
1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 1

Color Orchestra: Ordering Color Palettes for
Interpolation and Prediction

Huy Q. Phan, Hongbo Fu, and Antoni B. Chan

Abstract— Color theme or color palette can deeply influence the quality and the feeling of a photograph or a graphical design.
Although color palettes may come from different sources such as online crowd-sourcing, photographs and graphical designs, in this
paper, we consider color palettes extracted from fine art collections, which we believe to be an abundant source of stylistic and unique
color themes. We aim to capture color styles embedded in these collections by means of statistical models and to build practical
applications upon these models. As artists often use their personal color themes in their paintings, making these palettes appear
frequently in the dataset, we employed density estimation to capture the characteristics of palette data. Via density estimation, we
carried out various predictions and interpolations on palettes, which led to promising applications such as photo-style exploration,
real-time color suggestion, and enriched photo recolorization. It was, however, challenging to apply density estimation to palette data
as palettes often come as unordered sets of colors, which make it difficult to use conventional metrics on them. To this end, we
developed a divide-and-conquer sorting algorithm to rearrange the colors in the palettes in a coherent order, which allows meaningful
interpolation between color palettes. To confirm the performance of our model, we also conducted quantitative experiments on datasets
of digitized paintings collected from the Internet and received favorable results.

Index Terms—Image color analysis, Machine learning, Color palette, Colorization.

F

1 INTRODUCTION

Color is a topic that lies in the intersection of art and
science. A large body of literature has been devoted to study
color from very different perspectives. Computer scientists
have been working on topics such as color transfer, color
harmony, grey-scale photo colorization, and color picking
interfaces. A relatively new trend in color harmony study
is to discover harmonious color combinations from existing
color themes, for example, through data-driven approaches.
O’Donovan et al. collect large datasets of color themes along
with their ratings and train a regressor to predict ratings
for novel color themes [1]. Lin et al. later integrate this
regressor into a factor graph, which is capable of suggesting
interesting colorings for segmented patterns [2]. Huang et
al. employ a similar factor graph for image recoloriza-
tion [3]. Wang et al. introduce techniques to enhance color
themes with data [4], [5].

Interestingly, few of these works have attempted to
model the density of palette data, which tells how frequently
a certain palette appears in the data. One of the main chal-
lenges to modeling palette density is that palette datasets
are available as sets of unordered colors, making it difficult
to directly apply traditional density estimation methods.
Representative features introduced in [1] might be used for
density estimation but one will lose the ability to interpolate
new color palettes. Palette interpolation is potentially useful
for applications such as example-based color suggestion and

• H Q. Phan is with the Deparment of Computer Science, University of
Bath, UK.

• A. B. Chan is with the Department of Computer Science, City University
of Hong Kong, Hong Kong.

• H. Fu is with the School of Creative Media, City University of Hong
Kong, Hong Kong.

image recolorization (see Section 4). When the number of
examples is limited, interpolation helps extending the range
of available choices possibly infinitely.

A key observation behinds our approach is that color
palettes extracted from an art collection often conform to
a certain aesthetic style, which can be revealed by their
density distribution. This can be observed from paintings
of the world-renowned painters such as Paul Cezanne,
Vincent van Gogh, Pierre-Auguste Renoir. It is commonly
known that there are certain rules of using colors in fine
art [6]. For instance, to color an object, one should use warm
colors for illuminated regions and cold colors for shaded
regions. Although artists have their own choices of colors,
basic rules are usually respected as they help ensuring that
the paintings are perceived properly (e.g., a morning scene
should be understood as in a morning time). On the other
hand, distinguished artists often prefer to use their favorite
color combinations over the actual colors of the objects being
painted. This is because a repeated use of some sets of colors
will eventually make their paintings stand out. For instance,
Maximilien Luce used strong blues and yellows to shade
objects (Figure 2); Henri Matisse often used deep reds and
greens in his paintings. These observations suggest that high
frequency color themes can represent the style of a palette
dataset, and with the help of interpolation, we can generate
more color palettes with the same style by sampling from a
palette density.

To perform palette density estimation and palette in-
terpolation, we impose an order on the colors in a palette
dataset so that the Euclidean distance between the palettes
correctly reflects the difference between them, and corre-
sponding colors in the palettes are aligned. Our approach
achieves this by globally sorting the colors in the dataset so
that the total distance between all pairs of color palettes is



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 2

{

{

Image Patches Extracted Palettes

Sorted Palette Features (SPF)

G
P
LV
M
o
r
G
M
M

Photo-style Exploration Real-time Color Suggestion
Palette Interpolation

GPLVM or PCA

B
in
ar
y
P
al
et
te

So
rt

D
en

si
ty

Es
ti
m
at
io
n

ApplicationsMethodology

Fig. 1. An overview of our work. We first extracted color palettes (themes) from image patches, which were uniformly sampled from paintings of one
or more artists. Second, our Binary Palette Sort algorithm sorted unordered color palettes. Third, GPLVM was used for palette interpolation and
prediction. The last columns show two applications of our method: photo-style exploration and adaptive palette.

Fig. 2. (Left) Maximilien Luce’s paintings. (Right) Henri Matisse’s paint-
ings.

minimized. The sorting algorithm – called Binary Palette
Sort – is one of our main contributions as it greatly im-
proves the performance of many applications introduced
in our work. We have thoroughly evaluated its perfor-
mance with both quantitative and qualitative experiments
(see Section 5). The order of the colors allows us to apply
conventional techniques to estimate the density of color
palettes and to interpolate among them. Furthermore, given
a palette with missing colors, we can predict compatible
colors by sampling from data points that simultaneously
have high likelihood and are similar to the input palette.
In our implementation, we used Gaussian process latent
variable models (GPLVM) to estimate the density of color
palettes and to interpolate new palettes.

Based on palette density estimation and palette interpo-
lation, we developed various applications that would only
be possible with these techniques. We introduce a novel
application called Photo-style Explorer, which acts like an
“Instagram” filter but in a continuous design space (Fig-
ure 1). That is, instead of choosing among a few predefined
themes, one can freely surf a continuous space of possible
photo colorizations to pick a preferred theme. Since the
space of color themes is usually of high dimensionality,
we utilize dimensionality reduction (GPLVM) to represent
it with a familiar 2-D interface. By moving around regions
with high likelihood, the user can easily obtain beautiful
recolorized photos with the dedicated style of a particular
artist.

Another application of palette interpolation is photo

recolorization with multiple local palettes. Conventional
recolorization techniques only apply a single set of colors
to an entire image via hue adjustment, which leads to
unnatural recolorization. Since an object does not simply
contain the same color with different intensities, manual
work is required to add more variations to these regions.
For example, a tree is generally green but it can also contain
blue-like or yellow-like variations of green. By taking the
input colors and diversifying them with variations sampled
from the palette density, we were able to produce results
with more realistic colors (see Section 4.1). Additionally, we
developed an adaptive color palette that changes with the
content being painted. The idea is, since selecting colors is
time consuming and requires expertise in color mixing, it
would be useful to have a palette that automatically presents
to the user with compatible color themes, which fit well to
the current content (Figure 1). For example, as a tree is being
painted, the palette will suggest different variations of green
(for the leaves) and variations of brown (for the branches).
All of the mentioned applications are shown in the video
accompanied with this work.

Finally, we carried out quantitative evaluation to mea-
sure the performance of our approach with relevant tech-
niques. We conducted an experiment on the task of predict-
ing the missing colors of a palette using GPLVM and other
relevant methods. More specifically, given a number of ob-
served colors (e.g., 4, 3, 2, or 1) in the palettes, we predicted
the remaining colors of a 5-color palette. The experimental
results show that our method yields satisfactory accuracy
and is significantly better than previous methods such as
[1], [2].

Terminology: The term “palette” used in our work is
the same as “color theme” that appears in previous works.
We use both terms interchangeably.

2 RELATED WORK

In this section, we discuss major research fields related to
the color and theme studies.

