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Another Perspective of Over-smoothing: Alleviating
Semantic Over-smoothing in Deep GNNs

Jin Li, Qirong Zhang, Wenxi Liu, Antoni B. Chan, Yang-Geng Fu

Abstract—Graph neural networks (GNNs) are widely used
for analyzing graph-structural data and solving graph-related
tasks due to their powerful expressiveness. However, existing
off-the-shelf GNN-based models usually consist of no more
than three layers. Deeper GNNs usually suffer from severe
performance degradation due to several issues including the
infamous "over-smoothing" issue, which restricts the further
development of GNNs. In this paper, we investigate the over-
smoothing issue in deep GNNs. We discover that over-smoothing
not only results in indistinguishable embeddings of graph nodes,
but also alters and even corrupts their semantic structures,
dubbed semantic over-smoothing. Existing techniques, e.g., graph
normalization, aim at handling the former concern, but neglect
the importance of preserving the semantic structures in the
spatial domain, which hinders the further improvement of model
performance. To alleviate the concern, we propose a cluster-
keeping sparse aggregation strategy to preserve the semantic
structure of embeddings in deep GNNs (especially for spatial
GNNs). Particularly, our strategy heuristically redistributes the
extent of aggregations for all the nodes from layers, instead of
aggregating them equally, so that it enables aggregate concise
yet meaningful information for deep layers. Without any bells
and whistles, it can be easily implemented as a plug-and-play
structure of GNNs via weighted residual connections. Last, we
analyze the over-smoothing issue on the GNNs with weighted
residual structures and conduct experiments to demonstrate the
performance comparable to the state-of-the-arts.

Index Terms—Deep graph neural networks, over-smoothing,
node classification, clustering, sparse aggregation strategy.

I. INTRODUCTION

AS an emerging and promising technology, graph neural
networks (GNNs) [1] pave a path to handle graph-like data

structures thanks to their efficiency and powerful expressiveness,
and thus draw increasing attention to various applications on
social network [2], recommendation systems [3], point clouds
[4], drug discovery [5], etc.

Neural techniques for graph analysis have been in existence
since the previous century. Motivated by [6] applying neural
networks to directed acyclic graphs, Gori et al. [7] first intro-
duces the notion of Graph Neural Networks (i.e., GNNs), which
is further followed by [8] and [9]. These recurrent graph neural
networks (RecGNNs) [1] attempt to learn node embeddings
by iteratively propagating neighbor information until reaching
a stable equilibrium. Some other GNNs aim to design some
graph convolution in either the spectral or spatial domain. Those
spectral-based methods try to learn a graph filter that adaptively
preserves low- and high-frequency signals [1]. Yet, they suffer
from high computational complexity when performing eigen-
decomposition for graph Laplacian. On the other hand, graph
convolutional neural network (GCN) [10] is proposed to linearly

approximate universal filters of graph signals, which also
has good interpretability in the spatial domain. Furthermore,
as a typical kind of spatial-based model, message-passing
neural networks (MPNNs) [11] generalize GCN and propose
a framework to iteratively aggregate messages from the first-
order neighbors of each node via some generalized operators.
However, most existing GNN-based models consist of no
more than three layers, whereas deeper GNNs usually suffer
from severe performance degradation. There are many issues
resulting in the performance degradation of deep GNNs, e.g.,
over-fitting [12], over-smoothing [12, 13], memory limitation
[14, 15], time consumption [14], difficulty in optimization [16]
(e.g., gradient vanishing or exploding, numerical instability
[17]), and over-squashing [18].

Amongst these issues, over-smoothing is the most important
one and has attracted more and more attention in recent
years. On the deeper layers of GNNs, they tend to pro-
duce indistinguishable embeddings for different graph nodes,
thus leading to an over-smoothing effect. Techniques are
incorporated to alleviate over-smoothness by separating the
embeddings, which can be mainly categorized as: 1) skip
connections [19, 20]; 2) graph normalization [16, 21]; 3)
random dropping [12, 22, 23]; 4) their combinations [17].
Yet, we observe that, in deep layers, GNNs not only produce
too clustered embeddings to discriminate, but also tend to
change or corrupt their underlying semantic structures, dubbed
semantic over-smoothing. In particular, as the embeddings
of graph nodes become too close in deep layers, although
normalization tricks can be applied to expand their mutual
distances, we show that the tricks actually cannot prevent the
semantic structures from corruption based on our theoretical
analysis and experiments. Thus, semantic over-smoothing is
neglected by all existing anti-over-smoothing techniques, so that
the performance of GNNs can hardly be further strengthened.
More importantly, studying semantic over-smoothing provides
an intuitive way to effectively handle the over-smoothing issue,
which is interpretable in the spatial domain.

To intuitively illustrate our motivation, we plot the scattering
of embeddings produced by different stages with different
methods on a synthetic graph in Fig. 1, where: 1) Line 1 shows
that GCN easily suffers from the numerical over-smoothing
issue, since the embeddings tend to approach too close (at a
point or a very short segment); 2) Line 2 shows that GCN
with isotropic normalization can only delay this issue with
only constant numerical scaling (a longer segment); 3) Line
3 utilizes an-isotropic normalization, preventing embeddings
from converging to a line and keeping diversity to the fullest;
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(a) GCN
Original Features Stage 1 Stage 2 Stage 3

(b) GCN with isotropic normalization
Original Features Stage 1 Stage 2 Stage 3

(c) GCN with our introduced an-isotropic normalization
Original Features Stage 1 Stage 2 Stage 3

(d) GCN with our proposed strategy
Original Features Stage 1 Stage 2 Stage 3

Fig. 1. Illustration of over-smoothing on synthetic graph data. From the top to the bottom row, we visualize the evolution of data as layers go deeper using
GCN, GCN with isotropic normalization, GCN with our introduced an-isotropic normalization (see Sec. IV-B1 and supplementary material), and GCN with
our proposed strategy, respectively. The specific data generation method and the specific numbers of layers of every model are provided in Sec. III of the
supplementary material. (a)-(b) The former two models easily degrade to over-smoothing. (c) GCN with an-isotropic normalization alleviates numerical
over-smoothing, yet it cannot preserve its structural information and thus suffers from semantic over-smoothing where different clusters shift and blend with
each other. (d) In contrast, with the same number of layers as other models, our strategy manages to maintain the semantic structure, effectively alleviating
semantic over-smoothing.

however, some semantic clusters in terms of ground-truth
labels significantly blend and mix with each other (a more
essential reason for performance degradation of downstream
linear classifiers), which gives visual observation of semantic
over-smoothing and can be hardly discovered by Line 1 and 2 in
their limits; 4) With the aid of our proposed strategy, semantic
clusters can naturally preserved with also relatively reduced
intra-cluster variances compared to Line 3, which is definitely
beneficial. Based on these visualizations, we can provide a
comprehensive understanding for the semantic over-smoothing
issue. Specifically, it is exhibited as the blending and collapsing
of global semantic structure (e.g., clustering, distribution, or
geometrical relationships), even when the isotropic or more
powerful an-isotropic normalization techniques are applied.

