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Abstract— Multicamera surveillance has been an active1

research topic for understanding and modeling scenes. Compared2

to a single camera, multicameras provide larger field-of-view3

and more object cues, and the related applications are multi-4

view counting, multiview tracking, 3-D pose estimation or 3-D5

reconstruction, and so on. It is usually assumed that the cameras6

are all temporally synchronized when designing models for these7

multicamera-based tasks. However, this assumption is not always8

valid, especially for multicamera systems with network transmis-9

sion delay and low frame rates due to limited network bandwidth,10

resulting in desynchronization of the captured frames across11

cameras. To handle the issue of unsynchronized multicameras,12

in this article, we propose a synchronization model that works13

in conjunction with existing deep neural network (DNN)-based14

multiview models, thus avoiding the redesign of the whole model.15

We consider two variants of the model, based on where in the16

pipeline the synchronization occurs, scene-level synchronization17

and camera-level synchronization. The view synchronization18

step and the task-specific view fusion and prediction step are19

unified in the same framework and trained in an end-to-end20

fashion. Our view synchronization models are applied to different21

DNNs-based multicamera vision tasks under the unsynchronized22

setting, including multiview counting and 3-D pose estimation,23

and achieve good performance compared to baselines.24

Index Terms— Crowd counting, deep learning, image match-25

ing, pose estimation, surveillance.26

I. INTRODUCTION27

COMPARED to single cameras, multicamera networks28

allow better understanding and modeling of the 3-D29

world through more dense sampling of information in a 3-D30

scene [1]. Multicamera based vision tasks have been a popular31

research field, especially deep learning-related tasks, such as 3-32

D pose estimation from multiple 2-D observations [2], [3], 3-D33

reconstruction [4], [5], multiview tracking [6]–[8], multiview34

crowd counting [9], and re-identification (ReID) [10]–[14].35

Usually, it is assumed that the multicameras are temporally36

synchronized when designing deep neural networks (DNNs)37

models, i.e., all cameras capture images at the same time point.38
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However, the synchronization assumption for multicamera 39

systems may not always be valid in practical applications due 40

to a variety of reasons, such as dropped camera frames due 41

to limited network bandwidth or system resources, network 42

transmission delays, and so on. Other examples of situations 43

where camera synchronization is not possible include: 1) 44

using images captured from different camera systems; 2) using 45

images from social media to reconstruct the crowd at an event; 46

and 3) performing 3-D reconstruction of a dynamic scene 47

using video from a drone. Thus, handling unsynchronized mul- 48

ticameras is an important issue in the adoption and practical 49

usage of multiview computer vision. 50

There are several possible methods to fix the prob- 51

lem of unsynchronized cameras. The first method is using 52

hardware-based solutions to synchronize the capture times, 53

such as improving network bandwidth, or by using a central 54

clock to synchronize capture of all cameras in the multicamera 55

network. However, this will increase the cost and overhead 56

of the system, and is not possible when there is limited 57

bandwidth. The second method is to capture image sequences 58

from each camera, and then synchronize the images afterward 59

by determining the frame offset between cameras. The fineness 60

of the synchronization depends on the frame rate of the 61

image sequences. However, this method is not effective when 62

acquiring high frame-rate image sequences is not possible 63

due to limited the bandwidth and storage space, or the frame 64

latency between multicameras is random. The final method 65

is to modify the multiview model to handle unsynchronized 66

images, especially for low-frame-rate multicamera systems or 67

random frame latency between multicameras, such as introduc- 68

ing new assumptions or relaxing the original constraints under 69

the unsynchronized setting. Existing approaches for handling 70

unsynchronized multicameras are largely based on optimiza- 71

tion frameworks [15], [16], but are not directly applicable 72

to DNNs-based multiview methods, which have seen recent 73

successes in tracking [6], [7], 3-D pose estimation [2], and 74

crowd counting [9], [17]. 75

In this article, we propose a synchronization model that 76

operates in conjunction with existing DNN-based multiview 77

models by using single frames from each camera to deal 78

with low-frame-rate unsynchronized multicamera systems or 79

random frame latency between multicameras. Our proposed 80

model first synchronizes other views to a reference view using 81

a differentiable module, and then the synchronized multiviews 82

features are fused and decoded to obtain the task-oriented 83

output. As illustrated in Fig. 1, the synchronization can either 84
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Fig. 1. Two variants of the main pipeline for unsynchronized multiview
prediction tasks: (top) SLS is performed after the projection on the scene-level
feature representations and (bottom) CLS is performed on the camera-view
feature maps before projection.

