable recognition performance. This finding was later 106 

replicated in Caldara, Zhou, and Miellet (2010). Similarly, Mehoudar, Arizpe, Baker, & 107 

Yovel (2014) found that participants showed idiosyncratic eye movement patterns in face 108 

recognition that were highly stable over time; however, these patterns were not predictive 109 

of their recognition performance. 110 

These inconsistent findings in the literature may be due to substantial individual 111 

differences in eye movement pattern that were not adequately reflected in the data 112 

analyses. Indeed, recent studies have shown that there are considerable individual 113 

differences in eye movement that persist over time and across different stimuli when 114 

people perform cognitive tasks. For instance, Castelhano and Henderson (2008) showed 115 

that during picture viewing, the characteristics of fixation durations and saccade 116 

amplitudes in eye movement differed across individuals but were stable within an 117 

individual across different types of visual stimuli. Risko et al. (2012) found that curiosity 118 

was a significant predictor of participants’ eye movement patterns in scene viewing. 119 

Peterson and Eckstein (2013) showed that participants differed significantly in where to 120 
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first move their eyes in a face identification task, and they performed better when being 121 

forced to look at their preferred viewing locations than other locations. Kanan, Bseiso, 122 

Ray, Hsiao, and Cottrell (2015) showed that the identity of participants could be inferred 123 

based on their eye movements across different face perception judgment tasks. These 124 

findings provided stronger evidence for the existence of substantial individual differences 125 

in eye movement. 126 

In order to account for individual differences in both spatial (i.e., fixation locations) 127 

and temporal dimensions (i.e., transitions among fixation locations) of eye movement in 128 

the data analysis, in our previous study (Chuk, Chan, & Hsiao, 2014a), we proposed to 129 

use a hidden Markov model (HMM) to summarize an individual’s eye movement pattern 130 

in face recognition. The hidden states of the HMM represented the individual’s regions of 131 

interests (ROIs) for eye fixations. The individual’s eye movements among the ROIs were 132 

summarized through the HMM’s transition matrix, which represents the probability of 133 

each ROI being viewed next conditioned on the currently viewed ROI. The process of 134 

learning the individual HMMs was completely data driven. The individual HMMs could 135 

then be clustered based on their similarities to discover common patterns shared by 136 

individuals. The similarity of an individual pattern to a common pattern discovered 137 

through clustering could be measured as the likelihood of the individual pattern being 138 

classified as the common pattern. Through this approach, we discovered two common 139 

eye movement patterns in face recognition within our Asian participants that resembled 140 

the holistic and analytic patterns found in Asian and Caucasian participants respectively 141 

in Blais et al. (2008) and Caldara et al. (2010). This finding showed that both eye 142 

movement patterns could be observed within a cultural group, demonstrating substantial 143 

individual differences in eye movement pattern. In our follow-up study (Chuk et al., 144 

2014b; Chuk, Crookes, Hayward, Chan, & Hsiao, submitted), we found that analytic and 145 

holistic patterns could be observed in both Asians and Caucasians, and the two cultural 146 

groups did not differ significantly in the percentage of group members being classified as 147 

using holistic or analytic patterns. Also, the participants who showed analytic eye 148 

movement patterns performed significantly better than those who showed holistic 149 

patterns, and there was a positive correlation between the likelihood of participants’ 150 

pattern being classified as analytic and their recognition performance. These findings 151 
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were not possible without taking individual differences in eye movement into account, 152 

demonstrating well the advantage of our HMM approach. 153 

 Our results from previous studies suggested that analytic eye movement patterns, 154 

which involved eye fixations specifically to the two eyes in addition to the face center, 155 

were beneficial for face recognition. This result was consistent with the previous studies 156 

showing that the eyes are the most important features for face recognition (e.g., Gosselin 157 

& Schyns, 2001; Vinette, Gosselin, & Schyns, 2004). For example, using the Bubbles 158 

technique, Gosselin and Schyns (2001) found that the two eyes were the most diagnostic 159 

features for recognizing the identity of an individual. Vinette et al. (2004) further showed 160 

that the left eye was the earliest diagnostic feature that participants used in face 161 

recognition. Afterwards, both the left and right eyes were used effectively.  162 

Nevertheless, it remains unclear whether analytic eye movement patterns are also 163 

beneficial for face learning. Henderson, William, and Falk (2005) found that when 164 

participants’ eye movements were restricted to be at the face center during the learning 165 

phase of a face recognition task, their performance in the recognition phase was impaired 166 

significantly. This result suggested that the eye movements during the learning phase 167 

were related to recognition performance. Sekiguchi (2011) further showed that 168 

participants who had high face recognition memory performance moved their eyes 169 

between the left and right eyes more frequently (i.e., an analytic eye movement pattern) 170 

during face learning than those with low recognition performance. This result suggests 171 

that, similar to eye movements during face recognition, analytic eye movement patterns 172 

during face learning may also be associated with better recognition performance. 173 

In addition, in the literature, it has been suggested that during visual recognition, 174 

participants showed similar eye movements to those generated during visual learning. For 175 

instance, the scan path theory posits that in pattern perception, the mental representation 176 

of visual patterns includes the perceptuomotor cycle involved during memory encoding. 177 

Accordingly, eye movements produced during learning have to be repeated during 178 

recognition for the recognition to be successful (Noton & Stark, 1971a; 1971b). 179 

Consistent with this theory, Laeng and Teodorescu (2002) found that when participants 180 

were asked to recall a learned picture in front of a whiteboard, they had better 181 

performance when their eyes were allowed to move freely than restricted to be at the 182 
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center of the board, and their eye movements resembled those generated during learning. 183 

In face recognition, Blais et al. (2008) found that although in general, participants in the 184 

recognition phase made fewer fixations than in the learning phase, their eye movements 185 

did not show any significant difference in terms of fixation location or duration during 186 

the two phases. More specifically, Asian participants consistently showed holistic eye 187 

movement patterns whereas Caucasian participants showed analytic patterns in both the 188 

learning and recognition phases (see also Caldara et al., 2010). In contrast, some studies 189 

have shown that an exact repetition of eye movements during learning was not necessary 190 

for successful recognition. For example, participants were able to recognize previously 191 

learned visual stimuli in tachistocscopic presentations, in which eye movements were not 192 

possible (e.g., Thorpe, Fize, & Marlot, 1996). They were also able to recognize faces 193 

when their eye gaze was restricted to be at the face center during learning, and their eye 194 

movements during recognition were similar to those generated when they were allowed 195 

to move their eyes freely during learning (Henderson et al., 2005). However, these results 196 

did not completely rule out the influence of perceptuomotor memory in pattern 197 

recognition as suggested in the scan path theory. It remains possible that participants who 198 

show more similar eye movement patterns during face learning and recognition perform 199 

better in face recognition than those who show different patterns.  200 

Indeed, eye movements during pattern recognition can be influenced by multiple 201 

factors in addition to perceptuomotor memory, such as top-down expectations and 202 

bottom-up image saliency, and thus eye movement patterns during recognition may not 203 

be exact replications of those generated during learning (e.g., Henderson, 2003; Rayner, 204 