The reason may be attributed to that the knowledge abstracted
from the node embeddings of the input graph are encoded into
semantic structure, far more important than the specific numeric
values of those embeddings themselves. Thus, those normaliza-
tion techniques that consider solving the over-smoothing issue
only from a numerical perspective, e.g., normalizing the average
mutual numerical distances or keeping the comprehensive
shape, are not enough to preserve the semantic structure (as
shown on the 2-th and 3-th row of Fig. 1). Although shallow
models perform worse than the state-of-the-art deep models,
they can capture the basic semantic structure. Thus, in their
deep layers, the slight and sparse structure-based refinement
rather than remodeling can naturally and intuitively alleviates
both numerical and semantical over-smoothing issues. This
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evidently indicates the roles that deeper layers play, leading
to the simple yet effective design of the proposed method
presented in Sec. V. In Sec. IV-B, we show more observation
and analysis on semantic over-smoothing, including a more
detailed description, comparison with the numerical issue, how
it was discovered, the potential cause, and why studying it is
significant.

To alleviate the semantic over-smoothing issue, we propose a
simple and effective cluster-keeping sparse aggregation strategy
to adaptively choose the nodes to aggregate and how much
information they will devote to aggregation. This strategy
enables deep GNNs to aggregate concise yet meaningful
information while relieving the semantic over-smoothing issue,
and it can be easily implemented as a plug-and-play structure
of GNNs via weighted residual connections. Last, we conduct
a theoretical analysis on a GCN with weighted residual
structures, which reflects the motivation of sparse aggregation,
as well as the convergence property and expressiveness of
our model against semantic over-smoothing. We also perform
experiments in which our proposed strategy is incorporated with
the vanilla GCN [10] and Simple Graph Convolution (SGC)
[24], respectively, and they achieve comparable or even better
performance against the existing state-of-the-arts in public
benchmarks.

Overall, the contributions of this work are summarized as
follows:

• We discover that over-smoothing not only results in
indistinguishable embeddings for different graph nodes,
but also alters and even corrupts their semantic structures
in deep layers, called semantic over-smoothing. This
phenomenon is neglected by previous methods, and we
demonstrate that studying it provides a novel and intuitive
way to handle the over-smoothing effect in deep GNNs.

• We propose a cluster-keeping sparse aggregation strategy
to effectively alleviate semantic over-smoothing and enable
deep GNNs to aggregate sparse yet crucial information
on deep layers.

• A theoretical analysis on a GCN with weighted residual
structures is conducted, which reflects the motivation of
sparse aggregation, as well as the convergence property
and expressiveness of our model against semantic over-
smoothing.

• In experiments, we show that our proposed strategy can be
easily incorporated with the vanilla GCN and SGC, and
achieves comparable or even better performance against
the existing state-of-the-art methods in public benchmarks.

The remainder of this paper is organized as follows: In
Sec. II-A and Sec. III, we introduce some related works and
preliminaries, respectively. Then the intuition and motivation
of semantic over-smoothing issue are presented in Sec. IV.
After that, we will detailedly introduce our proposed clustering-
keeping sparse aggregation strategy in Sec. V. Some theoretical
discussion on semantic over-smoothness and the structure
of GNN with residual connections are given in Sec. IV-B1
and V-D. Consequently, in Sec. VI extensive experiments
are conducted to show the potential and the effectiveness
of our method. Finally, we summarize this paper and give

the limitation of our method in Sec. VII. Please refer to
the supplementary material for more theoretical analysis,
interpretations, experimental details, and visualizations.

II. RELATED WORKS

A. Graph Neural Networks

GNNs are widely used for various graph-related tasks
including texts [25], images [26], traffic [27], generation [28],
molecule [29], few-shot learning [30], electroencephalogram
(i.e., EEG) [31], and Internet of Things (i.e., IoT) [32]. They
also achieve state-of-the-art results [1, 33, 34]. In addition
to some earlier recurrent graph neural networks (RecGNNs)
[8, 9], there are two kinds of convolution-based GNNs: spectral-
based and spatial-based, which have different motivations
and interpretability in their designs for graph convolutions.
From the perspective of graph signal processing, spectral-based
approaches introduce some graph filters to remove noises in
graph signals. Spatial GNNs directly define graph convolutions
via information propagation in local environments (e.g., neigh-
borhoods). As a pioneering spectral-based model inspired by
CNN, SpectralCNN [35] obtains Laplacian eigen-space (i.e.,
eigen-vectors and eigen-values) via direct eigen-decomposition,
which is followed by many models [10, 24, 36, 37, 38]. Graph
Convolutional Network (GCN) [10], a significant model inter-
preted as both low-pass filters and neighborhood aggregations
respectively in the spectral and spatial domain, has inspired
many recent spatial-based models such as GAT [39], GIN [40],
GeoGNN [41], etc. Hamilton et al. [42], Gao et al. [43], and
Zeng et al. [15] develop GCN to solve large-scale problems.
Some GNNs can be applied to handle heterogeneous graphs
(e.g., [44, 45, 46]) and make it possible to perform recommen-
dation tasks [47, 48] and deal with knowledge graph [49, 50].
Other aspects of GNNs are also explored, e.g., heterophily [51],
expressiveness [52, 53, 54, 55, 56], interpretability [57, 58],
pretraining [59], self-supervised learning [60]. The proposed
method pertains to spatial GNNs and can be applied to nearly
all of them, including those aforementioned.

B. Deep GNNs and the over-smoothing issue

Although GNNs have lots of variants, most of them are
shallow networks that restrict their expressiveness and limit
distant message passing. To make GNNs deep, prior works
introduce modifications or tricks to overcome or alleviate
the over-smoothing issue. To solve the over-smoothing issue,
known methods can be categorized into three classes: skip con-
nections, graph normalization (e.g., Pairnorm [21], Nodenorm
[61], Meannorm [16]) and random dropping (e.g., DropEdge
[12], DropNode [22], DropMessage [23]). Skip connection-
based models originate from ResNet [62] and contain common
residual connection (from last layer) [63, 64], initial connection
(from the first layer) [19, 20, 63], dense connection (from every
layer) [13, 65], and jump connection (from every layer to the
last layer only) [13, 66]. Chen et al. [17] thoroughly surveys
the relevant methods.

Also, we notice that there exist some works analysing or
designing deep GNNs from other perspectives or domains.
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Inspired by Scarselli et al. [67], Tiezzi et al. [68] proposes to
learn deep GNNs via multi-layer constrained optimization in
the Lagrangian framework, simultaneously learning the node
states and their transition function, whose convergence can
be implicitly expressed by some constraints. Keriven [69]
theoretically analyses the over-smoothing issue for simplified
linear GNNs with Mean aggregations from a perspective of
probabilistic latent space modeling. Deep GNNs can also be
applied to other domains. For example, to solve general visual
tasks (e.g., image recognition and object detection), ViG [70]
makes a prediction based on the graph representation obtained
from a graph constructed by splitting an image into patches
and connecting the nearest ones. Besides, ViG can easily
go deeper via normalization similar to Meannorm [16] and
some customized feature transformations, which can effectively
capture irregular and complex objects compared to traditional
widely-used CNNs and transformers.