2.1 Color Harmony

Color is a popular research topic in many fields of arts and
sciences. In psychology, for instance, various models have
been proposed to capture the harmony of color combina-
tions [7], [8]. These models often aim at deriving common



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 3

“laws” of color compatibility by conducting psychological
experiments on human perception. On the other hand,
the graphics community is more interested in modeling
color harmony for design and visualization. Cohen Or
et al. [9] directly apply harmony templates derived from
classic color theories to the task of color harmonization.
Nishiyama et al. [10] make use of color harmony to assess
the quality of photographs. Sauvaget et al. [11] use color
harmony for segmented photo colorization. O’Donovan et
al. [1] take a data-driven approach by learning to predict
color ratings from large datasets. They show interesting
applications such as color suggestion, theme extraction,
and theme optimization. Later the same authors propose a
collaborative filtering approach to capture user preference of
color combinations [12]. Recently, Lin et al. [2] incorporate
the rating regression model in a factor graph that assigns
harmonious colors to 2D patterns. Similar to our method,
their work also performs palette interpolation but relies
on a computationally expensive inference technique – the
Markov chain Monte Carlo method (MCMC) – which is
unsuitable for real-time applications. Besides, the function
that actually deals with input data only considers pair-
wise relationships between colors in the palettes, while the
global compatibility function is not trained on the input
data. In contrast, our compatibility prediction comes from
the probability density function, which is trained on the
input data. In our color prediction experiment, we show
that our method produces more accurate prediction than
the methods introduced in [1], [2]. Moreover, our method is
also fast enough to be integrated into real-time applications
such as photo-style explorer and real-time color suggestion
(see Section 4).

2.2 Image Recolorization and Stylization

Our work is also related to the problem of image recoloriza-
tion and stylization. Color transfer is a standard approach
for image colorization [13]. The basic idea is to map the
color distribution from a reference image to a given image.
To model the color distribution, one can first extract color
themes from reference images and then perform transfer-
ring [4], [13], [14]. Alternatively, histograms can be used to
directly map the colors between images [15]. The method of
Liu et al. [16] automatically discovers styles in a collection of
user images via a clustering approach. The major difference
between this work and ours to image recolorization is
that, instead of clustering the photo collections, we applied
manifold learning [17] on palette data to interpolate color
palette on demand. The interpolation allows us to generate
variations of the existing color themes, thus providing the
user with a wider range of color choices.

Chang et al. [18] provide an intuitive interface to recol-
orize an image by manually modifying a global color palette
representing the image. Our work also introduces a method
to recolorize an image with palettes. However, instead of
letting the user modify the palettes, we automatically gen-
erate them from the palette manifold. Since our focus is to
generate reasonable palettes rather than the recolorization
technique itself, we do not provide comparative study with
conventional methods in the field. Chia et al. [19] introduce
an interesting approach to grey-scale image colorization by
retrieving semantically similar photographs from the Inter-

net. Nguyen et al. [20] also retrieve images of an object and
model a color manifold for that object. Note that our method
models the manifold of color palettes rather than colors,
which is more complicated since we need correspondences
between colors. Consequently, our method is specifically
designed for the purpose of color suggestion and color
compatibility prediction.

2.3 Color Picking and Recommendation

Color picking is an essential component of all design soft-
ware. Basic color pickers provide a wheel-like interface,
where the user drags the pointer around the gamuts to find
the right color, or a slider-like interface that allows the user
to adjust color components individually. More advanced
tools, like Adobe Color CC [21] or Coolorus [22], help the
user to choose harmonious color combinations by using
harmony templates, which are derived from classic color
theories [23]–[25]. Another strategy is to clip the color gamut
to limit the color choices to “harmonious groups” [22]. For
people who are acquainted with physical palettes, Corel
Painter [26] and MyPaint [27] provide color mixer pads
that simulate real-world color mixing. Gradient mixer [28] is
another tool that displays gradients between colors to add
more variations to the current palette. Our model allows
interpolation between palettes, thus, at some points on the
manifolds, one can find “in-between” colors similar to the
gradient mixer. Palette breeder [28] is an interesting tool that
uses a genetic algorithm to “breed” palettes and generates
new ones. Wijffelaars et al. [29] suggest an intuitive interface
that uses curves to represent color harmony parameters.
Using color names is another way to select color [30].

Nguyen et al. [20] use a color manifold and apply di-
mensionality reduction to ease the task of changing colors
of an object. Our user interface also provides a mechanism
for the user to continuously surf through variations of
colorizations. As we also model the density of color themes,
our interface assists users by displaying the probabilities
associated with the variations, assisting them in browsing
the theme space. The work of Shapira et al. [31] suggests
a promising parametric interface for browsing possible ap-
pearance of an image but does not provide palette recom-
mendations to the user and is not data-driven. Similarly,
Marks et al. [32] introduce a framework called Design
Galleries that displays variations of a parametric graphical
object in a reasonable way (e.g. images, animations...). Their
method is not data-driven and their focus is to present an
object’s variations rather than to recommend variations, as
in our work.

2.4 Object Arrangement and Browsing

Our palette arrangement is close to the more generic prob-
lem of object arrangement. The objective is to arrange a
set A = {a1, ..., aN} ∈ X of objects into a set B =
{b1, ..., bN} ∈ Y of locations so that the pairwise distances
between objects in A are preserved as much as possible after
being aligned into B. A popular solution for this problem
is the “kernelized sorting” technique introduced in [33], in
which the authors utilize kernels and a learned centering
matrix to make distances in X and Y comparable. More
recently, Fried et al. elaborate a method to match a set of
objects with a layout called IsoMatch [34]. Although our



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 4

method is similar to IsoMatch in a spirit, the goals of the two
methods are different. While IsoMatch aims at arranging N
objects to N locations, our problem is to solve a set of M
such problems, which are interdependent.

3 METHODOLOGY

As illustrated in Figure 1, our method for modeling the
density of color palettes can be divided into 3 steps:

• Data Collection and Preprocessing: We collected
images of different artists and extracted color themes
from local regions.

• Palette Ordering: We ordered the colors in each
palette in a consistent way.

• Learning and Inference: We applied density esti-
mation techniques and performed interpolation on
palette data.

3.1 Data Collection and Preprocessing
As partially shown in Figure 3 (Top), we collected 40
paintings for each of 17 well-known artists such as Pierre-
Auguste Renoir (Renoir), Vincent Willem van Gogh, Raf-
faello Sanzio da Urbino (Raphael), Maximilien Luce (Luce),
Paul Cézanne (Cezanne), Hilaire-Germain-Edgar De Gas
(De Gas), and William Merritt Chase (Chase). All the paint-
ings were rescaled so that the larger dimension is 500
pixels. As explained in Section 1, instead of treating a whole
painting as a single palette, we extracted palettes from local
patches from the paintings, which capture the local contexts.
Specifically, we extracted patches of 200x200 pixels from
the paintings using a sliding window with a step-size of
100 pixels. Next, we selected 1000 pixels from each patch
by randomly sampling from the patch. Subsequently, we
applied K-Means in the CIE*Lab space to cluster the pixels
in each patch to obtain K clusters (Figure 3 (Mid)), thus
forming one color palette per patch. We randomly selected
400 palettes per artist and aggregated them together to form
a dataset of color palettes – one dataset per artist. We call our
palette datasets the Artistic Palette Datasets. For quantitative
study, we chose K = 5, which follows previous works [1],
[2]. Our methodology is, however, independent from the
size of the palette. Thus, the number of colors can be
chosen arbitrarily, depending on the application. For some
applications, such as photo recolorization and multi-style
painting, which often need more colors, we used K = 7
(Figure 3 (Bottom)). We also used K = 10 for demonstration
purpose in Section 5. Please refer to Section 5.1.1 for more
discussions about K.

3.2 Palette Ordering
In this section, we discuss the palette ordering problem and
our solution. We also show comparisons with some other
methods in Section 5.1.