1998; Yarbus, 1965). Accordingly, eye movements during learning and recognition 205 

should differ because the two phases involve different task expectations and cognitive 206 

processes: information encoding during learning, and information retrieval during 207 

recognition. Consistent with this speculation, Hsiao and Cottrell (2008) found that during 208 

face learning and recognition participants showed different fixation duration profiles: 209 

during face learning, participants’ first fixations were short, and the duration gradually 210 

increased for the second and then the third fixations, whereas during recognition, there 211 

was no difference between the first three fixations in terms of duration. Nevertheless, in 212 

contrast to this finding, Blais et al. (2008) reported that participants’ eye movement 213 
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patterns during face learning and recognition did not differ significantly in either fixation 214 

location or duration (see also Caldara, et al., 2010). We speculate that this inconsistency 215 

may be because participants differed in whether they used similar eye movement 216 

strategies for face learning and recognition, and this individual difference might have 217 

been obscured in group-level analysis used in previous studies. In addition, this 218 

individual difference may also be related to their recognition performance, as suggested 219 

by the scan path theory. Such examination requires individual-level eye movement 220 

pattern analysis. 221 

Thus, here we aimed to examine whether participants used different eye movement 222 

patterns for face learning and recognition through individual-level data analysis using the 223 

HMM based approach. We also aimed to examine whether eye movement patterns during 224 

face learning were associated with performance during the recognition phase, and 225 

whether the similarities between participants’ eye movement patterns during face learning 226 

and recognition were related to their recognition performance. In view of the previous 227 

finding that eye movements in face learning and recognition may differ in fixation 228 

duration (Hsiao & Cottrell, 2008), in the current study we included fixation duration 229 

information in addition to fixation location information in the HMMs. This expansion of 230 

the model allowed us to model participants’ eye movement patterns more precisely. We 231 

hypothesized that: 1) During face learning, common eye movement patterns similar to the 232 

holistic and analytic patterns discovered during face recognition may also be observed, 233 

and participants with analytic patterns during face learning may also perform better in 234 

face recognition than those with holistic patterns; 2) Participants may use different eye 235 

movement patterns during face learning and recognition, reflecting different underlying 236 

cognitive processes; 3) Individuals differ in the similarity between eye movement 237 

patterns during face learning and recognition, and this similarity may be associated with 238 

their recognition performance, as suggested by the scan path theory.  239 

 240 

 241 

Method 242 

Behavioral task 243 

 244 
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Here we used the data collected in Chuk, Crookes, Hayward, Chan, and Hsiao (submitted; 245 

see also Chuk et al., 2014b) for the data analysis. A total of 48 participants (24 Asians and 246 

24 Caucasians) were recruited for a face recognition task. The mean age of Asian 247 

participants (7 males) was 21.5 (SD = 2.2), whereas that of Caucasian participants (6 248 

males) was 21.2 (SD = 7.5). The task had two sessions, one with Asian face images and 249 

the other with Caucasian face images (counterbalanced across participants). Each session 250 

had a learning phase and a recognition phase. There was no time delay between the two 251 

phases, but participants were allowed to take a break between the two sessions. 252 

Participants in each learning phase were required to view 14 faces one at a time, each for 253 

5 seconds. In each recognition phase, they were presented with the 14 learned faces and 254 

14 new faces one at a time, and were required to judge through button responses whether 255 

they saw the face during the learning phase or not; the face image stayed on the screen 256 

until the response. During both phases, participants started each trial with a central 257 

fixation cross. The face image was then presented at one of the four quarters on the 258 

screen in a random order. The distance between the central fixation cross and the image 259 

locations subtended about 9 degrees of visual angle horizontally and about 7 degrees 260 

vertically. The face images subtended about 8 degrees of visual angle horizontally and 13 261 

degrees vertically. Participants’ eye movements were recorded with an EyeLink 1000 eye 262 

tracker. 263 

Eye movement data were extracted from the EyeLink 1000 system using the 264 

default software Data Viewer. In data acquisition, the EyeLink 1000 defaults for 265 

cognitive research was used: saccade motion threshold was 0.15 degree of visual angle; 266 

saccade acceleration threshold was 8000 degree / square second; saccade velocity 267 

threshold was 30 degree / second. The software produced a fixation report for each 268 

participant. We then filtered out fixations that were not located in the face area. The 269 

remaining eye movement data were used for data analyses. 270 

Hidden Markov models 271 

We assumed that a participant’s eye movements in a cognitive task could be summarized 272 

with a hidden Markov model (HMM), so that we were able to examine individual 273 

differences in eye movements through comparing individual HMMs. Furthermore, we 274 

clustered the individual HMMs to discover common patterns (the toolbox, Eye movement 275 
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hidden Markov models approach (EMHMM), can be downloaded here: 276 

http://visal.cs.cityu.edu.hk/research/emhmm/). 277 

 HMMs are a type of time-series model that assumes that the observed time-series 278 

data arise from an underlying state process, where the current state depends only on the 279 

previous state. The underlying states are hidden; they can be estimated from the 280 

probabilistic association between the observed data and the states (i.e., the emission 281 

density of a state), as well as from the transition probabilities between the states. An 282 

HMM contains a vector of prior values, which indicates the probability of a time-series 283 

beginning with each state; a transition matrix, which specifies the transition probabilities 284 

between any two hidden states; and a Gaussian emission for each state, which represents 285 

the probabilistic association between the observed data (e.g., eye fixation locations) and a 286 

hidden state. 287 

In the context of eye movement analysis here, the observed time series were eye 288 

fixation sequences, with each observation consisting of both fixation location and fixation 289 

duration.  Each hidden state of the HMM represented a Region of Interest with Duration 290 

(ROID), which contained the location of the region of interest (ROI), as well as fixation 291 

duration in the ROI (Note that in our earlier implementation reported in Chuk et al., 2014, 292 

we did not include duration information). We assumed that both the locations and 293 

durations of the fixations belonging to an ROID followed a Gaussian distribution (see 294 