occur after the camera-to-scene (2-D-to-3-D) projection [Fig. 185

(top)] or before the projection [Fig. 1 (bottom)]. Thus, to fully86

explore these options, we consider two variants of our model87

that perform synchronization at different stages in the pipeline88

(see Fig. 2): 1) scene-level synchronization (SLS) performs89

the synchronization after projecting the camera features to90

their 3-D scene representation and 2) camera-level synchro-91

nization (CLS) performs the synchronization between camera92

views first, and then projects the synchronized 2-D feature93

maps to their 3-D representations. In both cases, motion flow94

between the cameras’ feature maps are estimated and then95

used to warp the feature maps to align with the reference96

view (either at the scene-level or the camera-level). With97

both variants, the view synchronization and the multiview98

fusion are unified in the same framework and trained in99

an end-to-end fashion. In this way, the original DNN-based100

multiview model can be adapted to work in the unsynchronized101

setting by adding the view synchronization module, thus102

avoiding the need to design a new model. Furthermore, the103

synchronization module only relies on content-based image104

matching and camera geometry, and thus is widely applicable105

to many DNNs-based multiview tasks, such as crowd counting,106

tracking, 3-D pose estimation, and 3-D reconstruction.107

In summary, the contributions of this article are threefold.108

1) We propose an end-to-end trainable framework to handle109

the issue of unsynchronized multicamera images in110

DNNs-based multicamera vision tasks. To the best of111

our knowledge, this is the first study on DNNs-based112

single-frame synchronization of multiview cameras.113

2) We propose two synchronization modules, SLS and114

camera-view level synchronization, which are based on115

image-based content matching that is guided by epipolar116

geometry. The synchronization modules can be applied117

to many different DNNs-based multiview tasks.118

3) We conduct experiments on multiview counting and 3-D119

pose estimation from unsynchronized images, demon-120

strating the efficacy of our approach.121

The remainder of this article is organized as follows.122

We review related works in Section II. In Section III,123

we propose our single-frame multicamera synchronization124

methods, and in Section IV we present experiments on two125

applications, multiview crowd counting, and multiview 3-D126

human pose estimation. Finally, Section V concludes the 127

article. 128

II. RELATED WORK 129

In this section, we review DNN-based methods on synchro- 130

nized multiview images and unsynchronized multiview video 131

tasks, as well as traditional multiview video synchronization 132

methods. We then review DNN-based image matching and 133

flow estimation methods. 134

A. DNN-Based Synchronized Multicamera Tasks 135

Multicamera surveillance based on DNNs has been an 136

active research area. By utilizing multiview cues and the 137

strong mapping power of DNNs, many DNNs models have 138

been proposed to solve multiview surveillance tasks, such 139

as multiview tracking and detection [6], [7], [18], crowd 140

counting [9], 3-D reconstruction [4], [5], [19], [20], and 3-D 141

human pose estimation [2], [21]–[24]. Kar et al. [4] proposed 142

a deep learning 3-D reconstruction framework with differen- 143

tiable feature projection and unprojection steps. Ye et al. [10] 144

proposed the collaboration ensemble learning for ReID with 145

middle-level sharable two-stream network. Iskakov et al. [2] 146

proposed volumetric aggregation of feature maps for 3-D 147

pose estimation. The DNN pipelines used for these mul- 148

ticamera tasks can be generally divided into three stages: 149

the single-view feature extraction stage, the multiview fusion 150

stage to obtain a scene-level representation, and prediction 151

stage. Furthermore, all these DNN-based methods assume 152

that the input multiviews are synchronized, which is not 153

always possible in real multicamera surveillance systems, or in 154

multiview data from disparate sources (e.g., crowd-sourced 155

images). Therefore, relaxing the synchronization assumption 156

can allow more practical applications of multicamera vision 157

tasks in real world. 158

B. Tasks on Unsynchronized Multicamera Video 159

Only a few works have considered computer vision tasks on 160

unsynchronized multicamera video. Zheng et al. [15] posed 161

the estimation of 3-D structure observed by multiple unsyn- 162

chronized video cameras as the problem of dictionary learning. 163

Zhang et al. [16] proposed a multicamera motion segmenta- 164

tion method using unsynchronized videos by combining shape 165

and dynamical information. Takahashi et al. [25] proposed a 166

method of estimating 3-D human pose from multiview videos 167

captured by unsynchronized and uncalibrated cameras by 168

utilizing the projections of joint as the corresponding points. 169

Albl et al. [26] presented a method for simultaneously esti- 170

mating camera geometry and time shift from video sequences 171

from multiple unsynchronized cameras using minimal cor- 172

respondence sets. Kuo et al. [27] addressed the problem of 173

aligning unsynchronized camera views by low and/or variable 174

frame rates using the intersections of corresponding object 175

trajectories to match views. 176

Note that all these methods assume that videos or image 177

sequences are available to perform the synchronization. In con- 178

trast, our framework, which is motivated by practical low-fps 179

systems, is solving a harder problem, where only a single 180
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Fig. 2. General multiview pipeline consists of several stages: camera-view feature extraction, feature projection, multiview feature fusion to obtain a scene-
level representation, and prediction. (a) SLS performs the synchronization after the projection. The unsynchronized projected features from the reference view
and other views are concatenated to predict the motion flow, which is then used to warp the other views’ projected features to match those of the reference
view. (b) CLS performs the synchronization before the projection. The unsynchronized camera-view features from the reference view and other views are
matched together to predict the motion flow, which is used to warp features from other camera views to the reference view.