In contrast with previous works, we discover that over-
smoothing issue not only leads to indistinguishable embeddings,
but also corrupts the semantic structure. Thus, we propose a
novel and intuitive perspective by handling semantic over-
smoothing as a more interpretable way to tackle the over-
smoothing issue in the spatial domain. More specifically, our
method falls into the first class (i.e., skip connections-based
methods). However, we do not focus on exploring new GNN
structures (i.e., looking for new kinds of connections) as prior
works (e.g., GCNII [19] and JKNet [66]). Our goal is to
alleviate the over-smoothing issue via some flexible sparse
aggregation strategies considering only the simplest structure
(i.e., GNN with commonly used residual connections).

III. PRELIMINARIES

a) Notation: Let G = (V,E) be an undirected graph with
node set V and edge set E, where n = |V |,m = |E| represent
the number of its nodes and edges respectively. We denote
by A ∈ {0, 1}n×n and X ∈ Rn×d its adjacency matrix and
feature matrix where xi = Xi,: ∈ Rd represents the feature
vector of node i. For semi-supervised node classification task,
every node in G has a ground-truth label yi ∈ N. We denote
In ∈ Rn×n as identity matrix of size n, and 1 ∈ Rn×1 is an
all-one vector.

b) Graph convolutional network: GCN in spatial domain
can be described as several stacked aggregation operations,
linear transformations, and non-linear activation functions.

H(l+1) = σ
(
ÂH(l)W (l)

)
∈ Rn×d, ∀l ∈ [0, L),

H(0) = X,
(1)

where L is the number of layers and σ(·) denotes non-linear
activation function (e.g., ReLU) except the last layer where
Softmax is deployed. Â = D̃− 1

2 ÃD̃− 1
2 is the symmetrical

normalized matrix of Ã where Ã = A+ I is adjacency matrix
with self-loops and diagonal matrix D̃i,i =

∑n
j=1 Ãi,j . H(l) ∈

Rn×d and W (l) ∈ Rd×d represent the embedding matrix of
nodes and the trainable parameters in the l-th layer. Sometimes,
we use unsymmetrical normalized matrix of Ã, i.e., Ârw =
D̃−1Ã, which is a probability transition matrix for random
walks.

c) Simple graph convolution: SGC simplifies GCN by
dropping its non-linear activation functions in the aggregation
process. The forward pass of SGC can be described as follows:

H(L) = ÂLXW ∈ Rn×d (2)

Our method can be applied to any MPNN-based GNN
architecture, including GCN, SGC, GAT, GIN, etc. For the sake
of simplicity, we apply SGC-style (i.e., dropping activation
functions) backbone to show our motivations and theoretical
derivation.

IV. INTUITION AND MOTIVATION

A. Over-Smoothing Issues

Assuming that we stack infinite numbers of GCN layers,
the produced embeddings of graph nodes in different classes
will become too close to distinguish, which is called the over-
smoothing issue. Formally, prior works analyze it from both
theory and experiments [13, 21]. For SGC on a connected
graph, H(L) will converge to a line (see Fig 1) as L increases
to infinity according to spectral analysis:

H(L) = ÂLXW =
(
UΛUT

)L
XW

= UΛLUTXW =

(
n∑

i=1

λL
i uiu

T
i

)
XW,

lim
L→∞

H(L) =
(
u1u

T
1

)
XW = D̃

1
21
(
1T D̃

1
2XW

)
,

(3)

where we apply the eigen decomposition of Â = UΛUT ,
and ui is the eigen vector with respect to the eigenvalue λi

(assuming that λ1 = 1 > λ2 ≥ · · · ≥ λn). Because the line
where the embeddings converge only contains the information
on node degrees 1, SGC drops structural information. A similar
conclusion can generalize to GCN with non-trivial proof (see
[71]).

However, the analysis of prior methods focuses on the
spectral domain, which cannot help us understand the behaviors
of the embeddings, namely, how their structures vary and the
respective influences of nodes in the spatial domain, except
their convergence on indistinguishable embeddings. They treat
nodes equally so that they cannot adaptively manipulate the
aggregation in the spatial domain.

B. Semantic Over-Smoothing

A common practice to solve the over-smoothing issue is
numerical scaling or normalization, e.g., magnifying the em-
bedding matrix by a large constant or stretching them to varied
extents along different directions. However, the performance of
deep GNNs using these numerical normalization tricks is still
limited, since these tricks cannot thoroughly solve the over-
smoothing issue. According to the observation and analysis
on these tricks (see Fig. 1 and the theoretical justification in
Sec. IV-B1), we conjecture that there may be scale-invariant
semantic information loss as layers go deep in GNNs, which
makes the embeddings indistinguishable and is often ignored by

1Besides, if we utilize the asymmetrically normalized adjacency matrix,
e.g., some forms of Mean aggregation, node embeddings would converge to a
point (i.e., 1

(
1TXW

)
).
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prior works. Hence, we call the phenomenon of the semantic
information loss as semantic over-smoothing, in which the
semantic information may refer to the meaningful information
on distribution, structure, or signals of labels. Empirically, it
may be attributed to spatial over-aggregation and fast shifting of
embeddings even after performing numerical normalization, and
thus leading to semantic structure corruption. More theoretical
analysis is presented in the supplementary material.

The existing methods mainly attempt to approach a better
numerical limit on deep layers of GNNs or obtain a universal
filter of features, so as to preserve a few more high-frequency
information in the spectral domain [16]. To differentiate it from
our semantic over-smoothing, we call this issue as numerical
over-smoothing. The key difference of numerical and semantic
over-smoothing can be observed from Fig. 1 where we plot
embeddings produced by different methods in different stages.
After utilizing the introduced graph an-isotropic normalization
trick, we can clearly see in Line 3 of Fig. 1 the severe
cluster blending and overlap, discovering semantic corruption.
It is completely ignored and can be hardly solved by prior
methods of tackling only numerical over-smoothing (Line 2).
Because they have major limitations on the interpretability
of the implications and significance of the preserved high-
frequency information for spatial evolution or semantic varying
of node embeddings, which usually hinders them to make full
of flexible spatial operations to mine and keep various semantic
knowledge (including comprehensive distribution, community
or clustering structure, features and their relationship, label
alignment, etc). Hence, studying semantic over-smoothing
provides an intuitive perspective to deal with over-smoothing
(Line 1 in Fig. 1) directly and naturally from the spatial
domain, e.g., by directly controlling, manipulating, or guiding
the spatial aggregation and propagation operations to keep
simple yet interpretable semantic knowledge (see above) in
case of performance degradation due to semantic corruption
in deeper layers (instead of considering only preserving high-
frequency information or a universal filter that is not intuitive
or understandable enough).

1) Discussion on Semantic Over-smoothing: In this section,
we discuss about semantic over-smoothing and provide some
intuition and interpretation. We describe how we discover it
and why it is important from both theoretical and experimental
aspects. The analysis provides justification on our intuition
and motivation, and motivates us to look for a useful strategy
to combat the semantic over-smoothing issue. The numerical
over-smoothing issue tells us that embeddings of nodes will
converge to a limit where all nodes will be too close to each
other, which makes them indistinguishable. In order to solve
numerical over-smoothing first, we first propose a method
called graph an-isotropy normalization, GAINorm, as expressed
below.