Ohl, Brandt, & Kliegl, 2013). Each ROID therefore was represented as a three-295 

dimensional Gaussian emission, where two dimensions corresponded to the spatial 296 

distributions of the fixations  (i.e., fixation locations), and the third dimension 297 

corresponded to the temporal distribution of the fixations (i.e., fixation durations). In the 298 

HMM, the prior vector indicated the probabilities that a fixation sequence started in a 299 

particular ROID, while the transition matrix contained the probabilities of moving to the 300 

next ROID from the current ROID. Figure 1 shows an example HMM. An acyclic graph 301 

whose nodes represent the components of the HMM is shown in Figure 2. 302 
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 303 

Figure 1. An example of an HMM summarizing eye fixation data. The ellipses on the face 304 
represent the location of the ROIDs. The ellipse represents 2 standard deviations around 305 

the mean of the Gaussian spatial distribution. The one-dimensional Gaussian distributions 306 
on the right show the fixation durations of the corresponding ROID. The table presents 307 
the transition probabilities between the ROIDs. Note that the red and blue ROIDs are 308 

spatially overlapping, but have different fixation durations. 309 
 310 
 311 

 312 
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 313 

Figure 2. An acyclic graph representing the components, the parameters, and the 314 

hyperparameters of an HMM. The colored nodes (on) represent the observed fixation data; 315 

the nodes on top (sn) represent the hidden states. The nodes on the left represent the prior 316 

distributions of the HMM parameters; K represents the number of hidden states (ROIDs), 317 

which is determined by the algorithm. The symbols left to the nodes represent the hyper-318 

parameters of the prior distributions. 319 

 320 

For each participant, we trained two HMMs using either the eye movement data 321 

from the learning phase (learning phase HMM) or the data from the recognition phase 322 

(recognition phase HMM). We implemented the variational Bayesian expectation-323 

maximization (VBEM) algorithm (Bishop, 2006) in Matlab to estimate the parameters of 324 

the HMMs. This Bayesian approach places a prior distribution on each parameter of the 325 

model and then approximates the posterior distribution of the parameters using a 326 

factorized variational distribution. The prior distributions for the Gaussian emissions 327 

were Normal-Wishart distributions. For the spatial dimensions, we set the prior mean to 328 

be the center of the image (m0 in Figure 2). The covariance matrices of the Gaussians 329 

were set to be isotropic matrices with standard deviation of 14 pixels (0.53 degree of 330 

visual angle) for the spatial dimensions (W0 in Figure 2), which was about the same size 331 

as a facial feature on the image. For the temporal dimensions, we set the prior mean and 332 
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prior standard deviation using the fixation durations at the population level. The hyper-333 

parameter v0 for the covariance matrices was set to 5, and the hyper-parameter β0 for the 334 

means was set to 1. The prior distributions for the transition matrix and prior vector were 335 

Dirichlet distributions, and we set the concentration parameter to 0.005 to reflect the 336 

assumption that the number of ROIDs on a face was much fewer than the number of 337 

fixation locations.  338 

The VBEM algorithm for estimating an HMM proceeded as follows. First, we 339 

initialized the transition matrices (ε0 in Figure 2) and prior vectors (α0 in Figure 2) as 340 

uniform distributions, and we obtained the initial Gaussian emissions (ROIDs) using the 341 

Matlab “fit” function for Gaussian mixture models. The VBEM algorithm then iterates 342 

between the E-step and the M-step until convergence. In the E-step, the forward-343 

backward algorithm is used to calculate the single and pairwise responsibilities, 344 

corresponding to the marginal probability of a state at a particular time and the joint 345 

probability of two consecutive states, respectively. In the M-step, we updated the model 346 

parameters using the calculated responsibilities. All parameters of the HMMs were 347 

updated simultaneously during the E-M loop. To avoid convergence to a local maximum, 348 

we trained the model 100 times with different initial Gaussian ROIDs calculated by the 349 

Matlab fit function, and selected the model with the highest log-likelihood of the data.  350 

 351 

Finally, for each individual, we determined the number of hidden states (ROIDs) in 352 

their HMM in a data-driven fashion. In our previous study (Chuk et al., 2014), the 353 

number of hidden states for each model (HMM) was set to 3. In the current study, we 354 

implemented automatic model selection. We trained six separate HMMs with different 355 

numbers of ROIDs, ranging from 1 to 6. We then selected the HMM from this set with 356 

the highest log-likelihood of the data, thus determining the number of ROIDs for the 357 

individual. On our data, this selection method typically selected three or four hidden 358 

states. Note that we used a Bayesian methodology that automatically penalizes model 359 

complexity via the prior distributions on the model parameters. Hence, the selected model 360 

was the most parsimonious explanation of the data. 361 

 362 

Clustering Hidden Markov models 363 
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In order to discover the common fixation patterns shared by participants, we 364 

clustered the individuals’ HMMs into groups using the hierarchical variational 365 

expectation maximization (VHEM) algorithm (Coviello et al., 2012). For each group, 366 

VHEM generates a representative HMM that describes the ROIDs and transition 367 

probabilities for the common pattern used by the group.  Furthermore, the log-likelihood 368 

of each participant’s eye movement data was calculated with respect to each 369 

representative HMM, which yielded a measure of how similar their eye movement 370 

patterns were to the common patterns. For each participant and representative HMM, we 371 

calculated the average of the log-likelihoods of the fixation sequences over all trials. For 372 

each trial, the log-likelihood was normalized by dividing by the length of the sequence, in 373 

order to remove the effect of different sequence lengths (Oates, Firoui & Cohen, 2001; 374 

Seo, Kishino, & Thorne 2005; Martin, Hurn, & Harris, 2012). This measure was 375 

correlated with the participant’s recognition performance in order to reveal whether 376 

certain common patterns were associated with better performance. 377 

We applied the above clustering method separately for the learning phase and the 378 

recognition phase HMMs: the 48 learning phase HMMs were clustered into groups, and 379 

the 48 recognition phase HMMs were also clustered into groups. We clustered the 380 

participants' HMMs into two groups for each phase because several previous studies (e.g., 381 

Blais et al., 2008; Kelly et al., 2011; Chuk, Chan, & Hsiao, 2014a) showed that most 382 

people's eye movement patterns exhibited one of the two fixation patterns: a holistic 383 

pattern that focused mainly at the center of the face, or an analytic pattern that focused at 384 

specific facial features (e.g., the two eyes and the mouth) in addition to the face center. 385 