image is available from each camera view, i.e., there is no181

temporal information available. Furthermore, these methods182

pose frame synchronization as optimization problems that are183

applicable only to the particular multiview task, and cannot be184

directly applied to DNN-based multiview models. In contrast,185

we propose a synchronization module that can be broadly186

applied to many DNN-based multicamera models, enabling187

their use with unsynchronized inputs.188

C. Traditional Methods for Multiview Video Synchronization189

Traditional synchronization methods usually serve as190

a preprocessing step for multicamera surveillance tasks.191

Except audio-based synchronization like [28], most tradi-192

tional camera synchronization methods rely on videos or193

image sequences and hand-crafted features for camera align-194

ment/synchronization [29]–[33]. Typical approaches recover195

the temporal offset by matching features extracted from the196

videos, e.g., space-time feature trajectories [34]–[36], image197

features [37], low-level temporal signals based on funda-198

mental matrices [38], silhouette motion [39], and relative199

object motion [40]. The accuracy of feature matching is200

improved using epipolar geometry [37], [39] and rank con-201

straints [35]. Caspi et al. [34] proposed to use the space-time202

feature trajectories matching instead of feature-points match-203

ing to reduce the search space. Dai et al. [29] proposed an204

iterative procedure to achieve the alignment in space and205

time with the homography assumption in spatial domain.206

Imre and Hilton [37] utilized image feature correspondences207

and epipolar geometry to find the corresponding frame indices208

and computes the relative frame rate and offset by fitting209

a 2-D line to the index correspondences. Meyer et al. [36]210

estimated the frame accurate offset by analyzing the tra- 211

jectories and matching their characteristic time patterns. 212

Pundik and Moses [38] presented a method for online syn- 213

chronization that relied on the video sequences with known 214

fundamental matrix to compute low-level temporal signals 215

for matching. Rao et al. [35] proposed the rank constraint of 216

corresponding points in two views to measure the similarity 217

between trajectories to avoid the noise sensitivity of the 218

fundamental matrix. Sinha and Pollefeys [39] proposed a 219

Random sample consensus (RANSAC)-based algorithm that 220

computed the epipolar geometry and synchronization of a pair 221

of cameras from the motion of silhouettes in videos. Tresadern 222

and Reid [32] estimated possible synchronization parameters 223

via the Hough transform and refined these parameters using 224

nonlinear optimization methods. Yan and Pollefeys [33] relied 225

on correlating space-time interest point distribution in time 226

between videos which represented events in video that had 227

high variation in both space and time. Gaspar et al. [40] syn- 228

chronized two independently moving cameras via the relative 229

motion between objects and known camera intrinsic. 230

The main disadvantages for these traditional camera syn- 231

chronization methods are. 232

1) Videos and image sequences are required, which might 233

not be available in practical multicamera systems with 234

limited network bandwidth and storage. 235

2) A fixed frame rate of the multicameras are usually 236

assumed, which means random frame dropping cannot 237

be handled (except [38]). 238

3) Feature matching is based on hand-crafted features, 239

which lack representation ability, or known image cor- 240

respondences, which requires extra manual annotations 241

and may not always be available. 242
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Compared with these methods, we consider a more practical243