3.2.1 Problem Statement
The goal of palette ordering is to order the colors in each
palette, so that linear interpolation between ordered palettes
yields meaningful results – i.e., the colors that describe the
same objects should have the same indices. The intuition
is, the palette dataset might contain palettes that come

Fig. 3. Our dataset contains a set of 40 images from each of 17 well-
known artists. (Top) paintings from Renoir set. (Mid) 5-color palettes
extracted from the set. (Bottom) 7-color palettes extracted from the set.
Each column is a color palette.

Fig. 4. Palettes extracted from similar patches often have correspon-
dences. The extracted palettes were ordered with Binary Palette Sort.

from the same context, and thus there are always semantic
correspondences between the colors. Figure 4 shows an
example, in which both patches contain sky scene and
one can observe the correspondences between cloud col-
ors and between sky colors. It is, however, too costly to
manually annotate all semantic regions as an image might
contain hundreds of regions. We overcome this difficulty
by assuming that patches containing similar sets of colors
should have similar contexts. Our algorithm can guarantee
that similar palettes are optimally aligned. Very different
palettes are only roughly aligned via palette set ordering, as
described in Section 3.2.2.

Formally, given a palette dataset X = {P1, ...,PN},
with N is the number of palettes. We have the palette
Pn =

[
p1
n, . . . ,p

K
n

]T
, where pkn is a color (a 3D vector). The

goal is to solve the following optimization problem, which
minimizes the pairwise distances between the palettes:

argming

N∑
n=1

N∑
m=1

K∑
k=1

‖pgn(k)n − pgm(k)
m ‖, (1)

where gn : K→ K, K = {1, . . . ,K} is a bijection that maps
an index k to another index k′. Solving the palette ordering
problem thus has the complexity O((K!)N ), which grows
exponentially with the number of palettes.

Given that each dataset in our Artistic Palette Datasets
contains 400 hundred palettes, it is not feasible to solve the
problem (1) with brute-force. To this end, we introduce the
Binary Palette Sort algorithm (BPS) – an ordering algorithm



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 5

that uses a divide-and-conquer strategy to achieve a reason-
able solution for (1).

(A)
Binary

Palette Sort

(B)
Brightness

Sort

Fig. 5. Example of palette ordering with our method. (A) Binary Palette
Sort and (B) Brightness Sort. Each column is a palette. The red dot
boxes in (A) highlight the rows in which colors are smoothly arranged.

We motivate the strategy of BPS by showing a typical
palette dataset in Figure 5. As a palette dataset might
contain color palettes that are very different from each other,
it is less important to align such palettes, comparing to the
similar ones. For instance, the first palette (first column)
in Figure 5 represents a sky and thus aligning it to the
last palette (last column), which comes from a tree, does
not make sense. This is the key observation that motivates
our sorting algorithm. We prioritize the matching between
nearby palettes over distant palettes. Distant palettes are still
roughly aligned via set alignment, which will be discussed
later.

Level 3

Level 2

Level 1

Level 0

Partitioning

Unordered Palettes Ordered Palettes

Merging

Fig. 6. Example of palette arrangement with Binary Palette Sort. The
unordered palettes were partitioned by considering the similarities be-
tween palettes.

3.2.2 The Binary Palette Sort Algorithm
Intuitively, BPS recursively partitions the datasetX into two
subsets until there is only one palette left in each subset and
then works the way back to the first call by aligning and
merging each pair of subsets into an ordered list. The result
is a set of sorted palettes (see Figure 6). Our BPS algorithm
is similar to Merge Sort [35] in strategy but has a different
merging method and a different objective. In our context,
the objective of Merge Sort would be to rearrange a list of
color palettes while the objective of Binary Palette Sort is to
rearrange the colors in each palette, while the order of the
palettes is fixed. BPS has a complexity of O(NK4), which
is feasible to solve. At each level of recursion, we solve a

sorting sub-problem that aligns two sets of color palettes,
where each set can have a different number of palettes (see
the description of Sort below).

Given the palette dataset X , our algorithm to approxi-
mate the solution for (1) is expressed recursively as

Sort(X) = Merge(Sort(Partitionl(X)),

Sort(Partitionr(X))), (2)

where we use subscripts l and r to denote the two partitions
produced by the subroutine Partition. Each subroutine is
given in details below.

Sort: The sort subroutine takes a palette dataset X
and returns a new palette dataset X ′, whose each member
palette is aligned. The routine starts from the lowest level of
the tree, solving a case of linear assignment problem (LAP), in
which both P ′ and Q′ are singletons, merging the aligned
sets together and moving up to the higher level. If a leaf
node does not have a “partner” to match (the rightmost
leaf nodes in Figure 6), the routine just passes it to the
upper level. At the upper level, the subroutine repeats the
assigning and merging processes that have been done at the
lower level. Note that now each set may contain a different
number of palettes (see Figure 6 (Right)).

To align two sets of palettes, we need to solve a linear
assignment problem as follows: Given two sets of color
palettes P = {Pn}Nn=1 and Q = {Qn}Mn=1, where N,M
are the numbers of palettes, we have the color palettes
Pn =

[
p1
n, . . . ,p

K
n

]T
,Qn =

[
q1
n, . . . ,q

K
n

]T
, where K is the

number of colors in each palette and qkn,p
k
n are the colors.

By grouping corresponding colors in the palettes in each
set together, we obtain matrices Pk =

[
pk1 , . . . ,p

k
N

]T
and

Qk =
[
qk1 , . . . ,q

k
M

]T
which can also be viewed as color

palettes. In Figure 6, Pn and Qn are the matrices (blocks
of colors), each column is a palette. Pk is the k-ht row in
the color matrix, which will form the corresponding colors.
We want to match the rows of Pn and Qn so that they are
aligned well according to the distance d (see below). The
problem is stated as:

argming

K∑
k=1

f(Pk,Qg(k)), (3)

where f is the distance between sets of colors and g is
similar to that of (1). In our implementation, g is found with
the Hungarian algorithm [36] and f is given below. Since the
palettes Pk and Qk have different lengths, we cannot apply
conventional metrics for vectors such as the Euclidean dis-
tance. Instead, we utilize the modified Hausdorff distance
(MHD) introduced in [37]. The MED between two palettes
of different lengths Pk and Qh, for h = g(k) is calculated
as follows:

max(d(Pk,Qh), d(Qk,Ph)),

where

d(Pk,Qh) =
1

N

N∑
i=1

min
j∈1:M

‖pki − qhj ‖.

d(Qh,Pk) can be defined similarly. The process is repeated
until all the palettes in the dataset are merged into a single
set. At this point, we have already obtained a sorted set of



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 6

palettes where the colors in the same row are close to each
other.

Merge: The Merge subroutine merges two sets of
color palettes into a new set, in which the palettes are
aligned with the indices g(k) is taken from (3). Figure 6
(Right) gives an example of this step.

Merge(P, Q) =



P, for Q = ∅
Q, for P = ∅

P ∪



q
g(1)
1
...

q
g(K)
1

 , . . . ,

q
g(1)
M
...

q
g(K)
M




. (4)

Partition: This subroutine divides the set X into two
subsets Xl, Xr, Xl ∩ Xr = ∅ while minimizing the total
distance from the data points in each subset to the center of
the subset. The goal is to ensure that palettes in each subset
are close to each other.

argminγ,µl,µr

N∑
n=1

γ(Pn)
∥∥Pn−µl∥∥+ N∑

n=1

(1−γ(Pn))
∥∥Pn−µr∥∥,

(5)
where µl, µr are the centers of each subset and γ is:

γ(Pn) =

{
0, ∀Pn 6∈ Xl

1, ∀Pn ∈ Xl
.