Since we used a variational Bayesian approach to estimate parameters of individual 386 

HMMs, the input HMMs may have different numbers of hidden states. In the current 387 

modeling, the majority of the individual HMMs ended up having four ROIDs, and thus 388 

we set the representative HMMs in the VHEM algorithm to have four hidden states.  389 

Previous studies (e.g. Hsiao & Cottrell, 2008) showed that participants had different 390 

eye movement patterns during the learning and the recognition phases, and that this 391 

difference was at least partly in terms of fixation duration. Therefore, we also tried to 392 

cluster the individuals’ learning and recognition phase HMMs together into two clusters 393 

to see if participants indeed changed their eye movement strategies during the two phases 394 
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and whether the change was related to their recognition performance. 395 

 396 

 397 

Results 398 

Eye movement patterns during the learning phase 399 

To discover common eye movement patterns participants used during the learning phase, 400 

we modeled each participant’s eye movements during the learning phase with an HMM 401 

and clustered the individual HMMs into two groups. Figure 3a shows the representative 402 

HMMs of the two resulting groups. Table 1 shows the number of participants being 403 

clustered into each eye movement pattern group. 404 

 405 
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 406 

Figure 3. The representative HMMs of the two common eye movement patterns 407 

discovered by clustering the HMMs for (a) the learning phase, and (b) the recognition 408 

phase. The figure shows the spatial distribution of the ROIDs and the corresponding heat 409 
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map, the duration distribution of the ROIDs (in ms), and the transition probability matrix 410 

of the ROIDs. The tables below the transition matrix show the mean location (relative to 411 

the face center) and standard deviation of the ROIDs in visual angle and in face-size-412 

normalized unit. Note that in (b), in the analytic pattern during the recognition phase, the 413 

red and green ROIDs had very similar duration distributions, and thus the curves are 414 

overlapped. 415 

 416 

 417 

Table 1. The number of participants being clustered into each eye movement pattern 418 

group (analytic vs. holistic) with a breakdown by gender (a) and by race (b), using the 419 

representative HMMs in Figure 3.  420 

 421 

It can be seen that in the holistic representative HMM in Figure 3a, three of the four 422 

ROIDs (except the yellow ROID) were centered at the bridge of the nose (i.e., the center 423 

of the face). Participants in this group typically started a trial by looking at the center of 424 

the face with a short fixation (M = 203 ms, blue ROID). Afterwards, they most likely 425 

remained looking at the center with either a short fixation, (M = 203 ms) or a long 426 

fixation (M = 311 ms, about 28% of the times, red ROID), and sometimes (11%) looked 427 

at the tip of the nose/mouth region (duration M = 259 ms, yellow ROID). Occasionally 428 

(about 5%) they made a very long fixation (M = 643 ms, green ROID) at the center of the 429 

face. Since in this pattern, participants mainly looked at the center of the face, we refer to 430 

this pattern as the holistic pattern during the learning phase. 431 

In the analytic representative HMM shown in Figure 3a, the blue ROID was at the 432 
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center of the face, whereas a smaller, green ROID was slightly to the left of the center, 433 

between the left eye and the bridge of the nose. The yellow and red ROIDs were located 434 

at the left and right eye respectively. Participants in this group typically started a trial by 435 

looking at the center of the face with a short fixation (M = 240 ms, blue ROID). 436 

Afterwards, they either remained looking at the center of the face with short fixations 437 

(blue ROID) or started looking at the two eyes (yellow and red ROIDs). When they 438 

looked at the two eyes, the fixations were all with long duration (the left eye, M = 327 ms; 439 

the right eye, M = 332 ms). Occasionally (6%), they looked between the left eye and the 440 

bridge of the nose with a long fixation (M = 706 ms, green ROID). Since in this pattern, 441 

participants looked at the two eyes specifically in addition to the face center, we refer to 442 

this pattern as the analytic pattern during the learning phase. 443 

The two patterns showed a few similarities and differences. For both patterns, there 444 

was an ROID with longer mean fixation duration (M > 600 ms) than the other ROIDs, 445 

centered around the bridge of the nose (i.e., center of the face). However, the analytic 446 

pattern had two ROIDs on the two eyes with relatively long fixation durations (M > 300 447 

ms), which suggested that participants in this group looked specifically at the two eyes 448 

with long fixation durations. In contrast, in the holistic pattern, the ROIDs were mostly at 449 

the center of the face. These results suggested that people who showed holistic patterns 450 

did not look at the eyes as much and as long as those who showed analytic patterns. 451 

There were in total 34 participants who showed holistic patterns during the learning 452 

phase; the other 14 participants showed analytic patterns. There were significantly more 453 

participants showing holistic patterns than analytic patterns, χ
2
 (1) = 8.33, p= .003 (Table 454 

1, learning phase). 455 

We then compared the recognition performance of participants showing different eye 456 

movement patterns during the learning phase using A-prime (A’). A-prime is a non-457 

parametric alternative to d-prime (d’) and thus can be estimated when the hit or the false-458 

alarm rate was zero. The equations for A’ are shown below. 459 

 460 

where H represents the hit-rate, and F represents the false-alarm rate. 461 
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 The results are shown in Figure 4a. We found that the participants showing analytic 462 

patterns (M = .90) performed significantly better than those with holistic patterns (M 463 

= .85), t(46) = 2.24, p = .03. This result suggested that analytic patterns during face 464 

learning were beneficial for face recognition. We also computed the log-likelihoods of 465 

observing the 48 participants' learning phase eye movement data given the representative 466 

HMM of analytic patterns (Figure 3a) and examined whether they were correlated with 467 

participants’ recognition performance. The log-likelihood measure reflected how similar 468 

a participant's eye movement pattern was to the representative analytic pattern. A higher 469 

value indicated higher similarity. The results (see Figure 4b), showed that although there 470 

was a positive correlation between the two measures, it did not reach significance, r(46) 471 

= .22, p = .13. We further verified the finding with a skipped-correlation analysis, which 472 

identified outliers and estimated the correlation after the outliers were removed (Pernet, 473 