and difficult setting: only single-frames and no videos (no tem-244

poral information) are available, which means that these tra-245

ditional video-based methods are not suitable solutions. These246

traditional methods perform image content matching using247

hand-crafted features and traditional matching algorithms,248

while in contrast, our method uses DNN-based image match-249

ing. Because we also assume that only single-frames are avail-250

able, our method also requires DNN-based motion estimation251

to estimate a frame’s features after synchronization. Finally,252

our synchronization module is end-to-end trainable with exist-253

ing multiview DNNs and thus avoids the redesign of the whole254

DNNs models to handle unsynchronized multicameras.255

D. DNN-Based Image Matching and Flow Estimation256

Image matching and optical flow estimation both involve257

estimating image-to-image correspondences, which is related258

to frame synchronization of multiviews. We mainly review259

the DNN-based image matching [41]–[43] or optical flow260

estimation methods [44]–[46], which inspire us to solve the261

unsynchronized multicamera based problems in a DNN-based262

fashion. DNN flow [47] proposed an image matching method263

based on a DNN feature pyramid in a coarse-to-fine optimiza-264

tion manner. FlowNet [48] predicted the optical flow from265

DNNs with feature concatenation and correlation. SpyNet [49]266

combined a classical spatial-pyramid formulation with deep267

learning and estimated large motions in a coarse-to-fine268

approach by warping one image to the other at each pyramid269

level by the current flow estimate and computing an update270

to the flow. Rocco et al. [41] addressed image correspondence271

problem using a convolutional neural network architecture that272

mimics classic image matching algorithms. PWC-Net [50]273

uses a feature pyramid and one image feature map is warped274

to the other at each scale, which is guided by the upsampled275

optical flow estimated from the previous scale. Lai et al. [51]276

proposed a single network to jointly learn spatiotemporal277

correspondence for stereo matching and flow estimation.278

Our method is related to the DNN-based image match-279

ing and optical flow estimation, but the difference is still280

significant.281

1) Typical image/geometric matching only involves either a282

camera view angle transformation (e.g., camera relative283

pose estimation, stereo matching) or a small time change284

in the same view (optical flow estimation), while both285

factors appear in our problem, which makes our problem286

harder.287

2) Image/geometric matching is directly supervised by the288

correspondence of two images, while the multiview289

fusion ground-truth in the 3-D world is used as super-290

visory signal in our problem.291

3) The 2-D-to-3-D projection causes ambiguity for multi-292

view feature fusion, which also causes difficulties for293

view synchronization.294

III. SINGLE-FRAME DNNS MULTICAMERA295

SYNCHRONIZATION296

In this section, we propose our single-frame synchronization297

model for DNN-based multiview models. The temporal offset298

between cameras can either be constant latency for each 299

camera (the same offset over time), or random latency (random 300

offsets over time). Similar to most multiview methods [2], [7], 301

[17], [20], we assume that the cameras are static and the cam- 302

eras’ intrinsic and extrinsic parameters are known. The main 303

idea of our method is to choose a camera view as the 304

reference view, and then use the view synchronization model 305

to warp the other camera views to be synchronized with the 306

reference view. The synchronization model should be general 307

enough to handle both constant and random latencies between 308

cameras, in order to work under various conditions causing 309

desynchronization. 310

DNNs models for the multicamera surveillance tasks typ- 311

ically consist of three stages (see in Fig. 1): Single-view 312

feature extraction, which extracts single-view features of 313

the input camera views. Multiview feature projection and 314

fusion, where a fixed differentiable projection layer is first 315

adopted to project the single-view features to the 3-D coordi- 316

nate map and then the projected multiview features are fused 317

together to form the scene-level representation. The projec- 318

tion layer depends the application task, and our framework 319

can generally handle any differentiable projection layer. For 320

example, for multiview counting [9], the projection maps 321

the 2-D camera view to the 3-D scene plane at the average 322

person height (assuming all camera pixels fall on the same 323

height plane), while for 3-D pose estimation [2], the projection 324

copies features along a view-ray in the 3-D grid, assuming 325

an unknown height of each camera-view pixel. Prediction, 326

where the decoder predicts the final result in the 3-D coor- 327

dinate map, such as ground-plane density maps [9] or 3-D 328

reconstruction [4]. 329

In Fig. 2, we take multiview crowd counting [9] as an 330

example to show the pipeline of the proposed single-frame- 331

based view synchronization model. In the multiview fusion 332

model, we denote the input multiview frames as {I t0
i }n−1

i=0 , 333

where i denotes the camera view id and n is the input camera 334

view number, and superscript t0 indicates that the frames 335

are all captured at the same time point t0, corresponding 336

to the synchronized multicamera setup. After being fed into 337

the single-view feature extractor F , the extracted features are 338

denoted as 339

Ft0
i = F

(
I t0
i

)
, i ∈ {0, 1, . . . , n − 1}. (1) 340

For multiview counting [9], the projection P maps the 2-D 341

camera view to the 3-D scene plane at the average person 342

height. After projection layer P , the projected multiview 343

features are 344

F t0
i = P(

Ft0
i

)
, i ∈ {0, 1, . . . , n − 1}. (2) 345

We use U to denote the fusion operation (e.g., concatenation 346

and max-pooling) of the projected multiview features, thus the 347

fused feature is U(F t0
0 , . . . ,F t0

n−1). Finally, the decoder D is 348

applied to obtain the final prediction Vp 349

Vp = D
(
U

(F t0
0 , . . . ,F t0

n−1

))
350

= D
(
U

(P(
Ft0

0

)
, . . . ,P(

Ft0
n−1

)))
. (3) 351

However, when the input multicameras frames are not syn- 352

chronized, denoted as {I ti
i }n−1

i=0 , the capture time for the i th 353
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view ti �= t0. Thus, we need to synchronize the camera views354