We then have

Xl = {Pn|∀Pn ∈ X, γ(Pn) = 1},
Xr = {Pn|∀Pn ∈ X, γ(Pn) = 0}. (6)

This process is repeated until each subset contains only a
single palette, resulting in a tree in which each node is a
set of palettes and the leaf nodes are singletons. Although
there are solutions such as the K-medoids algorithm for the
problem (5), it could be costly to apply them in practice. To
speed up the algorithm, we present an alternative partition
method that has comparable performance and is much
faster. Intuitively, the new partition method projects the
palettes onto a line and then orders the palettes according to
the projected coordinates. The dataset is then partitioned by
the palettes’ indices. Specifically, we used kernel principal
component analysis (KPCA) [38], which can operate on sets,
to project our palettes. The kernel used was derived from the
MHD distance introduced above (MHD kernel). Although
there are other powerful kernels like the pyramid match
kernel (PMK) [39], which work on sets, we found that the
MED-based kernel is sufficiently accurate and is the fastest
method, allowing it to work in real-time. In fact, as PM was
designed for matching large sets, it did not perform well on
our palette data and was also too slow for our applications.
The left side of Figure 6 demonstrates this process.

3.3 Learning and Inference
Prior to learning and inference, we directly concatenated
colors in an ordered palette to form a vector of dimension-
ality 15 (for 5 colors), 21 (for 7 colors) and 30 (for 10 col-
ors). Given the concatenated dataset, we performed palette
interpolation, density estimation, and color prediction. Although
there are many possible approaches to our problems such as

G
P
LV
M

Fig. 7. A sample palette density produced by GPLVM. Gray values
indicate the likelihoods of the palettes.

neural networks [40] and latent Dirichlet allocation [41], we
chose a standard method named Gaussian process latent
variable models (GPLVM) [42] for its ability to deal with
small data sets, which is the case of our work.
3.3.1 Palette Interpolation
GPLVM was first introduced by Lawrence et al. for the
purpose of nonlinear dimensionality reduction (NLDR) and
visualization [42]. It shares the same objective function
with popular dimensionality reduction methods such as
KPCA, Probabilistic PCA, and Multidimensional Scaling
(MDS) [43]. The main advantage of GPLVM over other
methods is the non-linear mapping from latent space to
observed space. This means that it is suitable for non-
linear data interpolation, which is the case of our work.
We interpolated new palettes by sampling data points from
the low dimensional space induced by GPLVM. GPLVM
provides a mechanism to project these latent points back
to the palette space via Gaussian Processes (GPs). The main
computation for training a GPLVM is the nonlinear mini-
mization of the negative log-likelihood function with respect
to the kernel parameters and the latent points [42]. This
minimization was done with a gradient-based optimizer, the
scaled conjugate gradient method (SCH).

Manifold learning: A concept related to NLDR is
manifold learning [17], one common approach to NLRB. Man-
ifold learning aims to find an embedded non-linear topo-
logical manifold in a high dimensional space. By projecting
data onto a low dimensional manifold, one can visualize
complex data in an understandable manner. In our work,
we are interested in the inverse projection that maps the
low dimensional data points back to the original space. The
idea is to let the user interact with palette data in a low
dimensional space – 2, in our case – and to observe the
results of these interaction in the palette space.
3.3.2 Density Estimation
GPLVM assigns likelihoods to data points in the latent
space, which can be interpreted as a density. In our imple-
mentation, GPLVM was trained with the Radial Basis Func-
tion (RBF) kernel [44], and the number of latent dimensions
was 4. In Figure 7, we show an example of palette density,
induced by GPLVM. The two most significant dimensions
were chosen for visualization. The palettes were taken from
4 datasets: De Gas, Luce, Gogh and Raphael. For demon-
stration purpose, we chose the number of colors to be 10.

To justify our choice of the learning model, we also
experimented with principal component analysis (PCA)



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 7

for dimensionality reduction and Gaussian mixture models
(GMM) for density estimation.The experiments show that
GPLVM, as a non-linear method can produce more diverse
results than PCA-GMM, which is a desired characteristic
in our applications (see sample results for both methods in
Section 5.1.2). In addition, the quantitative experiment in
Section 5 shows that GPLVM is slightly more accurate in
predicting colors.

3.3.3 Predicting Compatible Colors
To recover the missing colors with GPLVM, we first pro-
jected the partially observed palette yo∗ onto the latent
space using the technique described in [42]. This technique
involves the selection of an initial position for the latent
point x∗ by finding a similar point in the input space (palette
space). The latent point is found by minimizing the same
objective function as in the training step with respect to x∗
while yo∗ and other parameters are fixed. GPLVM handles
the missing dimensions by setting the corresponding noise
variances to infinity. The likeliness between the predicted
palette and the query palette can be controlled by setting the
number of iterations in the minimization step. To recover
the palette, we used a standard GPs prediction that maps
data points from the latent space to input space. Both of the
mentioned methods (PCA-GMM and GPLVM) are fast and
can be used for real-time prediction.

4 APPLICATIONS

In this section, we introduce various applications that were
based on our palette interpolation and completion methods.

4.1 Photo Recolorization
Our method can suggest colors for photo recolorization. Dif-
ferent from traditional color transfer methods, which copy
lightness, hue, and saturation from one photo to another,
our method summarizes color characteristics of a set of
source photos (image patches), and then actively examines
regions in the destination photo to infers a set of colors for
each region. This makes our method different from that of
[3], [4], which only give a single color to an image region
(segment). The advantage of this approach is that local
shades are preserved instead of being erased like in the cases
of [3], [4]. More details about our recolorization method is
provided in the supplementary.

Figure 9 (Top) shows examples of photo recolorization
with color styles learned from different image sets. Observe
how the purple blues in the Luce set (the sky) and the
yellows in the Cezanne set (the pears) have been transferred
to the midtones of the apples and the tulips in the original
images. For the Chase set, one might notice the dominance
of fire/canary yellows (the walls in the dataset) and crimson
reds (the carpet in the dataset), which was correctly reflected
in the recolorization results. The results from the Raphael
set and the Beach set appear to be less vibrant as one can
see the range of colors in the training sets are significantly
smaller than the other sets. In particular, the apples and the
tulips now bear the colors of the sand and the sunset sky
in the Beach set (same as in Fig. 20) and the clothes in the
Raphael set. A subtle but definitive difference is in the green
areas (the green apple and the tulip leaves) of the original
images. Since greens appear frequently in the Cezanne and

Renoir Renoir

Gogh

O
ur
M
et
ho
d

Input Image

Input Palettes

M
ethod

[4]

A B

Chase

Fig. 8. Recolorization results obtained by our method and the method in
[4]. (A) an (B) are the user input palettes. The palettes predicted by our
method are shown next to each result.

the Luce sets, only the results produced with these sets have
true shades of green.

To see how recommending multiple palettes instead of
one global palette would affect visual quality of the results,
we compared our recolorization results with the ones in
[4]. Note that the comparison is intended only to demon-
strate the capability of our method to enrich existing photo
colorization methods, among which the work of Wang et
al. [4] is a representative. Since the focus of our work
is to introduce a generic framework for real-time palette
interpolation, it might be better to have a dedicated study on
photo colorization in a separate work. Figure 8 shows our
recolorization results given the same input image and the
target themes (A) and (B). To perform recolorization with
an input palette as the constraint, we first applied the input
theme to each segment in the destination image and then
used the same steps as in the standard method. We used
the models trained separately on 3 sets to suggest colors:
Chase, Gogh and Renoir. One might notice that for the input
palette (A), our method produce much cleaner results, as
compared with the result from [4], and still resembling the
spirit of the input. At small scales, as our method suggests
multiple colors for a single region – the mountain, for
instance – we can observe a wider range of colors exists in
each region, creating a richer look for the image. We call this
approach to photo recolorization enriched photo recolorization.
Similar results can be seen in the case of the input (B). Note
that, as the artists rarely used such vibrant colors in their
paintings, images in (B) are less saturated than the input
palette. Depending on the application, one can prepare a
more appropriate dataset to achieve desirable results.