Wilcox, & Rousselet, 2013; the analysis discovered six outliers). The result was 474 

consistent with that reported above: the correlation between the two measures was not 475 

statistically significant, r(46) = .02. The log-likelihood of observing the participants’ 476 

learning phase eye movement data given the representative HMM of holistic patterns also 477 

did not correlate with their recognition performance, r(46) = .13, p = .37. These results 478 

suggested that although participants showing analytic patterns during face learning 479 

outperformed those showing holistic patterns in recognition, the similarities of their eye 480 

movement patterns to the representative analytic/holistic pattern were not good predictors 481 

for their recognition performance. 482 

 483 
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 484 

Figure 4. (a) Recognition performance of participants with different eye movement 485 

patterns during the learning phase, measured in A'. (b) The correlation between the log-486 

likelihoods of the participants’ eye movement patterns being classified as analytic and 487 

their recognition performances in A'. 488 

 489 

 490 

Was the advantage of participants with analytic patterns in recognition performance 491 
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related to the number of fixations they made during the learning phase? We found that 492 

participants with holistic patterns (M = 14.46) made a similar number of fixations to 493 

those with analytic patterns (M = 13.17), t(46) = 1.72, p = .09. This result suggested that 494 

the advantage of analytic patterns was not due to a larger number of fixations made. 495 

Instead, it may be the active sampling of information from the two eyes, the most 496 

diagnostic features for face recognition, during face learning/encoding. 497 

 498 

Eye movement patterns during the recognition phase 499 

To discover common eye movement patterns participants used during the recognition 500 

phase, we modeled each participant’s eye movements during the recognition phase with 501 

an HMM and clustered the individual HMMs into two groups. The representative HMMs 502 

of the two groups are shown in Figure 3b. 503 

It can be seen from Figure 3b that the four ROIDs of the holistic representative 504 

HMM were all around the center of the face. The red and blue ROIDs covered the central 505 

region of the face. The yellow ROID was at the lower part of the face, covering the tip of 506 

the nose and the mouth. The green ROID covered the nose. Participants in this group 507 

typically began a trial by looking at the center of the face with a short fixation (M = 161 508 

ms, blue ROID). Then they looked at the center of the face with either long (M = 269 ms, 509 

red ROID) or short fixation duration (M = 161 ms, blue ROID), or occasionally (12%) 510 

they looked at the tip of the nose. Only in very rare cases (1%) would they look at the 511 

center of the nose with very long duration (M = 665 ms, green ROID). This pattern 512 

focused mainly at the center of the face, and thus we identified it as the holistic eye 513 

movement pattern. 514 

The analytic representative HMM shown in Figure 3b had two ROIDs (the green 515 

and the red ROIDs) on the two eyes respectively. In addition, the blue ROID was at the 516 

center of the face, whereas the yellow ROID was at the tip of the nose and covered the 517 

nose and the mouth region. Participants in this group were most likely to begin a trial by 518 

looking at the center of the face with a short fixation (M = 179 ms, blue ROID). Then, 519 

they either remained looking at the center (30% of the times), or looked at the left eye 520 

(27%) or the right eye (39%) with a slightly longer fixation (left eye: M = 291 ms; right 521 

eye: M = 289 ms).  They rarely (4%) looked at the nose and the mouth. When they 522 
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looked at one of the eyes, their next fixation was most likely to be at the other eye, 523 

suggesting that participants in this group preferred to switch their attention between the 524 

eyes. Since this pattern showed focuses on the eyes in addition to the face center, we 525 

identified it as the analytic eye movement pattern.  526 

The two patterns had some similarities and differences. In both patterns, participants 527 

were most likely to start a trial with a brief fixation at around the center of the face, 528 

followed by fixations with duration around 250 to 300 ms. Nevertheless, in the holistic 529 

pattern, these subsequent fixations were mostly located around the center of the face, 530 

whereas in the analytic pattern, these subsequent fixations were specifically at the two 531 

eyes. There were in total 20 participants who showed holistic patterns during the 532 

recognition phase, and 28 participants showed analytic patterns. The percentages of the 533 

participants using the two patterns did not differ significantly from each other, χ
2
(1) = 534 

1.33, p = .25 (Table 1, recognition phase). When we compared the distribution of the 535 

participants over the two patterns during recognition with that during learning, there were 536 

significantly more participants adopting holistic patterns during learning than recognition, 537 

χ
2
(1) = 8.30, p = .004. 538 

When we compared these patterns with those observed during the learning phase, 539 

we found that the representative holistic patterns of the two phases were significantly 540 

different. The log-likelihoods of observing the holistic eye movement data during the 541 

learning phase given the representative holistic HMM of the learning phase and the log-542 

likelihoods of observing the same data given the representative holistic HMM of the 543 

recognition phase were significantly different, t(33) = 4.47, p < .001. The log-likelihoods 544 

of observing the holistic eye movement data during the recognition phase given the two 545 

representative holistic HMMs were also significantly different, t(19) = 4.56, p < .001. 546 

The difference between the two log-likelihoods was an approximation to the Kullback-547 

Leibler (KL) divergence between the learning phase and recognition phase representative 548 

holistic HMMs, which was a measure of difference between two distributions (Chuk et 549 

al., 2014). Similarly, the representative analytic patterns of the two phases were 550 

significantly different. The log-likelihoods of observing the analytic eye movement data 551 

during the learning phase given the two representative analytic HMMs were significantly 552 

different, t(13) = 2.12, p = .05; similarly for those observed during the recognition phase, 553 



 23 

t(27) = 4.43, p < .001. When we compared the number of fixations per trial that 554 

participants made during the two phases, we found that participants made significantly 555 

more fixations during the learning phase regardless of whether they used holistic patterns 556 

(M = 14.46 for learning phase, M = 6.49 for recognition phase, t(52) = 12.55, p < .001) or 557 

analytic patterns (M = 13.17 for learning phase, M = 5.85 for recognition phase, t(40) = 558 

10.61, p < .001). We also found that the average fixation durations were significantly 559 

longer during the learning phase than the recognition phase regardless of whether 560 

participants used holistic patterns (M = 336.26 ms for learning phase, M = 246.94 ms for 561 

recognition phase, t(40) = 4.79, p < .001) or analytic patterns (M = 297.97 ms for 562 

learning phase, M = 244.27 ms for recognition phase, t(52) = 2.91, p = .005).  563 

We also compared the durations of the fixations within the ROIDs between the two 564 

phases. The durations of the fixations at around the face center in the holistic pattern 565 

during face learning (Figure 3a, blue and red ROIDs, M = 203 ms and 311 ms 566 

respectively) were slightly longer than those observed in the holistic pattern during face 567 

recognition (Figure 3b, blue and red ROIDs, M = 161 ms and 269 ms respectively; t(6543) 568 

= 19.37, p < 0.001, and t(7067) = 11.56
1
, p < .001, respectively). Similarly, the durations 569 

of the fixations at the two eyes in the analytic pattern during face learning (Figure 3a, 570 

yellow and red ROIDs, M = 327 ms and 332 ms respectively) were slightly longer than 571 

those observed in the analytic pattern during face recognition (Figure 3b, green and red 572 