first by utilizing the view synchronization model.355

The view synchronization model can be embedded into one356

of the first two stages, synchronizing the extracted single-view357

features {Fti
i } or projected features {F ti

i }, without the need to358

redesign a new architecture. Thus, we propose two variants359

of the synchronization model: 1) SLS, where the projected360

features {F ti
i } from different camera views are synchronized361

during multicamera feature fusion and 2) CLS, where the362

camera view features {Fti
i } are synchronized before projection363

and fusion. We present the details of the two synchronization364

models next. Note that we first consider the case when365

both synchronized and unsynchronized multiview images are366

available for training (but not available in the testing stage).367

We then extend this to the case when only unsynchronized368

training images are available.369

A. Scene-Level Synchronization370

SLS works by synchronizing the multicamera features after371

the projection stage in the multiview pipeline. The pipeline for372

SLS is shown in Fig. 2(a).373

1) Synchronization Module: Without loss in generality,374

we choose one view (denoted as view 0) as the reference view,375

and other views are to be synchronized to this reference view.376

We first assume that synchronized frame pairs are available377

in the training stage. The frames are I t0
0 from reference view378

0 captured at reference time t0, and I t0
i and I ti

i from view i379

(i ∈ {1, 2, . . . , n−1}) taken at times t0 and ti . Note that frames380

(I t0
0 , I t0

i ) are synchronized, while (I t0
0 , I ti

i ) are not.381

The synchronization module consists of the following382

stages. First, camera frame feature maps (Ft0
0 , Ft0

i , Fti
i ) (both383

synchronized and unsynchronized frames) are extracted and384

projected to the 3-D world space, resulting in the projected385

feature maps (F t0
0 ,F t0

i ,F ti
i ). Second, synchronization is per-386

formed between the reference view 0 and each other view387

i . The projected feature map F t0
0 from the reference view is388

concatenated with the projected feature map F ti
i from view i ,389

and then fed into a motion flow estimation network Ms to390

predict the scene-level motion flow wi between view i at time391

ti and the reference view at time t0392

wi = Ms
(
Cat

(F t0
0 ,F ti

i

))
, i ∈ {1, . . . , n − 1} (4)393

where Cat is the concatenation operation. The F ti
i from view394

i is then synchronized with the reference view at time t0 using395

a warping transformation W guided by wi , W(wi ,F ti
i )396

F̂ t0
i = W(

wi ,F ti
i

)
, i ∈ {1, . . . , n − 1} (5)397

where F̂ t0
i are the warped projected features of the i th view398

synchronized to time t0. Note that the warping W only applies399

spatial shifting to the feature map F ti
i , i.e., it only changes400

the feature locations and does not change the feature values.401

Finally, the reference view features F t0
0 and estimated warped402

features of the other views {F̂ t0
i } are fused and decoded to403

obtain the final scene-level prediction Vp404

Vp = D
(
U

(F t0
0 , F̂ t0

1 , . . . , F̂ t0
n−1

))
(6)405

= D
(
U

(F t0
0 ,W(

w1,F t1
1

)
, . . . ,W(

wn−1,F tn−1
n−1

)))
. (7)406

In the testing stage, only unsynchronized frames (I t0
0 , I ti

i ) are 407

available and the forward operations related to frame I t0
i are 408

removed from the network. 409

2) Training Loss: Two losses are used in the training stage. 410

The first loss is a task-specific prediction loss �p between 411

the scene-level prediction Vp and the ground-truth Vgt . For 412

example, for multiview crowd counting �p is the mean-square 413

error, and Vp, Vgt are the predicted and ground-truth scene- 414

level density maps. The second loss is on the multiview 415

feature synchronization in the multiview fusion stage. Since 416

the synced frame pairs are available during training, the feature 417

warping loss �W encourages the warped features to be similar 418

to the features of the original synced frame of view i 419

�W
(
wi ,F t0

i ,F ti
i

) = mse
(F t0

i , F̂ t0
i

)
420

= mse
(F t0

i ,W(
wi ,F ti

i

))
(8) 421

where mse is the mean-square error loss. Note that the warping 422

W only applies spatial shifting, and thus the minimization 423

of the warping loss �W in (8) will be based on the feature 424

alignment via scene-level motion flow wi and not global 425

feature value changes (e.g., color correction). Finally, the 426

training loss combines the task loss and the warping loss 427

summed over all nonreference views 428

� = �p
(
Vp, Vgt

) + γ

n−1∑
i=1

�W
(
wi ,F t0

i ,F ti
i