4.2 Photo-style Explorer

Photo stylization applications like Lightroom offer users
with a set of pre-defined filters and let them combine these
filters to achieve a certain effect. It is, however, required that
users know exactly what they want (a blurry photo in black
and white, for instance). Inexperienced users often do not
have such a clear picture of the final results but rather want
to see different results and pick one that they prefer. We
present an application called Photo-style Explorer, in which



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 8

UserTemplates

User 1

User 2

Raphael BeachChase LuceCezanne

RaphaelLuceCezanne

Original

D
at
as
et
s

Fig. 9. Image recolorization and multi-style painting results. (Top) Recolored images with palettes suggested by models trained on Chase, Cezanne,
Luce, Raphael and Beach sets. (Bottom) Paintings made by two users using colors suggested by 3 models (Cezanne, Luce and Renoir). A pair of
images were used as guidance (template). The grayscale image was shown to help the users with object shading and the line sketch with color
spots was used to indicate the object boundaries and to guide the users on which color to use.

Fig. 10. Photo-style Explorer interface. (Left) the space of color palettes
where each point corresponds to a complete 7-color palette. Key points
are annotated with the associated palettes and the red circle indicates
the location of the mouse pointer. (Right) Image viewer, displaying the
recolorized result in real-time.

the user is allowed to freely surf through an infinite space of
color styles and intuitively refine the result just by dragging
the mouse. Figure 10 shows the interface of the explorer
and Figure 11 displays the representative results for two
palette manifolds “Luce” and “Raphael”. The colorization
technique involved here was identical to the one described
in Section 4.1 except that we cached intermediate values to
make the application works in real-time.

4.3 Adaptive Color Palette

To present the color combinations suggested by our method
to the user, we designed a novel color picking interface,
called “SmartPalette” interface. SmartPalette has been inte-
grated into MyPaint [27], an open-source painting software
written in Python. As shown in Figure 12, we chose the half-
disk design that allows the colors to be shown in the order
of their density in a patch. Each 60-degree slice (1/3 of the

half-disk) presents a set of colors (7 colors in our imple-
mentation). We sorted the colors by their brightness so that
they will not “jump” around every time a new prediction
is made. The colors were arranged into the slice in left-
to-right and outer-inner orders. Different color suggestions
were given by changing the order of the given colors (see
the accompanying video). Different from previous meth-
ods [1], [2], which considered only suggestion over a whole
painting, our tool adaptively checked the regions being
painted and performed palette prediction. We sampled the
pixels from a 200x200 pixels patch using the same method
described in Section 3.1. The result was instantly presented
to the user. The whole prediction process took less than
half a second on an ordinary PC (Core 2 Duo 2.4 ghz, 8GB
memory).

Since our learning method is unsupervised, it is easy for
professional painters/designers to train their own Smart-
Palette and use it to improve productivity. With GPLVM, the
system does not require a lot of examples. Tens of example
paintings are sufficient. Similarly, a design team can also
make use of SmartPalette to constrain the use of colors so
that their products will have consistent color themes. Figure
13 shows different suggestions provided by SmartPalette in
an incremental manner. Here we used models trained on 3
different sets: Cezanne, Gogh and Raphael sets. First, the
user commits an initial brush stroke (red), which results
in suggestions with reds and other predictably compatible
colors. By changing the artist, the user can obtain different
suggestions that bear the style of that artist. Second, the
user commits a second brush stroke (yellow), the palettes
now contain both reds and yellows and other colors. The



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 9

Fig. 11. Exploration of the palette manifold learned from the “Raphael” set (Left) and the “Luce” set (Right). Red dots indicate the locations where
the color palettes were selected for recolorization. The original image (top-left corner) was designed by Freepik.com.

Fig. 12. SmartPalette interface. Please refer to the accompanying video
for painting with real-time suggested palettes. The user may choose
different artistic styles via the combo box at the top.

interaction is repeated throughout the design process. One
might notice that the variability of colors in Raphael set is
not very large. This is because Raphael was a painter in the
Classical period and he mainly used black, red, dirt yellow
in his paintings.

CezanneInput strokes Van Gogh Raphael

Sample suggestions from SmartPalette

Fig. 13. Sample suggestions from SmartPalette. The left-most column
shows the query strokes. The remaining columns are the suggestions
from different artist sets.

Multi-style painting and User Study: To see how
SmartPalette works in real-life scenarios, we asked two
users with art backgrounds to paint using our color sug-
gestion tool. The traditional HSV wheel was also shown
for selecting initial colors. The users were provided a line
sketch along with a grey-scale photo of the same scene for

reference. Color suggestions were based on the Cezanne,
Luce, or Raphael sets. Figure 9 (bottom) shows the paintings
produced with the palettes from the three artists. Note
that, the paintings bear resemblance in color styles with
the painting sets. For instance, the painting of User 1 that
used suggestions from Luce set has ocean blue shadows like
in original paintings. The paintings made with suggestions
from Raphael set are less vibrant and are more brownish.

To quantitatively assess our Adaptive Color Palette, we
replicated the above experiment with 4 users with experi-
ences in digital painting, and recorded relevant information.
There was no time limit for the test but it normally took
about 8 minutes for each user to complete the test. We
recorded the number of times the user chose a color from
either our palette or the HSV wheel, the number of times
these colors were actually painted and the number of times
the users manually requested for color suggestions from
our method. We did not run the test with the HSV wheel
only as it might be subject to unaccountable factors such
as painting skill and test timing. For instance, professional
designers may perform just as good with or without our
tool. However, the tool will still be useful if it learns from
their own painting collection.

The results show that, the users preferred the colors from
our method 81% of the times on average. 84% of the total
painting time was done with colors from our suggestions.
Each user manually requested for suggestions for 1.4 times
per minute during the test. We also asked the users to rate
different aspects of our method (from 1 to 5, the higher
the better). The users agreed that they will use our tool
frequently (4.3/5), the tool was easy to use (4.0/5) and most
people can learn to use it quickly (4.3/5). Some users sug-
gested that SmartPalette should display similar and novel
colors in separate sections and the software should keep a
history of suggested palettes.

5 EVALUATION AND RESULTS

We evaluated our sorting algorithm by comparing it to a
baseline method and then quantitatively assessed the pre-
dictive performance of the learning models, which operate
on our feature vector.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 10

B
in
ar
y
P
al
et
te
S
or
t

B
rig
ht
ne
ss

S
or
t

In
pu
ts

Original Palettes

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

Rose

Rose

Sky

Sky

Dirt

Dirt

BG

BG

Fig. 14. Ordering performance is demonstrated with the recolorization results. We show the corresponding palette datasets at the middle. The
palettes sorted with our method are annotated with semantic labels (Rose, Sky, Dirt and Background – BG), indicating the objects that get the
colors from the rows.

5.1 Palette Sort Comparisons

We chose simple palette ordering methods, which are based
on brightness and hue, as the baselines to evaluate our
method. In the experiments, we conveniently call these
methods Brightness Sort and Hue Sort. As colors in paintings
often follow certain shading rules, brightness and hue can
be basic cues for aligning them [6]. These simple methods,
however, failed when the palettes to be ordered do not have
strong contrast or hue, which is the case of our datasets.

BPS

Brightness Sort

5 10 15 20 25 30 35 40

0.188

0.189

0.190

0.191

0.192

0.193

0.194

0.195

5 10 15 20 25 30 35 40
0.095

0.100

0.105

0.110

0.115

0.120

0.125

Hue Sort

Palette Size

O
rd
er
in
g
E
rr
or

Fig. 15. Palette ordering with different methods: Hue Sort, Brightness
Sort and BPS.

5.1.1 Ordering Performance

To measure the ordering performance, we computed the
mean distance between the colors in two consecutive
palettes, averaged over all palettes in a dataset. Since we
are interested in ordering colors in the palettes so that sim-
ilar palettes have better correspondences, we pre-ordered
the palettes with KPCA before the experiment (see Sec-
tion 3.2.2). In Figure 15, we plot the distance against the
palette size. For each palette size K, we randomly selected
a dataset of size 20×K (20 palettes) out of a dataset of size
20 × 40 and then ordered it with 3 methods: BPS, Bright-
ness Sort and Hue Sort. Each experiment was repeated 5
times and the results were averaged over all 17 sets. As
shown in the figure, Hue Sort has the worst error rates,
comparing to BPS and Brightness Sort. Thus, we will not
further consider it in the later sections. On the other hand,

Brightness Sort only produces comparable performance to
BPS when K ≤ 8. As K increases, BPS increasingly outper-
forms Brightness Sort. Note that, the color distance appears
to inversely proportional with the size of palette. This is
because there are more correspondences in a more complete
dataset. To visually assess the ordering performance, we
carried out a toy experiment as follows.