ROIDs, M = 291 and 289 ms respectively; t(4044) = 7.85, p < .001, and t(4185) = 9.09, p 573 

< .001, respectively). 574 

Regarding participants’ recognition performance, we found that participants with 575 

analytic patterns (M = .89) performed significantly better than those using holistic 576 

patterns (M = .83), t(46) = 3.13, p = .003 (Figure 5a). In addition, the log-likelihoods of 577 

observing participants' recognition phase eye movements given the representative HMM 578 

of analytic patterns was positively correlated with participants' recognition performances 579 

in A', r(46) = .35, p = .01 (Figure 5b). We further verified the finding with a skipped-580 

correlation analysis. The result was consistent with that reported above; no outlier was 581 

identified. In contrast, this correlation was not significant using the representative HMM 582 

                                                      
1
 We estimated the numbers of fixations that were responsible for the two ROIDs and used them 

as the sample sizes for the t-tests. The means and standard deviations are shown in the 

corresponding figures. The comparison of the ROIDs was done using unpaired t-tests. 
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of holistic patterns, r(46) = .15, p = .30. These results were consistent with our previous 583 

study (Chuk et al., 2014b; Chuk et al., submitted), suggesting that analytic eye movement 584 

patterns were beneficial for face recognition. In addition, participants using the two 585 

patterns did not differ significantly in the number of fixations made per trial, t(46) = 1.22, 586 

p = .23 (holistic patterns, M = 6.63; analytic patterns, M = 5.91) or response time (holistic 587 

patterns, M = 1.95 s; analytic patterns, M = 1.76 s), t(46) = 1.54, p = .13. This result 588 

suggested that the advantage of analytic patterns over holistic patterns was not simply 589 

because participants with analytic patterns made more fixations on the face.  590 

 591 
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 592 

 593 

Figure 5. (a) Recognition performance of participants with different eye movement 594 

patterns during the recognition phase, measured in A'. (b) The correlation between the 595 

log-likelihoods of participants’ eye movement patterns being classified as analytic and 596 

their recognition performances.  597 

 598 
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Did participants use the same eye movement patterns for the learning and 599 

recognition phases? 600 

In the previous sections, we found that during the learning phase, a majority of 601 

participants used holistic eye movement patterns. In contrast, during the recognition 602 

phase, there were similar percentages of participant using analytic and holistic patterns. 603 

This result suggests participants might have used different eye movement patterns during 604 

the two phases. To test this, we clustered participants’ learning and recognition phase 605 

HMMs into two groups to discover common patterns among them, and examined 606 

whether a majority of participants used the same patterns for face learning and 607 

recognition. The resulting patterns are shown in Figure 6. Table 2 shows the number of 608 

participants being clustered into each eye movement pattern group. 609 

 610 

 611 
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Figure 6. The representative HMMs of the two common eye movement patterns 661 

discovered by clustering all participants’ HMMs (including both learning and recognition 662 

phases) together. The figure shows the spatial distribution of the ROIDs and the 663 

corresponding heat map, the duration distribution of the ROIDs, and the transition 664 

probability matrix of the ROIDs. The tables below the transition matrix show the mean 665 

location (relative to the face center) and standard deviation of the ROIDs in visual angle 666 

and in face-size-normalized unit.  667 

 668 

 669 

Table 2. The number of participants being clustered into each eye movement pattern 670 

group (analytic vs. holistic) with a breakdown by gender (a) and by race (b), using the 671 

representative HMMs in Figure 6.  672 

 673 

It can be seen that in the holistic representative HMM in Figure 6, the red, blue, and  674 

green ROIDs centered at the bridge of the nose, and the yellow ROID covered the nose 675 

and the mouth region. In this pattern, participants were most likely to begin a trial with a 676 

longer (M = 270 ms) or a shorter (M = 168 ms) fixation at the center of the face. 677 

Afterwards, they typically made a long (M = 270 ms) fixation at around the center of the 678 

face.  Occasionally, they looked at the center of the face with much longer durations (M = 679 

635 ms, green ROID), or the tip of the nose/mouth region (yellow ROID). This pattern 680 

reflected a focus at the center of the face, and thus we identified it as the holistic eye 681 

movement pattern. 682 

The analytic representative HMM shown in Figure 6 reflected a different eye 683 
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movement pattern. The blue and the yellow ROIDs both centered at the bridge of the 684 

nose, whereas the red and the green ROIDs were located at the left and the right eye 685 

respectively. In this pattern, participants were most likely to begin a trial with a short 686 

fixation at the center of the face (M = 158 ms, blue ROID), followed by a longer fixation 687 

on either the right eye (M = 298 ms) or the left eye (M = 276 ms). Sometimes they 688 

remained looking at the center with either a short (M = 158 ms, blue ROID) or a longer 689 

(M = 255 ms, yellow ROID) fixation. Since this pattern showed specific focuses on the 690 

two eyes in addition to the face center, we identified it as the analytic eye movement 691 

pattern. 692 

We found that 35 participants’ learning phase HMMs were clustered into the holistic 693 

pattern and 13 were clustered into the analytic pattern. For the recognition phase HMMs, 694 

20 participants’ HMMs were clustered into the holistic pattern and 28 were clustered into 695 

the analytic pattern (Table 2). As summarized in Table 3 below, 19 (about 40%) 696 

participants used different eye movement patterns between the two phases, and 29 697 

participants used the same patterns between the two phases. The percentages of 698 

participants using the same or different patterns between the two phases did not differ 699 

significantly, χ
2
(1) = 2.08, p= .15. Interestingly, among participants who used different 700 

patterns during the two phases, 90% of them (17/19) switched their patterns from holistic 701 

at learning to analytic at recognition.  702 

 703 

 704 

Table 3. Number of participants switched patterns during the two phases. 705 

 706 

 To test whether participants’ perceptuomotor memory during face learning played 707 

an important role in their recognition performance, as suggested by the scan path theory, 708 

we examined whether participants who used the same eye movement patterns between 709 

face learning and recognition outperformed those who used different patterns in face 710 
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recognition. The results showed that the two groups did not differ significantly in 711 

recognition performance (participants who used different patterns, M = .87; participants 712 

who used same patterns, M = .86), t (46) = .36, p = .72. In a separate analysis, we 713 

performed a 2 x 2 ANOVA with learning phase eye movement pattern (holistic vs. 714 

analytic) and recognition phase eye movement pattern (holistic vs. analytic) as 715 