)
(9) 429

where γ is a hyperparameter. 430

B. Camera View-Level Synchronization 431

Each image pixels’ height in 3-D space is unknown, and 432

thus the projection operation of multicamera DNNs mod- 433

els [2], [9], [17] will either project each pixel to the same 434

assumed height level [9] (causing distortion when the true 435

pixel height is different), or to multiple height levels [2], [17] 436

(duplicating features along the view ray). These projection 437

cause the features to stretch along the view ray in the 3-D 438

scene, which makes their synchronization more difficult due to 439

their imprecise (stretched) and ambiguous (duplicated) nature. 440

Therefore, we also consider synchronization between camera 441

view features before the projection. The pipeline for CLS is 442

presented in Fig. 2(b). 443

1) Synchronization Model: The view synchronization model 444

is applied to each view separately. The camera view features 445

(Ft0
0 , Fti

i ) from the unsynchronized reference view and view 446

i are first passed through a matching module (see below) 447

and then fed into the motion flow estimation network Mc 448

to predict the camera-view motion flow wi for view i . The 449

warping transformation W guided by wi then warps the 450

camera-view features Fti
i from view i to be synchronized with 451

the reference view at time t0 452

F̂ t0
i = W

(
wi , Fti

i

)
, i ∈ {1, . . . , n − 1} (10) 453

where F̂ t0
i is the warped camera-view features of view i 454

captured at time ti , which is synchronized to reference view 455

0 captured at time t0. Finally, the reference and warped camera 456

views are projected 457

F t0
0 = P(

Ft0
0

)
, F̂ t0

i = P(
F̂ t0

i

)
, i ∈ {1, . . . , n − 1} (11) 458
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Fig. 3. Epipolar-guided weights. (a) In the synchronized setting, given the
point (x, y) in view 0, the matched point (x ′, y′) in view i must be on the
epipolar line lxy . (b) In the unsynchronized setting, we assume a Gaussian
motion model of the matched feature location from time t0 to ti . (c) Epipolar-
guided weight mask is use to bias the feature matching toward high-probability
regions according to the motion model.

and then fused and decoded to obtain the scene-level predic-459

tion Vp460

Vp = D
(
U

(F t0
0 , F̂ t0

1 , . . . , F̂ t0
n−1

))
(12)461

= D
(
U

(P(
Ft0

0

)
,P(

F̂ t0
1

)
, . . . ,P(

F̂ t0
n−1

)))
. (13)462

In the testing stage, only unsynchronized frames (I t0
0 , I ti

i ) are463

available and the forward operations related to frame I t0
i are464

removed from the network.465

2) Matching Module: We propose three methods to match466

features to predict the view-level motion flow. The first method467

concatenates the features (Ft0
0 , Fti

i ) and then feeds them into468

the motion flow estimation network Mc to predict the motion469

flow wi470

wi = Mc
(
Cat

(
Ft0

0 , Fti
i

))
, i ∈ {1, . . . , n − 1}. (14)471

The second method builds a correlation map Ci between472

features from each pair of spatial locations in Ft0
0 and Fti

i473

Ci
(
(x, y),

(
x ′, y ′)) = Ft0

0 (x, y)T Fti
i

(
x ′, y ′) (15)474

which is then fed into the motion flow estimation network Mc475

to predict the motion flow wi476

wi = Mc(Ci), i ∈ {1, . . . , n − 1}. (16)477

The third method incorporates camera geometry information478

into the correlation map to suppress false matches. If both479

cameras are synchronized at t0, then according the multiview480

geometry, each spatial location in view 0 must match a location481

in view i on its corresponding epipolar line [Fig. 3(a)]. Thus,482

in the synchronized setting, detected matches that are not on483

the epipolar line can be rejected as false matches. For our484

unsynchronized setting, the matched location in view i remains485

on the epipolar line only when its corresponding feature/object486

does not move between times t0 and ti . To handle the case487

where the feature moves, we assume that a matched feature488

in view i moves according to a Gaussian motion model with489

standard deviation σ [Fig. 3(b)]. With the epipolar line and490

motion model, we then build a weighting mask, with high491

weights on locations with high probability of containing the492

matched features, and vice versa. Specifically, we set the493

mask Mi ((x, y), (x ′, y ′)) = 1 if (x ′, y ′) is on the epipolar494

line induced by (x, y), and 0 otherwise, and then convolve495

it with a 2-D Gaussian with standard deviation σ [Fig. 3(c)].496

We then apply the weight mask Mi on the correlation map497

C̃i = Mi � Ci , which will suppress false matches that are not498

Fig. 4. Multiscale estimation of motion flow.