First, we chose two source images and extracted one 10-
color palette per image. Next, we selected a set of 8 palettes
from the Prendergast and the Luce set and then used them
for recolorization. To make the correspondences between the
extracted palettes and the selected palettes more visible to
the reader, we used MHD to choose palettes that are similar
to the extracted palettes. Next, we sorted the palette set with
BPS and Brightness Sort. The motivation for having two
input images is to demonstrate the localization property of
our method. As shown in Figure 14, there are two distinctive
groups of palettes in the palette set ([1-4] and [5-8]), each
group resembles an input palette. As Binary Palette Sort
aligns the palettes from local to global, we can observe clear
correspondences for both groups of palettes. For example,
the blues, representing the sky, and the reds, representing
the rose, have consistent indices across the palettes. This
demonstrates a case of context localization, an natural behav-
ior of our method. As discussed in Section 3.2, our sorting
algorithm is able to localize the painting contexts embedded
in a palette dataset. By assuming that similar palettes should
describe similar objects or regions, our algorithm partitions
and sorts these palettes together. The algorithm creates
correspondences in color between nearby palettes, and thus
helps preserving the context of each color locally.

To see how different color palettes may affect recoloriza-
tion, we applied the sorted palettes to recolor the same
source image (the same as in Figure 14). Colors with the
same indices were applied to the same regions in the source
image (the first color went to the background, the second
color went to the small flowers, etc.). The sorted palettes
were matched with the palette extracted from the source
image by using the same technique discussed in 3.2.2. We
used the recolorization technique introduced in [47]. Note
that, the recolorization method used in this section is differ-
ent from the one in Section 4.1. As the purpose was only to
visualize the differences between color palettes and we had
only one palette to recolorize the image, the technique in



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 11

[47] was more appropriate. As a result of correct alignment,
our recolorization results remain consistent across different
palettes. For example, the rose stays red and the sky stays
blue in all the images. In contrast, the results produced with
Brightness Sort appear to be quite inconsistent as the blues
and reds keep switching regions.

To further confirm the superiority of our method, we
conducted a user study to compare the consistency among
the results produced by our method and Brightness Sort.
We followed the same procedure discussed above but with
10 source images. We chose the source images in a way that
ensures distinctiveness between colors in each source image.
The full set of test images can be found in the supplementary
documents for this paper. We generated a set of 6 images
for each pair of sorting method and source image. The
resulting sets for the two methods and the source image
were displayed side-by-side for comparison and the order
of appearance is counter-balanced. 15 users were asked
to pick a set that has better consistency. Concretely, we
instructed the users to look at each image set as a whole
and to examine the color consistency within each set. We
provided examples (not from the test set) of consistent and
inconsistent sets if the users were still unclear about the task.
We also informed the users that they should not care about
the aesthetic quality of the images as it is irrelevant to the
test. The results show that the users preferred our method
127/150 of the times (χ2 = 74.9, p < 0.0001).

5.1.2 Interpolation Performance
We demonstrate the interpolation performance of BPS by
comparing it to the baseline method. We performed inter-
polation on the low dimensional space induced by PCA
or GPLVM and then projected the interpolated points back
to the palette space. We also visualized the color palettes
by applying the interpolated palettes to the same source
image, as in Section 5.1.1. Figure 16 shows recolorization
results with the palettes sampled along an evenly spaced
grid from the latent space induced by GPLVM. The sampled
palettes are placed under each recolorized image. Under
each set of recolorization results, we show the correspond-
ing palettes used for training the model. When the palettes
are correctly ordered with Binary Palette Sort, we obtain
better palette interpolations as the colors stay “clean” and
consistent across the interpolated palettes – e.g., the rose
stays red in all cases. With brightness-based ordering, the
interpolated colors turn brown as they are just the averages
of the misaligned palettes (top row, Brightness Sort). In the
last row of Brightness Sort, the roses are colored green, as
a result of interpolating between misaligned colors (reds
and greens). The results in the Unordered case appear to
be unusable as the colors jump arbitrarily from one place to
another. The results produced with PCA are shown in the
supplementary.

5.2 Quantitative Comparison
We assessed the quality of the proposed model quantita-
tively by applying it to the task of color prediction. In
this experiment, datasets were divided into training and
testing sets with the training ratio of 0.6 (60% of the whole
set used for training). We conducted the experiment on 3
sets: Renoir, De Gas and Chase and reported the averaged

results. Each set contained roughly from 500 to 600 5-color
palettes. Given 4, 3, 2 and 1 colors from an unordered palette,
the task was to predict/reconstruct the original palette (5
colors). Each experiment was repeated 5 times on random
splits. We experimented with different methods for palette
prediction. From now on, we refer to the vectorized ordered
palettes produced by our Binary Palette Sort as Sorted
Palette Features (SPF).

1) GPLVM + SPF: GPLVM on SPF (introduced in Sec-
tion 3.3).

2) GPLVM + Brightness: GPLVM with Brightness Sort.
3) GPLVM + None: GPLVM on the original palette

data.
4) GMM + SPF: Gaussian Mixture Regression with SPF.
5) GMM + None: GMM on the original palette data.
6) Retrieval + SPF: We retrieved the most similar

palette to the given colors. Since the palettes were
already sorted, we used Euclidean distance to mea-
sure the similarity between the given colors and
colors with the same indices in the dataset.

7) Retrieval + None: This method is similar to the
above method but the original (unordered) palette
data was used.

8) Color Compatibility [1]: One of the first data-driven
methods for color harmony discovery and palette
rating prediction. Due to the slow implementation,
we could only try it on the single color prediction
case. The implementation was taken from the au-
thors.

9) Color by Numbers [2]: A method that relies on
unitary, pairwise and global color functions con-
nected by a factor graph to predict harmonious color
combinations. The global function was taken from
[1]. To apply the method to our data, we used raw
patches extracted from the images as input to the
system. We used the implementation provided by
the authors of the paper.

10) Mean: A simple method that takes the average of
all provided colors as prediction. We used it as a
baseline for other methods.

For the case of GMM, GPLVM and Retrieval we first ran
the Binary Palette Sort algorithm on the training set to obtain
the SPF vectors. Then, for each given set of observed colors,
we found a few similar palettes with MHD (3 palettes in our
experiment) in the training set and then aligned the input set
to these examples using the same technique used to sort a
pair of palette sets in Binary Palette Sort (see Section 3.2).
Even though the observed set might have missing colors,
the matching algorithm still works as it only needs the
pairwise distances between the colors. The missing colors
in the palettes were then predicted using the technique
described in Section 3.3.3. Since the predicted results were
still unordered (except for the 1-color case), we again used
MHD to measure the distance between the predicted theme
and the ground-truth. Since MHD is simply an average
distance between pairs of colors, we visualize the relative
differences between colors in Figure 18. A change of 0.05
in either “L” channel or “a” channel can produce visible
differences. The reported numbers are the average distance
between all predictions and ground-truths.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 12

Binary Palette Sort Brightness Sort Unordered Original

Tr
ai
ni
ng

P
al
et
te
s

R
ec
ol
or
iz
at
io
n
R
es
ul
ts

Fig. 16. Palettes sampled from GPLVM’s latent space were applied to the same input image in Figure 14. The training palettes are at the bottom,
each column is a 10-color palette.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
Palet te Predict ion Comparison

GPLVM + SPF
GPLVM + Brightness
GPLVM + None
GMM + SPF
GMM + None
Ret rieval + SPF
Ret rieval + None
Color By Numbers
Mean
Color Compat .