independent variables and recognition performance in A’ as the dependent variable. We 716 

found that the two factors did not interact with each other, F(1, 44) = .06, p = .82, 717 

suggesting that whether participants changed their eye movement patterns between the 718 

learning and the recognition phases did not significantly modulate recognition 719 

performance. Note however that this analysis was based on unequal numbers of 720 

participants in each condition, as shown in Table 3. We also examined whether 721 

participants’ recognition performance was correlated with the similarity between their 722 

learning phase and recognition phase eye movement patterns. To do this, for each 723 

participant, we calculated the log-likelihoods of observing the participant’s recognition 724 

phase eye movement data given his/her learning phase and recognition phase HMMs. The 725 

difference between the two log-likelihoods represented the KL-divergence between the 726 

learning phase and recognition phase HMMs, a measure of similarity between the two 727 

eye movement patterns. We found that this similarity measure did not correlate with 728 

recognition performance, r(46) = .18, p = .22. Similarly, the correlation using the 729 

participants' learning phase eye movement data was not significant, r(46) = .11, p = .44. 730 

These results suggested that the similarity between learning phase and recognition phase 731 

eye movement patterns did not predict recognition performance. 732 

 733 

Discussion 734 

In this study, we aimed to examine the relationship between eye movement patterns 735 

during face learning and recognition, and its association with recognition performance in 736 

a face recognition memory task. To reflect individual differences in both spatial and 737 

temporal dimensions of eye movements in our data analysis, we used a hidden Markov 738 

model (HMM) based approach (Chuk et al., 2014), in which each participant’s eye 739 

movement pattern was modeled with an HMM. The hidden states of the HMMs 740 

represented regions of interest and duration (i.e., ROID) of participants’ fixations. The 741 
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eye movements among these ROIDs were summarized with a transition matrix in the 742 

model. This information was estimated from participants’ eye movement data in a 743 

completely data-driven fashion. Individual HMMs then could be clustered according to 744 

their similarities to discover common patterns shared by individuals. The similarity 745 

between an individual’s eye movement pattern to a common pattern discovered through 746 

clustering could be calculated as the likelihood of the individual pattern being classified 747 

as the common pattern. This similarity measure then could be used to examine the 748 

association between eye movement patterns and recognition performance. Note that in 749 

contrast to the HMMs used in our previous studies (e.g., Chuk et al., 2014), the HMM 750 

used in the current study was improved in two aspects. First, the number of hidden states 751 

was determined through model selection instead of pre-specified. Second, we included 752 

fixation duration information in addition to fixation location information. This is to 753 

reflect the previous finding that eye movements during face learning and recognition 754 

differed in fixation duration (Hsiao & Cottrell, 2008). The new model thus was able to 755 

more accurately summarize a participant’s eye movement behavior in a cognitive task. 756 

 Our results showed that both holistic (i.e., looking mainly at the face center) and 757 

analytic eye movement patterns (i.e., looking specifically at the two eyes in addition to 758 

the face center) could be observed during face learning and recognition. Nevertheless, the 759 

holistic and analytic patterns observed during face learning differed significantly from 760 

those observed during face recognition. Eye movements during the learning phase 761 

occasionally involved long fixations at around the center of the face, which was rarely the 762 

case during the recognition phase. In addition, the fixations during learning were in 763 

general longer and more numerous than those observed during recognition. Interestingly, 764 

we found that significantly more participants adopted holistic patterns during face 765 

learning than recognition. Combined, these results suggested that in general participants 766 

showed different eye movement patterns between face learning and recognition, 767 

demonstrating different cognitive processes involved for information encoding and 768 

retrieval. 769 

 Hsiao and Cottrell (2008) observed that when comparing the first three fixations 770 

during the learning and recognition phases, during learning participants’ fixation duration 771 

gradually increased from the first to the third fixations, whereas during the recognition 772 
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phase, the first three fixations were of similar durations. This pattern was in general 773 

consistent with our results. During face learning, most participants adopted holistic 774 

patterns. In the representative holistic pattern during learning (Figure 3a), participants 775 

typically started a trial with a short fixation at the face center (M = 203 ms, blue ROID), 776 

and gradually transited to longer fixations at the face center at third fixation (M = 311 ms, 777 

red ROID). Whereas during face recognition, in both holistic and analytic patterns, 778 

participants typically started with a short fixation (M ~ 170 ms), followed by slightly 779 

longer fixations (M ~ 278 ms) at both the second and third fixations. In contrast to our 780 

finding, Blais et al. (2008) and Caldara et al. (2010) found that participants’ fixation 781 

durations did not differ between the learning and recognition phases using group-level 782 

analysis. We speculate that this discrepancy may be due to substantial individual 783 

differences in eye movement pattern during the two phases. Our approach allowed us to 784 

discover different patterns within each phase, and compare corresponding ROIDs in 785 

similar patterns across the two phases. And thus we were able to better discover this 786 

difference in fixation duration between the two phases. 787 

 Although the holistic and analytic eye movement patterns during the learning and 788 

recognition phases differed in fixation duration, we found that in both phases, participants 789 

with analytic patterns outperformed those with holistic patterns in recognition 790 

performance. This finding was consistent with Sekiguchi’s (2011) finding that 791 

participants who performed better in face recognition moved their eyes between the left 792 

and right eyes more often during face learning as compared with those who performed 793 

worse. Note that this advantage of analytic patterns was not because participants using 794 

analytic patterns made more fixations per trial than those using holistic patterns, as the 795 

two groups of participants did not differ significantly in number of fixations made per 796 

trial either for face learning or recognition. Instead, this advantage of analytic patterns 797 

was likely to be due to active information encoding and retrieval from the two eyes, 798 

suggesting that information about the two eyes is important for face recognition. 799 

Consistent with this finding, the two eyes have been reported to be the most diagnostic 800 

features participants used for face recognition (e.g., Gosselin & Schyns, 2001; Vinette et 801 

al., 2004). The eyes also have been proposed to provide important signals for the 802 

direction of social attention (e.g., Langton, Watt, & Bruce, 2000). In addition, as 803 
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compared with whole faces, eyes presented in isolation are shown to elicit larger N170 804 

ERP amplitude, an electrophysiological marker proposed to reflect the neural mechanism 805 

for face detection, suggesting the importance of eyes in face perception (Bentin, Allison, 806 

Puce, Perez, & McCarthy, 1996; see also Taylor, Itier, Allison, & Edmonds, 2001; Taylor, 807 