Definition 1 (Graph an-isotropy normalization). We define
this an-isotropy normalization trick by the following iterative

process:

Ht = Bt−1

(
BT

t−1Bt−1

)− 1
2 , ∀ t ≥ 1

Bt−1 =

(
In − 1

n
11T

)
ÂHt−1, H0 = X,

(4)

where Â and X can be found in Sec. III-0b, and given matrices
P and Q, here Q = P

1
2 means the square root of a matrix

whose eigen-values are all non-negative, i.e., Q2 = P . When
BT

t Bt is not invertible for t, we define 0−1 = 0 to omit all of
its zero-valued eigenvalues and ensure its invertibility.

From the definition, we can easily identify its characteristics:
1) In the spatial domain, an-isotropy normalization essentially
attempts to retain the variance as 1 along every direction; 2) In
the meantime, for the spectral domain, it also ensures HTH =
Id, keeping the channels of H orthogonal and thus carrying
diverse information. Therefore, an-isotropy normalization is a
powerful and capable normalization technique to effectively
overcome numerical over-smoothing. As mentioned above, the
semantic over-smoothing can be naturally observed after first
alleviating the numerical one with the help of the an-isotropy
normalization. Thus, to essentially understand the semantic
evolution during propagation, in the following, we will show
its convergence property and discuss its limitations, from which
we can figure out what challenge still remains and why it can
hardly handle the challenge.

Theorem 1. For an unweighted undirected graph G (connected
but without self-loops), A is its adjacency matrix and Ã =
A+ I , D̃ is the degree matrix of Ã (i.e., D̃i,i =

∑n
j=1 Ãi,j).

Assuming the symmetrically normalized matrix of Ã is Â =
D̃− 1

2 ÃD̃− 1
2 , and let W = In − 1

n11
T , using the graph an-

isotropy normalization trick according to Definition 1, we have:
1) 1TBt = 1THt = 0, ∀ t ≥ 1;
2) HT

t Ht = Id, ∀ t ≥ 1;
3) WHt = Ht, ∀ t ≥ 1;
4) Let Ā = WÂW , then: Bt = ĀHt, ∀ t ≥ 1;
5) Assume that H0 is sampled from standard normal

distribution N (0, 1) or uniform distribution U(0, 1), Ht will
converge in large probability when t approaches infinity.
Moreover, the columns of Ht will converge to a basis of
the linear space spanned by the eigen-vectors Ud ∈ Rn×d

corresponding to eigenvalues of Ā with the top-d largest
absolute values. In other words, there exists some orthogonal
matrix Qt ∈ Rd×d, such that: in large probability, Ht → UdQt,
as t → +∞.

According to the theorem above, using an-isotropy normal-
ization, there exists an orthogonal matrix Qt ∈ Rd×d such
that, with a high probability, Ht will converge to UdQt, as
t → +∞. As a powerful normalization technique, the an-
isotropy normalization is able to derive the principal space of
Ā and easily capture rich low-frequency structural information,
as the theorem implies. However, when it converges, some
potentially beneficial super-high-frequency structural informa-
tion and the whole original feature knowledge can hardly be
preserved, leading to semantic structure corruption.

To give a visual intuition, please observe and compare
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the plots of embeddings obtained by GCN with isotropic
and an-isotropic normalization (Line 2 and 3 in Fig. 1). The
embeddings would never converge to a line or a point (see
the note in Sec. IV-A), which will make nodes definitely
indistinguishable by a simple downstream classifier, if an-
isotropic normalization are utilized. However, by carefully
observing Stage 1 and Stage 3 of Line 3 in Fig. 1, we notice
that: 1) The purple, red, and green clusters completely blend
with each other; 1) The purple cluster tends to run towards and
blend with the green and the red clusters although they are
quite distant from it considering the original features, while
the purple cluster tends to run away from the blue one, which
has quite similar features. The observations intuitively tell us
that embeddings might tend to forget some important feature
knowledge, which conforms to the aforementioned analysis
and reveals the potential cause of the semantic over-smooth
concerning cluster mixture (Stage 3 of Line 3) instead of
embedding approaching phenomena (Stage 3 of Line 1 and 2).

More specifically, one can get an intuition about how the
semantic structure of nodes’ embeddings varies from the above
theorem. From the very beginning, the embeddings carry the
only information of node features on the structure of clusters
(Fig. 1 Line 3 Original Features). As the nodes aggregate more
information through an appropriate number of layers, their
embeddings additionally carry structural information of this
graph, which obtains a good trade-off and thus forms well-
organized semantic clusters. However, with further aggregations,
more and more relatively low-frequency structural information
will be absorbed into their embeddings and thus become
more dominant than the high-frequency structural and all
of the feature information. The reason may rest in that, d
channels cannot hold all the information they receive, so some
outdated information must be discarded. As more and more
low-frequency information degrades the distinction between
many essentially different nodes, the model would definitely
forget some important semantic knowledge to maintain the
well-formed structure, and thus the over-smoothing inevitably
takes place even with Graph an-isotropy normalization (Fig. 1
Line 3 Stage 2 → 3). This motivates us to design some adaptive
strategies to directly avoid semantic corruption and combat
semantic over-smoothing, keeping intuitive and interpretable
knowledge not restricted from frequency filtering. For more
information on the proof, the experimental validation, and
in-depth discussion, please refer to the supplementary material.

V. CLUSTER-KEEPING SPARSE AGGREGATION STRATEGY

Over-smoothing in the spatial domain may be caused by
over-aggregation, so an intuitive solution to relieve it is to
redistribute weights to different nodes with an appropriate
amount of total weights 2, termed as sparse aggregation. Here
we propose to adopt GNNs with weighted residual connections
to realize sparse aggregation, which allows keeping of clusters
and thus preventing the semantic structures of embeddings from

2By this, we mean that every node in the graph can have a different
aggregation extent and the total aggregation extent in the whole graph should
be limited, which is quite similar to the idea of sparse linear regression.

severe corruption. The formulation can be formally expressed
as below:

H(l+1) = GNN (l)(Â,H(l)) (5)

= Ξ(l)σ
(
f
(
Â,H(l)

))
+
(
In − Ξ(l)

)
H(l) ∈ Rn×d, (6)

Ξ
(l)
i,i = Θ(l) · Φ(l)

i ·Ψ(l)
i ∈ [0, 1], (7)

where Ξ(l) ∈ Rn×n is a diagonal matrix whose diagonal
elements are the aggregation weights of every node in the
layer l and f(·) implies the aggregation function of a GNN
model. Besides, according to Eq. 7, the strategy concerns
three factors 3, which attempts to control the comprehensive
distribution of the embeddings uniformly and then considers
additional customized local adjustment node-wisely. In specific,
Θ(l) refers to the global control coefficient on the layer l. Φ(l)

i

and Ψ
(l)
i denote the silhouette-based and homophily-based local

control coefficients of the node i on the layer l, respectively.
Although the strategy is simple, it turns out to be effective as
a strong baseline model to confront the over-smoothing issue.
We provide a theoretical analysis on the proposed model in
Sec. V-D. Details of our strategy are elaborated as below.