Number of Missing Colors

M
H
D
E
rr
or

Fig. 17. Comparing theme completion performance. Prediction errors
are measured by the average MHD distance between predicted themes
and ground-truth themes. The smaller, the better.

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

L a

Fig. 18. Color scales for “L” and “a” channels in CIE*Lab space. The
numbers are the relative distances to the first color.

Fig. 17 shows the average error of the methods with
different numbers of missing colors. One might notice that
methods Color by Numbers (9) and Color Compatibility
(8) are not suitable for the task of palette completion, since
their error rates appear to be higher than other methods. We
run an independent t-test to test the difference between our
method (1) and (9) and get t-statistic = −2.47,p-value =
0.02, which means that our method is significantly better
in predicting colors (smaller error rates). We also found via
t-test that the learning-based methods with SPF (1) and (4)
are significantly better than the retrieval-based methods (6)

and (7). This result justifies our choice of using learning
approaches for predicting color palettes. In contrast, the
learning-based methods without SPF (3) and (5) are not
significantly better than any of the retrieval-based methods.
The Brightness Sort method, which was studied in Section
5.1, yields very similar results to our method in this test.
This can be explained by the fact that brightness is the
most important factor in visual data. In fact, many computer
vision algorithms only need gray-scale data as the cue for
predictions.

GPLVM-based methods are generally better than GMM-
based ones for both types of data (sorted and unordered).
For this reason, we chose GPLVM for the applications intro-
duced in Section 4. For both prediction methods, we observe
a boost in performance when the SPF vectors are used. It is
worth noting that the mean predictor (Mean) works best
for the case of 1 missing color. This can be explained by
looking at our dataset. Since we gathered color themes from
local patches, there were many patches that contain different
shades of the same color. Thus, the missing colors in those
cases are fairly similar to the average of the other colors in
the same theme. The t-test results, however, did not confirm
the significance of the difference in error rate between (1),
(3), (4), (5) and (10). In Section 5.1, we visually evaluated
these methods.

6 LIMITATIONS AND FUTURE WORK

Our approach still suffers a number of limitations. First of
all, our algorithm does not guarantee perfect alignment be-
tween distant palettes. This is due to the fact that we aligned
nearby palettes first while distant palettes were implicitly
aligned via set alignment (see Section 3.2). In Figure 19,
we intentionally include a palette and its brightness-shifted
version (palettes in red boxes) into the set. Because the latter
is shifted, the two palettes are separated from each other,
which causes a slight misalignment (the yellow and the light



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 13

pink swapped positions). A possible way to improve this is
to replace the MHD kernel in the KPCA sorting step (Section
3.2) with a more advanced kernel, which also considers the
structure of the palettes instead of raw distances between
colors. Another limitation of our work is, although the
photo-style exploration can be potentially useful for real-
world use cases, we have not yet evaluated it with user
studies. Due to the subjectivity of aesthetic evaluation, it
is not straightforward to judge the quality of the stylized
results. In the future, we aim to design better user studies
to assess our tools, possibly with the help of online crowd-
sourcing. In the future, we would like to study how our

Fig. 19. A case when distant palettes are not perfectly aligned.

model would work on context-specific photo recolorization
problems (similar to [3]). That is, given a training set con-
taining images of similar scenes such as beach, mountain,
summer, etc. would it be possible to make use of our model
to recolorize novel images in a consistent way. In Figure 20,
we show some preliminary results for a particular case of
beach scene. We used the same technique discussed in Sec
4.2. The results look quite promising because areas in the
source image have been recolorized with meaningful colors
(the sand turns yellow and sky turns indigo).

C

A B

Fig. 20. Context-specific recolorization. (A) Original image. (B) Training
set. (C) Various results.

Another possible future work is to study how different
segmentation results affect the recolorization results. Since
our method suggests color palettes based on input colors
extracted from segments, a bad segmentation can result in
less distinctive results. For example, if the input palette
is simple shades of the same color (due to a color-based
segmentation), the output is likely to be similar to the
input because there are indeed many similar palettes in
the training set. Thus, our recolorization pipeline requires
a good segmentation, which partitions images into objects
and and meaningful regions. A similar effect can be seen
when comparing the results in Fig. 9 and Fig. 11. Due to

the real-time constraint, in the application of photo-style
explorer, we use input palettes extracted globally, which
are more distinctive, thus producing more varying results
at the cost of local shades. In contrast, the results in Fig.
9 is produced with local input palettes, resulting in richer
shades. Depending on the application, one might want to
choose one approach or combine them to achieve desirable
results.

7 CONCLUSION

We have introduced a novel method for interpolating and
summarizing palette data. Palette datasets are often avail-
able as unordered sets of colors, making it difficult to
directly apply traditional methods to analyze the data.
We designed an effective palette ordering method (Binary
Palette Sort) that makes use of kernel-based dimensional-
ity reduction to reorder colors in palettes in a meaning-
ful way, allowing us to apply state-of-the-art interpolation
techniques on palette data. The palette density provided a
mean to develop numerous interesting applications such as
real-time adaptive palette, photo-style exploration, enriched
photo recolorization. We have conducted both quantitative
and qualitative experiments to assess the performance of
our method, and favorable results were obtained. In the
future, we would like to study in depth how the user in-
teracts with SmartPalette and Photo-style Explorer, possibly
through crowd-sourcing and online survey.

REFERENCES

[1] P. O’Donovan, A. Agarwala, and A. Hertzmann, “Color compati-
bility from large datasets,” in ACM Transactions on Graphics (TOG),
vol. 30, no. 4. ACM, 2011, p. 63.

[2] S. Lin, D. Ritchie, M. Fisher, and P. Hanrahan, “Probabilistic
color-by-numbers: Suggesting pattern colorizations using factor
graphs,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, p. 37,
2013.

[3] H.-Z. Huang, S.-H. Zhang, R. Martin, and S.-M. Hu, “Learning
natural colors for image recoloring,” in Computer Graphics Forum.
Wiley Online Library, 2014.

[4] B. Wang, Y. Yu, T.-T. Wong, C. Chen, and Y.-Q. Xu, “Data-driven
image color theme enhancement,” ACM Transactions on Graphics
(TOG), vol. 29, no. 6, p. 146, 2010.

[5] B. Wang, Y. Yu, and Y.-Q. Xu, “Example-based image color and
tone style enhancement,” in ACM Transactions on Graphics (TOG),
vol. 30, no. 4. ACM, 2011, p. 64.

[6] P. Mollica, Color Theory: An essential guide to color-from basic princi-
ples to practical applications. Walter Foster Pub, 2013.

[7] K. B. Schloss and S. E. Palmer, “Aesthetic response to color combi-
nations: preference, harmony, and similarity,” Attention, Perception,
& Psychophysics, vol. 73, no. 2, pp. 551–571, 2011.

[8] L.-C. Ou and M. R. Luo, “A colour harmony model for two-colour
combinations,” Color Research & Application, vol. 31, no. 3, pp. 191–
204, 2006.

[9] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.-Q. Xu, “Color
harmonization,” ACM Transactions on Graphics (TOG), vol. 25,
no. 3, pp. 624–630, 2006.

[10] M. Nishiyama, T. Okabe, I. Sato, and Y. Sato, “Aesthetic quality
classification of photographs based on color harmony,” in Pro-
ceedings of the 2011 IEEE Conference on Computer Vision and Pattern
Recognition, ser. CVPR ’11, 2011.

[11] C. Sauvaget, S. Manuel, J.-N. Vittaut, J. Suarez, and V. Boyer,
“Segmented images colorization using harmony,” in Signal-Image
Technology and Internet-Based Systems (SITIS), 2010 Sixth Interna-
tional Conference on. IEEE, 2010, pp. 153–160.

[12] P. O’Donovan, A. Agarwala, and A. Hertzmann, “Collaborative
filtering of color aesthetics,” in Proceedings of the Workshop on
Computational Aesthetics. ACM, 2014, pp. 33–40.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2697948, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MARCH 2017 14

[13] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color
transfer between images,” IEEE Computer graphics and applications,
vol. 21, no. 5, pp. 34–41, 2001.