consistent with the scene and motion model. Thus, the motion 499

flow wi is 500

wi = Mc
(
C̃i

) = Mc(Mi � Ci ), i ∈ {1, . . . , n − 1}. (17) 501

3) Multiscale Architecture: Multiscale feature extractors are 502

used in multicamera tasks like crowd counting [9] or to refine 503

the final prediction via multiscale prediction fusion [50], [51]. 504

Therefore, we next show how to incorporate multiscale feature 505

extractors with our CLS model.1 Instead of performing the 506

view synchronization in each scale separately, the motion flow 507

estimate of neighbor scales is fused to refine the current scale’s 508

estimate (see Fig. 4). In particular, let there be m scales in the 509

multiscale architecture and j denotes one scale in the scale 510

range {1, 2, . . . , m}, with m the largest scale. The multiscale 511

predicted motion flow are fused as follows. 512

1) When j = 1 (the smallest scale), the correlation map 513

C (1)
i of scale 1 is fed into the motion flow estimation 514

net to predict the motion flow w
(1)
i for scale 1. 515

2) For scales j > 1, first the difference between the 516

correlation map C ( j)
i and the upsampled correlation map 517

of the previous scale up(C ( j−1)
i ) is fed into the motion 518

flow estimation net to predict the residual of the motion 519

flow between two scales, denoted as w̃
( j)
i . 520

3) The refined motion flow of scale j is 521

w
( j)
i = up

(
w

( j−1)
i

)
+ w̃

( j)
i . (18) 522

4) Training Loss: Similar to SLS, a combination of two 523

losses (scene-level prediction and feature synchronization) is 524

used in the training stage. The scene-level prediction loss is the 525

same as before. The feature synchronization loss encourages 526

the warped camera-view features at each scale to match the 527

features of the original synchronized frame 528

�W = mse
(

Ft0,( j)
i , F̂ t0,( j)

i

)
(19) 529

= mse
(

Ft0,( j)
i , W

(
w

( j)
i , Fti ,( j)

i

))
. (20) 530

Similar to SLS, the warping function W only applies spatial 531

shifting, and thus the minimization of �W in (20) will be based 532

on feature alignment rather than feature value changes. Finally, 533

the training loss is the combination of the prediction loss and 534

the synchronization loss summed over all nonreference views 535

1No extra steps are needed to incorporate multiscale features with SLS
because the synchronization occurs after the feature projection.
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and scales536

� = �p
(
Vp, Vgt

) + γ

n−1∑
i=1

m∑
j=1

�W

(
w

( j)
i ,F t0,( j)

i ,F ti ,( j)
i

)
(21)537

where γ is a hyperparameter.538

C. Training With Only Unsynchronized Frames539

In the previous models, we assume that both synchronized540

and unsynchronized multicamera frames are available during541

training. For more practical applications, we also consider542

the case when only unsynchronized multiview frames are543

available for training. In this case, for the SLS, the warping544

feature loss �W is replaced with a similarity loss �s on the545

projected features, to indirectly encourage synchronization of546

the projected multiview features547

�s = mean
(
1 − cos

(F t0
0 ,W(

wi ,F ti
i

)))
(22)548

where “cos” is the cosine similarity between feature maps549

(along the channel dimension), and “mean” is the mean over550

all spatial locations. Similarly, for CLS, the warping feature551

loss �W is replaced by the similarity loss of the projected552

features �s . Note that the similarity loss �s is applied after the553

projection—thus the warping function only needs to predict554

the residual motion in the camera view, which is the object555

motion in time, so as to align the projected features.556

IV. EXPERIMENTS557

We validate the effectiveness of the proposed view syn-558

chronization model on two unsynchronized multiview tasks:559

multiview crowd counting and multiview 3-D human pose560

estimation.561

A. Implementation Details562

The synchronization model consists of two parts: motion563

estimation network and feature warping layer. The input of the564

motion estimation network is the unsynchronized multiview565

features (the concatenation of the projected features) for SLS566

or the matching result of the 2-D camera-view features for567

CLS, and the output is a two-channel motion flow. The layer568

setting of the motion estimation network is shown in Table I.569

The feature warping layer warps the features from other views570

to align with the reference views, guided by the estimated571

motion flow. The feature warping layer is based on the image572

resampler from the spatial transformation layer in [52].573

The synchronized multiview model consists of feature574

extraction module, projection module, and multiview pre-575

diction module. For the multiview counting model [9],576

Table II shows the model setting of the feature extraction577

and multiview prediction module. For the 3-D pose estima-578

tion model [2], the feature extraction module consists of a579

ResNet-152 network, a series of transposed convolution layers580

and a 1 × 1 convolution layer to predict joint heatmaps [53],581

and the V2V-PoseNet [54] is used for multiview prediction,582

which is based on hour-glass network [55].583

TABLE I

LAYER SETTINGS FOR THE MOTION ESTIMATION NET IN THE VIEW
SYNCHRONIZATION MODULE. THE FILTER DIMENSIONS ARE OUTPUT

CHANNELS, INPUT CHANNELS AND FILTER SIZE w0 × h0

TABLE II

MODEL SETTING OF THE SYNCHRONIZED MULTIVIEW COUNTING

MODEL [9], CONSISTING OF FEATURE EXTRACTION AND MULTIVIEW

PREDICTION. THE FILTER DIMENSIONS ARE OUTPUT CHANNELS,
INPUT CHANNELS, AND FILTER SIZE (w × h)