A. Initialization

The initial embeddings on the first few layers of GNNs may
not establish complete structural information, since only very
local information of nodes can be captured on these layers.
So, we let GNNs aggregate for a few layers (e.g., two or
three layers in practice) until they gather sufficient information
and establish solid semantic structures. Then, we perform the
following steps of the strategy from the layer L0.

B. Global control

After aggregating till L0 layers, we first cluster the em-
beddings using the classic K-means algorithm. Embedding
clustering might be viewed as a good estimation on label-
based clusters supposing a L0-layer GNN encoder can capture
meaningful semantic structures. Assume that the node i is
clustered into the zi-th cluster, while the j-th cluster Cj has
a centroid cj(1 ≤ j ≤ K) where K is the total number of
clusters. In order to approximately estimate how much the
layer l should aggregate, we design a global control coefficient
(denoted by Θ(l)). It is designed according to the ratio between
the compactness of embeddings output by the layer L0 and the
layer l. When the magnitude of the ratio does not change much,
Θ(l) can evaluate how well the embeddings can be clustered.
With the embeddings well clustered, further aggregation will
not be needed. However, when the magnitude of the ratio
varies a lot, Θ(l) will correspondingly control the distribution
of embeddings without additional tricks or normalization. For
example, if the ratio quickly shrinks, the over-smoothness will

3In addition to the three factors mentioned above, we discuss more influence
factors on the proposed strategy in the supplementary material.
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happen and we will tend to stop the aggregation of this layer.
Formally, Θ(l) can be formulated as below.

Θ(l) = min

((
dist(L0)

dist(l)

)α

, 1

)
∈ [0, 1],

dist(l) =

n∑
i=1

∥∥∥h(l)
i − c(l)zi

∥∥∥2
2
, ∀l ∈ [L0, L],

(8)

where dist(l) refers to the objective of K-means measuring
the distance between any embedding and the center of its
corresponding cluster. h(l)

i represents the embedding of the
i-th node. α ∈ [0, 1] is a hyper-parameter to determine the
influence of the global control coefficient.

We call this step global control since we control the
aggregation extents of all nodes uniformly according to the
global distribution of node embeddings.

C. Local control

Under the global control, the nodes in each layer will be
treated equally (i.e., their aggregation weights are the same).
Considering the difference of nodes, we also introduce two
types of local control coefficients, including the silhouette
coefficient that evaluates the clustering quality of each node
and the homophily coefficient that evaluates the local coherency
of each node. These local control coefficients determine the
individual weights of the aggregation for each node.

1) Silhouette-based local control: Intuitively, the Silhouette
Coefficient S(l)

i is inversely proportional to the uncertainty of
clustering for a node. When the uncertainty is high, a node
is encouraged to aggregate more information to decide its
corresponding cluster, and vice versa. Thus we first employ
S
(l)
i to determine how well a node is clustered and then locally

adjust the distribution according to Φ(l), which are defined as
follows:

Φ
(l)
i =

(
−S

(l)
i + 1

2

)β

∈ [0, 1], (9)

S
(l)
i =

b
(l)
i − a

(l)
i

max
(
a
(l)
i , b

(l)
i

) ∈ [−1, 1], ∀l ∈ [L0, L], (10)

a
(l)
i =

1∣∣∣Cz
(l)
i

∣∣∣− 1

∑
j∈C

z
(l)
i

\i

∥∥∥h(l)
j − h

(l)
i

∥∥∥2
2
, (11)

b
(l)
i = min

1≤k≤K,k ̸=z
(l)
i

1

|Ck|
∑
j∈Ck

∥∥∥h(l)
j − h

(l)
i

∥∥∥2
2
, (12)

where ai measures the average distance for the i-th node
away from the remaining nodes from its belonged cluster. bi
calculates the distance for the i-th node away from the closest
cluster that it does not belong to. Φ(l)

i is the local adjustment
of the node i based on the Silhouette Coefficient S(l)

i . β is the
hyper-parameter.

2) Homophily-based local control: Homophily is an essen-
tial and intrinsic characteristic of a graph and its local structures.
High homophily of a graph reveals that neighbors often
share the same ground-truth labels. The degree of homophily
might heavily influence the aggregation behavior of a node

because, just as pointed by Keriven [69], low homophily would
accelerate the over-smoothing issue and beneficial smoothing
never appears in the theoretical formulation of [69], which
motivates our design of a homophily-based local control as
follows. Specifically, when the homophily of a node is high,
we encourage the node to aggregate more information from
neighbors. Once the homophily is low, the node needs to
aggregate less to avoid moving towards the center of different
clusters, which may lead to information loss and thus aggravates
the semantic over-smoothing.

However, note that we can not directly obtain the exact
node homophily degrees like the latent variables in [69] due to
unknown node labels. Hence, we dynamically estimate them
(i.e., ζ(l)(i)) based on clustering, assuming that a node whose
neighbors belong to the same cluster (potentially with the same
semantic labels) might have a large node homophily degree,
and vice versa. And then the homophily-based local control
coefficient of the node i (i.e., Ψ(l)

i ) can be defined as below:

Ψ
(l)
i =

(
ζ(l)(i)

)γ
∈ [0, 1], ∀l ∈ [L0, L] (13)

ζ(l)(i) =
1

|Ni ∪ i|
max

k∈[1,K]
cnt

(l)
i (k) ∈ [0, 1], (14)

cnt
(l)
i (k) =

∣∣∣{j|j ∈ Ni ∪ i, z
(l)
j = k

}∣∣∣ , (15)

where Ni is the neighborhood of the node i and cnt
(l)
i (k)

denotes the number of the nodes in Ni belonging to the cluster
k. γ is the hyper-parameter.

D. Discussion on Weighted Residual Connections

In this section, we explain why a sparse aggregation strategy
on GNNs with weighted residual connections can favor alleviate
semantic over-smoothing issues and give a conclusion on its
discriminative power.

Theorem 2. For an unweighted undirected graph G that is
connected but without self-loops, A is its adjacency matrix
and Ã = A + I . D̃ is the degree matrix of Ã (i.e., D̃i,i =∑n

j=1 Ãi,j). Denote by λG̃ the spectral gap of graph G with
self-loops. Assuming the symmetrically normalized matrix of Ã
is Â = D̃− 1

2 ÃD̃− 1
2 and x is a graph signal(i.e., x : V(G) →

R), if the aggregation matrix
(
1− α(l)

)
In + α(l)Â is used,

which means:
h(0) = x, h(l) =

((
1− α(l)

)
In + α(l)Â

)
· h(l−1), ∀l ≥ 1

(16)

then h(k) converges if
∏k

l=1

(
1− α(l) · λ2

G̃

)
converges to 0 as

k goes to infinity and the convergence rate follows that:∣∣∣h(k) − π
∣∣∣ ≤ ( n∑

i=1

xi

)
·

k∏
l=1

(
1− α(l) · λ2

G̃

)
· 1, (17)

where π =

〈
D̃

1
2 1,x

〉
2m+n ·D̃ 1

21, and here we denote |x| as element-
wise absolute value if x is a vector, x ≤ y means ∀i xi ≤ yi
and xi = x(i) is the i-th element of x.