[14] N. Bonneel, K. Sunkavalli, S. Paris, and H. Pfister, “Example-based
video color grading.” ACM Trans. Graph., vol. 32, no. 4, p. 39, 2013.

[15] L. Neumann and A. Neumann, “Color style transfer techniques
using hue, lightness and saturation histogram matching,” ser.
Computational Aesthetics’05, 2005.

[16] Y. Liu, M. Cohen, M. Uyttendaele, and S. Rusinkiewicz, “Au-
tostyle: Automatic style transfer from image collections to users’
images,” Computer Graphics Forum, 2014.

[17] Y. Ma and Y. Fu, Manifold Learning Theory and Applications. CRC
Press, 2011. [Online]. Available: https://books.google.com.vn/
books?id=6pr1txA0\ yMC

[18] H. Chang, O. Fried, Y. Liu, S. DiVerdi, and A. Finkelstein, “Palette-
based photo recoloring,” ACM Transactions on Graphics (TOG),
vol. 34, no. 4, p. 139, 2015.

[19] A. Y.-S. Chia, S. Zhuo, R. K. Gupta, Y.-W. Tai, S.-Y. Cho, P. Tan,
and S. Lin, “Semantic colorization with internet images,” ACM
Transactions on Graphics (TOG), vol. 30, no. 6, p. 156, 2011.

[20] C. H. Nguyen, T. Ritschel, and H.-P. Seidel, “Data-driven color
manifolds,” ACM Transactions on Graphics (TOG), vol. 34, no. 2,
p. 20, 2015.

[21] “Adobe color cc,” https://color.adobe.com.
[22] “Coolorus,” http://www.coolorus.com.
[23] J. Itten, The elements of color. John Wiley & Sons, 1970, vol. 4.
[24] Y. Matsuda, “Color design,” Asakura Shoten, vol. 2, no. 4, 1995.
[25] M. Tokumaru, N. Muranaka, and S. Imanishi, “Color design sup-

port system considering color harmony,” in Fuzzy Systems, 2002.
FUZZ-IEEE’02. Proceedings of the 2002 IEEE International Conference
on, vol. 1. IEEE, 2002, pp. 378–383.

[26] “Corel painters,” http://www.painterartist.com/us/product/
paint-program/.

[27] “Mypaint,” http://mypaint.intilinux.com.
[28] B. J. Meier, A. M. Spalter, and D. B. Karelitz, “Interactive color

palette tools,” Computer Graphics and Applications, IEEE, vol. 24,
no. 3, pp. 64–72, 2004.

[29] M. Wijffelaars, R. Vliegen, J. J. Van Wijk, and E.-J. Van Der Linden,
“Generating color palettes using intuitive parameters,” in Com-
puter Graphics Forum, vol. 27, no. 3. Wiley Online Library, 2008,
pp. 743–750.

[30] J. Heer and M. Stone, “Color naming models for color selection,
image editing and palette design,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2012,
pp. 1007–1016.

[31] L. Shapira, A. Shamir, and D. Cohen-Or, “Image appearance explo-
ration by model-based navigation,” in Computer Graphics Forum,
vol. 28, no. 2. Wiley Online Library, 2009, pp. 629–638.

[32] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gib-
son, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml et al.,
“Design galleries: A general approach to setting parameters for
computer graphics and animation,” in Proceedings of the 24th annual
conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 1997, pp. 389–400.

[33] N. Quadrianto, L. Song, and A. J. Smola, “Kernelized sorting,” in
Advances in neural information processing systems, 2009, pp. 1289–
1296.

[34] O. Fried, S. DiVerdi, M. Halber, E. Sizikova, and A. Finkelstein,
“Isomatch: Creating informative grid layouts,” in Computer Graph-
ics Forum, vol. 34, no. 2. Wiley Online Library, 2015, pp. 155–166.

[35] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to algorithms. MIT press Cambridge, 2001, vol. 6.

[36] H. W. Kuhn, “The hungarian method for the assignment prob-
lem,” Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97,
1955.

[37] M.-P. Dubuisson and A. K. Jain, “A modified Hausdorff distance
for object matching,” in Pattern Recognition, 1994. Vol. 1-Conference
A: Computer Vision and Image Processing., Proceedings of the 12th
IAPR International Conference on, vol. 1. IEEE, 1994, pp. 566–568.

[38] B. Schölkopf, A. J. Smola, and K.-R. Müller, “Advances in kernel
methods,” B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds.
Cambridge, MA, USA: MIT Press, 1999, ch. Kernel Principal
Component Analysis, pp. 327–352.

[39] K. Grauman and T. Darrell, “The pyramid match kernel: Discrim-
inative classification with sets of image features,” in Computer
Vision, 2005. ICCV 2005. Tenth IEEE International Conference on,
vol. 2. IEEE, 2005, pp. 1458–1465.

[40] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, 2006.

[41] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, 2003.

[42] N. D. Lawrence, “Gaussian process latent variable models for visu-
alisation of high dimensional data,” Advances in neural information
processing systems, vol. 16, pp. 329–336, 2004.

[43] J. B. Kruskal, “Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp.
1–27, 1964.

[44] J.-P. Vert, K. Tsuda, and B. Schölkopf, “A primer on kernel meth-
ods,” Kernel Methods in Computational Biology, pp. 35–70, 2004.

[45] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,
“SLIC superpixels compared to state-of-the-art superpixel meth-
ods,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 34, no. 11, pp. 2274–2282, 2012.

[46] X. Chen, D. Zou, Q. Zhao, and P. Tan, “Manifold preserving edit
propagation,” ACM Transactions on Graphics (TOG), vol. 31, no. 6,
p. 132, 2012.

[47] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using opti-
mization,” in ACM Transactions on Graphics (TOG), vol. 23, no. 3.
ACM, 2004, pp. 689–694.

Huy Q. Phan is an postdoctoral researcher at
the University of Bath. He received his B.Sc in
Computer Science from the Vietnam National
University in 2009 and attained a PhD from the
City University of Hong Kong in 2016, under su-
pervisions of Prof. Hongbo Fu and Prof. Antoni
B. Chan. In 2015, he was a research intern at
Adobe Systems in San Jose city.

Hongbo Fu is an Associate Professor in the
School of Creative Media, City University of
Hong Kong. He received the PhD degree in
computer science from the Hong Kong Univer-
sity of Science and Technology in 2007 and the
BS degree in information sciences from Peking
University, China, in 2002. His primary research
interests fall in the fields of computer graph-
ics and human computer interaction. He was
the Program Chair or Co-chair of CAD/Graphics
2013, SIGGRAPH Asia 2013 (Emerging Tech-

nologies), SIGGRAPH Asia 2014 (Workshops) and CAD/Graphics 2015.
He was the Conference Chair for SIGGRAPH Asia 2016. He has served
as an Associate Editor of The Visual Computer (TVC), Computers &
Graphics (C&G), and Computer Graphics Forum (CGF).

Antoni B. Chan received the B.S. and M.Eng.
degrees in electrical engineering from Cornell
University, Ithaca, NY, USA, in 2000 and 2001,
respectively, and the Ph.D. degree in electrical
and computer engineering from University of
California at San Diego (UCSD), La Jolla, CA,
USA, in 2008. He was a Visiting Scientist with
the Vision and Image Analysis Laboratory, Cor-
nell University, from 2001 to 2003, and a Post-
Doctoral Researcher with the Statistical Visual
Computing Laboratory, UCSD, in 2009. In 2009

he joined the Department of Computer Science, City University of
Hong Kong, Hong Kong, and is currently an Associate Professor. His
research interests include computer vision, machine learning, pattern
recognition, eye-gaze analysis, and music analysis. Dr. Chan received
the National Science Foundation Integrative Graduate Education and
Research Training Fellowship from 2006 to 2008, and an Early Career
Award from the Research Grants Council of the Hong Kong Special
Administrative Region, China, in 2012.