Edmonds, McCarthy, & Allison, 2001). Although analytic eye movement patterns during 808 

both face learning and recognition seemed to be beneficial for face recognition, we found 809 

that participants’ recognition performance was positively correlated with the log-810 

likelihood of participants’ eye movements being classified as analytic during the 811 

recognition phase, but not with that during the learning phase. This finding suggested that 812 

eye movement patterns during the recognition phase may be a better predictor for 813 

participants’ recognition performance than those during the learning phase.  814 

Miellet, Caldara, and Schyns (2011) showed that during face recognition, 815 

participants’ eye fixations on the eyes of the face images were associated with perception 816 

of local information, whereas those at the center of the face were associated with 817 

perception of global information. According to this finding, participants using the 818 

analytic and holistic eye movement patterns identified in the current study may engage 819 

different types of information processing in face recognition. More specifically, 820 

participants with holistic patterns (i.e., looking mainly at the face center) may have 821 

primarily engaged in global/configural face processing, whereas those with analytic 822 

patterns (i.e., focusing on the individual eyes in addition to the face center) may have 823 

engaged in both global and local/featural face processing. While global/configural 824 

information was reported to play an important role in face recognition (e.g. Bartlett & 825 

Searcy, 1993; Leder & Bruce, 1998), most recent studies have suggested that both 826 

local/featural and global/configural information are important for recognizing faces (e.g., 827 

Burton, Schweinberger, Jenkins, & Kaufmann, 2015; Cabeza & Kato, 2000; Sandford & 828 

Burton, 2014). Consistent with this finding, in automatic face recognition in computer 829 

vision, the best performing algorithms made use of both local and global representations 830 

of the faces (Bonnen, Klare, & Jain, 2013; Ding, Shu, Fang, & Ding, 2010). Together, 831 

these findings suggested that active retrieval of both global and local face representations 832 

through analytic eye movement patterns may be optimal for face recognition. 833 

 In order to examine whether individual participants used the same or different eye 834 
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movement patterns between the learning and the recognition phases, in a separate 835 

analysis we clustered participants’ learning and recognition phase HMMs together into 836 

two groups to discover common patterns shared between the two phases. The resulting 837 

two representative HMMs (Figure 6) showed similar characteristics as the holistic and 838 

analytic patterns discovered when we clustered participants’ patterns in the learning and 839 

recognition phases separately. We then examined whether individual participants used the 840 

same or different patterns between the learning and recognition phases. We found that 841 

about 40% of the participants used different eye movement patterns between the learning 842 

and recognition phases, and the percentages of the participants using the same or different 843 

patterns did not differ significantly from each other. Interestingly, among those who used 844 

different patterns between learning and recognition, 90% of them switched from holistic 845 

at learning to analytic at recognition, suggesting that analytic patterns were preferred 846 

during recognition. These results showed that participants do not necessarily use the same 847 

eye movement patterns for face learning and recognition, This finding was in contrast to 848 

previous studies that observed similar eye movement patterns between the learning and 849 

recognition phases using group-level eye movement data analysis (e.g., Blais et al., 2008; 850 

Caldara et al., 2010). This individual difference in the similarity of eye movements 851 

between learning and recognition may have been obscured in the group-level data 852 

analysis. This phenomenon demonstrated well the advantage of our approach for data 853 

analysis at the individual level. 854 

 According to the scan path theory (Noton & Stark, 1971a; 1971b), recapitulation 855 

of the eye movement/perceptuomotor pattern produced during learning is necessary for 856 

recognition to be successful. If perceptuomotor memory elicited by eye movements does 857 

play an important role for recognition performance, we would expect that participants 858 

who used the same eye movement pattern between the learning and recognition phases 859 

outperformed those who used different eye movement patterns in the recognition task. 860 

Nevertheless, the results of our analysis did not support this hypothesis. We found that 861 

participants who showed the same or different eye movement patterns between the two 862 

phases did not differ significantly in their recognition performance. In addition, the 863 

similarity between their eye movement patterns during the learning and the recognition 864 

phases did not significantly correlate with their recognition performance. Instead, we 865 
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found that analytic eye movement patterns during the recognition phase, which focused 866 

on the two eyes in addition to the face center, seemed to be the best predictor for 867 

participants’ recognition performance. This phenomenon suggested that retrieval of the 868 

most diagnostic features for recognition is more important than recapitulation of the 869 

perceptuomotor cycles/eye movements produced during learning in visual recognition. To 870 

confirm the speculation that eye fixations at more diagnostic features for recognition lead 871 

to better recognition performance, future work will directly manipulate participants’ eye 872 

movement patterns (such as through cueing or training paradigms; e.g., Hills & Lewis, 873 

2011) and examine whether it modulates their recognition performance.  874 

Note that in the current study, we used the same images for old faces during the 875 

learning and recognition phases, following a majority of face recognition studies in the 876 

literature (e.g., Barton et al., 2006; Hayward, Rhodes, & Schwaninger, 2008; Henderson, 877 

Williams, & Falk, 2005; Hsiao & Cottrell, 2008). However, real-life face recognition 878 

typically involves recognizing faces under different conditions, such as different 879 

orientations, expressions, or lighting conditions. Future work will examine how these 880 

different task demands modulate the association between participants’ eye movement 881 

patterns and performance in face recognition.  882 

 In summary, through analyzing eye movement data at the individual level using 883 

the HMM based approach, here we showed that both holistic and analytic eye movement 884 

patterns could be observed during face learning and recognition. Eye movements during 885 

learning generally involved longer fixation duration than those during recognition. 886 

During both face learning and recognition, participants who showed analytic patterns 887 

performed better than those with holistic patterns in the recognition task, although a 888 

significant correlation between eye movement patterns and recognition performance was 889 

only observed for eye movements during the recognition phase. This finding suggested 890 

that the retrieval of diagnostic features for recognition, such as the eyes, is a good 891 

predictor for performance in face recognition. In contrast to the scan path theory, which 892 

posits eye movements produced during learning have to be repeated during recognition 893 

for the recognition to be successful, we found that participants used the same eye 894 

movement pattern for face learning and recognition did not differ from those used 895 

different patterns in recognition performance. In addition, the similarity between the eye 896 
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movement patterns during face learning and recognition did not correlate with 897 

recognition performance. These results suggested that perceptuomotor memory elicited 898 

by eye movement patterns during learning does not play an important role in recognition. 899 

In contrast, it is the retrieval of diagnostic information during recognition that is essential 900 

for recognition to be successful. This finding has very important implications for ways to 901 

improve recognition performance in both healthy and clinical populations.  902 

 903 
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