Corollary 1. Let λ = λ2
G̃
∈ [0, 1], bi = α(i) · λ2

G̃
. Assume that

∀ i ≥ 1, bi ∈ (0, 1), α(i) ∈ [0, 1] and α(1) ≥ α(2) ≥ · · · ≥
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α(k) ≥ · · · , then: if liml→∞ α(l) > 0,
∑k

l=1 α
(l) = +∞,

then limk→∞ h(k) = π.

According to Corollary 1, as α(l) converges to c ∈ (0, 1],
or as it converges to 0 but slowly enough, then h(k) will
converge absolutely. Thus, when k is sufficiently large, all node
embeddings will converge to a line and the semantic structure
will be corrupted completely, which means that the semantic
over-smoothing issue will definitely happen. This motivates
us to employ the GNN structure with a sparse aggregation
strategy that tends to slow the convergence.

Theorem 3. Using the same definition in Theorem 2, but
with consideration of nonlinear activation functions and linear
transformations, GCN with both layer-wise and node-wise
weights can achieve 1−WL discriminative power if we use
Ã and slight modification 4. If combined with node-wise
normalization trick 5, it holds also for Â and Ârw.

According to the above theorem, we demonstrate that our
structure with the weighted residual connection can achieve
1−WL discriminative power. We will elaborate the theoretical
details in the supplementary material.

E. Analysis on Time and Space Complexities

In this subsection, we give a brief yet concise analysis of
the overall theoretical time and space required for our method
based on the specific optimized implementation. Considering
the high-parallelizablity brought by GPUs, we denote by nota-
tion Op(·) parallelizable time complexities for parallelizable
operations, which would be much faster in practice than those
unparallelizable ones with traditional O(·).

The updating operations in Eq. 6 require similar time
and space as the chosen GNN encoder. Clustering needs
overall Op(nKd) time and O(Kd + nd) space for one
iteration with Op(nKd) time for both cluster centers updat-
ing and assignments calculation, after which Eq. 8 can be
naturally obtained. Besides, Eq. 15 can be implemented via
a simple Sum aggregation [40] with Op ((n+m) d) time
and O(nd) space. To give an efficient, parallelable, and
space-saving implementation for Silhouette Coefficient Si in
Eq. 12, let f(i, t) =

∑
j∈Ct

∥hj − hi∥22 = |Ct| · ∥hi∥22 +

S(norm)(t) − 2S(t) where S(norm)(t) =
∑

j∈Ct
∥hj∥22 and

S(t) =
∑

j∈Ct
hj . Then the matrix F ∈ Rn×K containing all

f(i, t) (∀ i ∈ [1, n], t ∈ [1,K]) can be obtained with Op(nKd)
running time and O(nd + nK) space complexity where the
first term |Ct| · ∥hi∥22 is a vector outer product, and all
∥hi∥22, S(norm)(t), S(t) can be pre-processed with no more
than Op(nKd) time. Finally, the coefficients can be easily
obtained by simply selecting the top 2 elements with Op(nK)
complexity. Therefore, the overall theoretical time and space
complexities are Op (nKd) and O ((n+m+K) d+ nK).

4The positions of linear transformations and σ(·) are slightly different.
5Scaling the embedding of every node by node-wise weights. Please refer

to the supplementary material.

VI. EXPERIMENTAL RESULTS

A. Experiment Settings

1) Datasets: In this section, we evaluate our strategy
in a conventional GCN backbone with weighted residual
connections. Our work focuses mainly on semi-supervised
node classification tasks in graphs. We evaluate our model on
public benchmarks, including three commonly used scientific
citation networks, Core, Citeseer, and Pubmed, scientific co-
authorship networks CS and Physics, as well as Amazon
purchasing system Computers and Photo. We adopt the standard
training/validation/testing split for all these datasets as prior
works [10, 19].

2) Comparative Baselines: In comparison experiments, ten
baselines or state-of-the-art models are applied for compar-
ison, i.e., the normalization based method PairNorm [21],
the skip connections based methods including GCNII [19],
GPRGNN [72], APPNP [73], JKNet [66], and DAGNN [13]
as well as two recenly proposed state-of-the-art models A-
DGN [74] and FAGCN [75]. Note that we leave out the
random dropping-based methods due to their consistently poor
performance relative to others (see results reported in [17]).
These aforementioned prior works all introduce additional
structural tricks. For example, PairNorm employs an explicit
normalization layer. GCNII employs a novel kind of initial
connection followed by A-DGN. JKNet, APPNP, GPRGNN,
and DAGNN are all obvious multi-scale models and utilize
jump connections with different weighting schemas (see Tab.
III for a clear comparison). Furthermore, FAGCN [75] utilizes
a kind of sophisticated learnable signed attention mechanism as
its weighting strategy with both residual and initial connections,
which simultanously facilitates low-pass and high-pass filters.
And by introducing a complex node-wise ordinary differential
equation on the graph, A-DGN [74] can preserve long-distance
dependency and alleviate both the over-smoothing and over-
squashing issues. Compared to them, we choose the simplest
and most commonly used structure (simple residual connections
from last layer) and do not adopt any additional tricks. Our
main experimental goal is not to outperform the best state-
of-the-art result but to test the effectiveness of our proposed
strategy. We choose this structure because: 1) They are simple
enough and can clearly show the effectiveness of ours; 2) It
is convenient to implement the proposed strategy because we
only need to control the residual weights. One can see that
those advanced structural tricks can also be incorporated to
improve the performance. But as reported in the following
section, we have already achieved competitive and even better
performance without the tricks.

3) Implementation Details: More specifically, we employ
two fundamental GNN models, GCN [10] and SGC [24] (with
weighted residual connections), as baselines to incorporate our
strategy, which is implemented by Pytorch [76] and optimized
with Adam Optimizer [77]. The performance of the comparison
models is evaluated in terms of accuracy. All experiments
are performed on a Ubuntu system with a single GeForce
RTX 3090Ti GPU (24GB Memory) and 64 AMD EPYC 7302
CPUs. For better reproduction, please see Section VI.B of
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TABLE I
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THREE GRAPH BENCHMARKS CORA, CITESEER, AND PUBMED IN TERMS OF

MEAN TEST ACCURACY, STANDARD DEVIATION AS WELL AS AVERAGE RANKING IN 5 RUNS WITH DIFFERENT INITIALIZATIONS

Model Cora Citeseer Pubmed Average

#Layers 2 8 16 32 2 8 16 32 2 8 16 32 Ranking

GCN 81.34±0.42 72.72±2.37 63.40±4.40 31.90±0.70 69.46±0.29 57.74±6.30 48.70±3.48 36.66±8.61 77.40±0.37 77.24±0.71 70.02±4.23 44.22±0.93 10.25
SGC 79.00±0.46 78.02±1.06 75.26±1.06 63.84±3.63 67.92±0.85 68.42±0.46 68.08±0.73 67.50±1.43 77.50±0.66 70.90±0.59 71.34±0.09 70.70±0.32 8.92

PairNorm 78.30±1.33 71.06±1.74 66.80±2.71 55.86±8.96 65.80±1.35 54.81±6.46 46.26±2.69 44.20±1.23 75.50±0.41 74.82±1.03 74.34±0.68 72.12±3.01 10.83
GCNII 82.19±0.77 84.23±0.42 84.69±0.51 85.29±0.47 67.81±0.89 70.62±0.63 72.97±0.71 73.24±0.78 78.05±1.53 79.34±0.51 80.03±0.50 79.81±0.27 4.00
JKNet 79.06±0.11 75.66±0.38 72.97±3.94 73.23±3.59 66.98±1.82 60.56±1.41 54.33±7.74 50.68±8.73 77.24±0.92 76.92±1.03 64.37±8.80 63.77±9.21 10.08

GPRGNN 82.53±0.49 84.19±0.40 83.69±0.55 83.13±0.60 70.49±0.95 71.47±0.58 71.39±0.73 71.01±0.79 78.73±0.63 78.90±0.47 78.78±1.02 78.46±1.03 5.42
DAGNN 80.30±0.78 84.28±0.59 84.14±0.59 83.39±0.59 70.91±0.68 72.44±0.54 73.05±0.62 72.59±0.54 77.74±0.57 79.68±0.37 80.32±0.38 80.58±0.51 3.58
APPNP 82.06±0.46 83.59±0.40 83.64±0.48 83.68±0.48 71.67±0.78 72.04±0.52 72.13±0.53 72.13±0.59 79.46±0.47 80.02±0.30 80.30±0.30 80.24±0.33 3.58
A-DGN 59.50±0.50 60.40±0.80 79.58±1.80 79.54±0.40 59.88±1.00 60.96±1.20 60.94±1.30 60.94±1.30 74.63±1.40 77.98±0.70 77.78±1.60 77.76±0.80 9.58
FAGCN 83.34±0.50 83.60±0.30 83.82±0.40 82.84±0.40 71.86±0.50 72.02±0.40 71.88±0.70 70.88±0.90 78.62±0.50 78.94±0.50 79.50±0.40 79.28±0.40 4.67

GCN+Ours 83.12±0.22 82.96±0.36 82.70±0.53 83.40±0.51 73.06±0.60 72.94±0.40 73.20±0.38 72.78±0.38 80.06±0.31 79.60±0.32 79.60±0.26 79.78±0.48 3.25
SGC+Ours 82.26±0.18 82.32±0.14 82.94±0.40 83.12±0.18 73.36±0.18 74.0±0.29 73.38±0.40 73.64±0.31 79.32±0.27 79.40±0.10 79.34±0.24 79.30±0.22 3.75

TABLE II
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON FOUR GRAPH BENCHMARKS COAUTHORCS, COAUTHORPHYSICS,

AMAZONCOMPUTERS, AND AMAZONPHOTO IN TERMS OF MEAN TEST ACCURACY, STANDARD DEVIATION AS WELL AS AVERAGE RANKING IN 5 RUNS
WITH DIFFERENT INITIALIZATIONS

Model CoauthorCS CoauthorPhysics AmazonComputers AmazonPhoto Average

#Layers 16 32 16 32 16 32 16 32 Ranking

GCN 53.19±7.23 41.29±5.11 85.23±2.18 79.87±3.86 64.02±2.38 58.30±3.35 70.81±3.48 58.47±8.80 10.50
SGC 71.75±3.65 70.52±3.96 92.34±0.20 91.46±0.48 37.48±0.07 37.44±0.12 35.64±6.11 26.08±1.39 9.86

PairNorm 75.17±5.15 63.23±5.03 90.18±1.17 88.51±0.95 77.41±1.85 68.37±4.35 82.72±1.19 71.93±5.21 7.88
GCNII 58.94±2.63 71.67±2.68 92.13±1.31 93.15±0.92 38.88±4.26 37.56±0.43 68.37±6.61 62.95±9.41 9.25
JKNet 81.31±3.21 81.82±3.32 91.24±0.97 90.92±1.61 60.76±5.10 67.99±5.07 74.86±8.45 78.42±6.95 7.88

GPRGNN 89.39±0.39 89.56±0.47 93.64±0.31 93.49±0.59 76.07±2.28 41.94±9.95 91.55±0.43 91.74±0.81 4.88
DAGNN 91.13±0.50 89.60±0.71 93.77±0.29 93.31±0.60 80.33±1.04 79.73±3.63 90.81±0.59 89.96±1.16 4.25
APPNP 91.64±0.53 91.61±0.49 93.96±0.36 93.75±0.61 39.41±5.80 43.02±10.16 64.59±20.09 59.62±23.27 6.75
A-DGN 92.06±0.20 91.67±0.20 88.32±2.50 87.26±1.60 83.03±0.58 83.41±1.30 90.40±0.60 88.65±1.40 4.50
FAGCN 81.40±5.04 83.88±2.64 85.68±1.88 86.17±2.30 69.96±3.93 73.19±1.61 78.53±2.12 80.55±3.48 7.63

GCN+Ours 92.01±0.16 92.12±0.19 94.19±0.30 93.89±0.22 82.84±1.07 83.06±0.41 90.31±0.56 90.08±0.74 2.38
SGC+Ours 91.85±0.22 91.78±0.48 94.14±0.24 94.04±0.27 82.54±0.55 84.54±1.07 90.94±0.24 90.72±0.38 2.00

TABLE III
THE TECHNICAL CONFIGURATION COMPARISON OF COMPARATIVE BASELINES

Model Normalization Skip Connection Weighting Schema for Connections Aggregating Schema

PairNorm
√

× − Standard
GCNII × Initial Connections Hyper-parameters Residual Learnable Self-Weighting
JKNet × Jump Connections Concat/Max-Pooling/LSTM Attention Standard

GPRGNN × Jump Connections Exponential Moving Average Standard
DAGNN × Jump Connections Global Attention Standard
APPNP × Jump Connections Learnable Standard
A-DGN × Residual Connections Hyper-parameters Anti-symmetric Learnable Self-Weighting
FAGCN × Initial & Residual Connections Hyper-parameters Signed Learnable Attention

Ours × Residual Connections Adaptive with Proposed Sparse Aggregation Strategy Standard

the supplementary material for the hyper-parameters tuning
method and specific configurations (Tab. II).

B. Comparison with the State-of-the-arts

We report the performance results of the state-of-the-art
models with varied numbers of layers on benchmarks. See Table
I and Table II for detailed comparison. In Table I, we observe
the performance of our model is comparable to or even better
than the state-of-the-arts, considering our baseline model is
GCN and SGC. With the aid of our strategy, the performance of
GCN and SGC obviously increases. Especially in the Citeseer
dataset, our model ranks at the top, while our models are
comparable to other methods in the other two datasets. For these
three datasets concerning scientific citation networks, it may

not need too deep GNNs to aggregate useful information for
classification. Therefore, most models suffer from performance
degradation as the number of layers increases. For GCN and
SGC, they suffer from severe degradation. Although we observe
that there is also minor degradation in our model, considering
the large drop in the performance of GCN and SGC, our strategy
well stabilizes them in deep layers. Besides, in Fig. 2, we
show the accuracy of our models (i.e., GCN+Ours, SGC+Ours,
GAT+Ours, and GIN+Ours) with different layers (i.e., from 2
to 64). For comparison, we also measure the accuracy of GCN,
SGC, GAT, and GIN, as well as PairNorm [21]. As observed,
they all suffer from obvious performance degradation in these
three datasets, which decrease by at least 15%. With the aid of
our strategy, they can maintain steady performance with more
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Fig. 2. Accuracy of the models with different layers, including the comparisons with GCN, SGC, and Pairnorm in the first line and with GIN and GAT in the
second line.

than 80% accuracy.
In Table II, our model generally achieves state-of-the-

art performance against the competing methods in these
benchmarks. These datasets contain more complex graph data,
so deep GNNs demonstrate excellent performance. Impressively,
the performance gains of our strategy over GCN and SGC are
significant, which reflects the effectiveness of our strategy.
Furthermore, we visualize two examples of the distributions
of the embeddings produced by GCN and the one enhanced
by our strategy in Fig. 3. In the first column of the figure,
we show the initial distribution of clusters for the embeddings
on the first layer. In the second column, we observe the over-
smoothing phenomenon where the embeddings converge into
lines or curves, leading to indistinguishable clusters produced
by the GCN with 32 layers. From the 32-layer GCN equipped
with our proposed strategy, as shown in the third column,
we do not observe over-smoothing. Besides, the embeddings
are generally well clustered, and their structural information
remains complete.

C. Ablation and Hyper-parameter Studies

Our strategy is mainly determined by the global and local
control coefficients including silhouette-based and homophily-
based coefficients. As shown in Fig. 4, we evaluate the variants
of our proposed strategy with silhouette-based local coefficient
only, homophily-based local coefficient only, global coefficient
only, and our complete strategy. The evaluation is performed
on three datasets, Cora, Citeseer, and Pubmed. We show the
accuracy results of the model with different layers (i.e., from
2 to 32 layers). As observed, combining the local and global
coefficients produce the optimal results, better than the other
variants. Moreover, to study the effect of the hyper-parameter
K (see Sec. V-B) on the performance, we vary it from 5 to 40

and test the method on Cora, Citeseer, and Pubmed (Fig. 7).
The results clearly show that our method is strongly robust
to the selection of K, revealing that reducing K is a viable
solution for time-intensive situations.

D. Node Classification With Noisy Features

Inspired by the prior works (e.g., [21]), we set up a
challenging task to show the superiority of deep GNN models
compared to their shallow counterparts. In particular, for a
graph dataset with a semi-supervised node classification task,
we substitute all node features by noise sampled from a
standard normal distribution (i.e., N (0, 1)). In this way, only
the structural information of graphs remains. Different from
the task in [21], our task is more difficult since we conduct
the feature substitution for all nodes instead of the nodes out
of the training set only. In the meantime, we contaminate
the features with noise instead of replacing them with zeros.
Thus, this task forces GNN models to learn useful and valid
structural information to overcome the negative impact of noise.
Therefore, our proposed task is able to reflect the superiority
of GNN models. We show the results in Fig. 5.

From Fig. 5, we observe that the performance of two baseline
models degrades from around 12− 14 layers due to numerical
over-smoothing, while the performance of Pairnorm [21]
degrades from around 22− 25 layers due to the semantic over-
smoothing issue. On the contrary, our method can consistently
improve performance as layers go deep. When models are
deep enough, we can achieve better results compared to all
the competing methods, which implies that deep structural
information and distant messages can be helpful for graph
representation learning.
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Cora (Original Features) Cora (GCN) Cora (GCN+Ours)

Pubmed (Original Features) Pubmed (GCN) Pubmed (GCN+Ours)

Fig. 3. Scatterings of embeddings produced by 32-layer GCN and GCN+Ours on Cora and Pubmed.

Cora Citeseer Pubmed

Fig. 4. Ablation studies on the global and local control coefficients

Cora Citeseer Pubmed

Fig. 5. The performance of different methods on Noisy Features

TABLE IV
THE COMPARISON OF THE RUNNING TIME (PER EPOCH) OF DIFFERENT METHODS

32-layer models with 128 hidden units Cora Citeseer Pubmed CoauthorCS AmazonPhoto AmazonComputer CoauthorPhysics

A-DGN 0.04s 0.04s 0.2s 0.30s 0.32s 0.55s 0.88s
FAGCN 0.06s 0.06s 0.2s 0.25s 0.37s 0.57s 0.71s

GCN+Ours 0.47s 0.46s 0.61s 0.64s 0.52s 0.68s 0.92s
SGC+Ours 0.44s 0.45s 0.59s 0.62s 0.59s 0.66s 0.90s
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Fig. 6. Running time comparison on some synthetic graphs with increasing
sizes (see the main text for the specific and detailed graph generating methods)

E. Running Time Comparison and Analysis

To provide a better understanding of the trade-off between
our performance and computational burden, we give the
running time (per epoch) of the proposed methods (GCN+Ours
and SGC+Ours) and some recently proposed state-of-the-art
counterparts (A-DGN [74] and FAGCN [75]) on all graph
benchmarks in Tab. IV. From Tab. IV, we found that our method
might need more running time due to clustering multiple
times. Nevertheless, the time consumption is comprehensively
acceptable for immediate-size graphs such as Pubmed, CS,
and Physics. In Tab. IV, we sort the columns, i.e., the names
of these benchmarks, with increasing sizes (the numbers of
contained nodes and edges), from which we can easily find that
though the counterparts can often be more efficient than ours,
however, the running time gaps are gradually bridged as the
graph becomes large. Please note that some datasets with less
nodes might need more running time due to significantly more
edges (e.g., AmazonComputer and Pubmed have much more
edges than Pubmed though their sizes, i.e., numbers of nodes,
are relatively smaller). To more clearly and intuitively show
the tendency, we construct some synthetic random (connected)
graphs with increasing sizes n 6, and conduct the efficiency
comparison on them, whose results are plotted in Fig. 6 where
we can observe a clear gap alleviation process and gradually
surpassing tendency showing the acceptance of the efficiency of
ours. Moreover, in practice, choosing more efficient clustering
methods (e.g., DBSCAN [79]) may potentially accelerate the
whole framework, which we will leave as future work to explore
in detail.

VII. CONCLUSION AND LIMITATIONS

Conclusion In this paper, we investigate the over-smoothing
issue in deep GNNs. We observe that over-smoothing not only
results in indistinguishable embeddings of graph nodes, but

6We directly utilize gnp_random_graph(n, p), a stochastic generator
provided by NetworkX python library [78], to generate random graphs with
n ∈ [104, 5 × 104] and p = 10−3 (see Supplementary Materials for the
detailed configuration and numerical results in Tab. IV).

also corrupts their semantic structures, denoted as semantic
over-smoothing. In order to alleviate the concern, we propose a
simple yet effective cluster-keeping sparse aggregation strategy
to preserve the semantic structure of embeddings in deep GNNs,
which can be easily implemented as a plug-and-play structure
of GNNs via weighted residual connections. Empirically, our
method generally achieves state-of-the-art performance against
the competing models in seven real-world benchmarks.

Limitations Due to the required frequent clustering, our
strategy may risk high computational complexity. More efficient
and sophisticated strategies are left for future work, e.g.,
considering edge-wise sparse aggregation. On the other hand,
our strategy relies on the quality of clustering, so better
clustering methods might be beneficial. Also, in future work,
we will explore why and how deep GNNs can alleviate over-
fitting issues, especially considering the possible noise in graph
structures, i.e., noisy connections.
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