B. Experiment Setup 584

We test four versions of our synchronization model: scene- 585

level synchronization (denoted as SLS), and CLS using con- 586

catenation, correlation, or correlation with epipolar-guided 587

weights (denoted as CLS-cat, CLS-cor, CLS-epi) for the 588

matching module (Section III-B.2). The synchronization mod- 589

els are trained with the multiview DNNs introduced in each 590

application later. 591

We consider two training scenarios: 1) both synchronized 592

and unsynchronized training data is available and 2) only 593

unsynchronized training data is available, which is the more 594

difficult setting. For the first training scenario, we compare 595

against two comparison methods: BaseS trains the DNN only 596

on the synchronized data; BaseSU fine-tunes the BaseS model 597

using the unsynchronized training data (using the full training 598

set). For the second training scenario, BaseU trains the DNN 599

directly from the unsynchronized data. Note that traditional 600

synchronization methods [29]–[33] are based on videos (tem- 601

poral information) and assume high-fps cameras with fixed 602

frame rates, which are unavailable in our problem setting. 603

Thus, traditional and video-based synchronization methods are 604

not suitable for comparison. 605

To test the proposed method, we first create an unsyn- 606

chonized multiview dataset from the existing multiview 607

datasets (the specific datasets are introduced in each appli- 608

cation later). In particular, suppose the frame sequence in the 609

reference view is captured at times t0 + k�t , where �t is the 610

time offset between neighbor frames, k ∈ {0, . . . , N − 1} and 611

N is the number of frames. For view i , the unsynchronized 612

frames are captured at times t0 + k�t + δi,k , where δi,k is 613

the desynchronization time offset between view i and the 614

reference view. We consider two settings of the desynchro- 615

nization offset. The first is a constant latency for each view, 616

δi,k = τi , for some constant value τi . The second is random 617
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TABLE III

UNSYNCHRONIZED MULTIVIEW COUNTING: EXPERIMENT RESULTS FOR
TRAINING SET WITH BOTH SYNCHRONIZED AND UNSYNCHRONIZED

FRAMES. TWO DESYNCHRONIZATION SETTINGS ARE TESTED:
CONSTANT LATENCY AND RANDOM LATENCY. THE EVALUA-

TION METRIC IS MAE AND NAE

TABLE IV

UNSYNCHRONIZED MULTIVIEW COUNTING: EXPERIMENT RESULTS FOR

TRAINING SET WITH ONLY UNSYNCHRONIZED FRAMES UNDER CON-
STANT AND RANDOM LATENCY

latency, where the offset for each frame and view is randomly618

sampled from a uniform distribution, δi,k ∼ U(−κi , κi).619

Finally, since the synchronization is with the reference view,620

the ground-truth labels for the multiview task correspond to621

the times of the reference view, t0 + k�t .622

C. Unsynchronized Multiview Counting623

We first apply our synchronization model to unsynchronized624

multiview counting system, whose bandwidth is assumed to be625

limited and the frame latency between cameras can be fixed626

or random. Here, we adopt the multiview multiscale fusion627

model (MVMS) from [9], which is the state-of-the-art model628

for multiview counting DNNs. We embed the synchronization629

models in the MVMS model to handle the unsynchronized630

multiview frames for crowd counting.631

1) Datasets and Metric: Two multiview counting datasets632

used in [9], PETS2009 [56] and CityStreet [9], are selected633

and desynchronized for the experiments.634

PETS2009 contains three views (cameras 1, 2, and 3), and635

the first camera view is chosen as the reference view. The636

input image resolution (w × h) is 384 × 288 and the ground-637

truth scene-level density map resolution is 152 × 177. There638

are 825 multiview frames for training and 514 frames for639

testing. The frame rate of PETS2009 is 7 fps (�t = 1/7s). For640

constant frame latency, τi ∈ {5 s,−5 s} is used for cameras641

2 and 3, and κi = 5 s for random latency.642

CityStreet proposed in [9] consists of three views (cameras643

1, 3, and 4), and camera 1 is chosen as the reference view.644

The input image resolution is 676 × 380 and the ground-truth645

density map resolution is 160 × 192. There are 500 multi-646

view frames, and the first 300 are used for training and the647

TABLE V

UNSYNCHRONIZED MULTIVIEW COUNTING: EXPERIMENT RESULTS FOR
TRAINING SET WITH ONLY UNSYNCHRONIZED FRAMES UNDER CON-

STANT AND RANDOM LATENCY AND USING GROUND-TRUTH CAL-
CULATED FROM UNSYNCHRONIZED MULTIVIEW FRAMES

remaining 200 for testing. The frame rate of CityStreet is 1 fps 648

(�t = 1 s).2 For constant latency, τi ∈ {3 s,−3 s} for cameras 649

3 and 4, and κi = 3 s for random latency. 650

Following [9], the mean absolute error (MAE) and normal- 651

ized absolute error (NAE) of the predicted counts on the test 652

set are used as the evaluation metric 653

MAE = 1

N

N∑
i=1

|ĉi − ci | (23) 654

NAE = 1

N

N∑
i=1

|ĉi − ci |/ci (24) 655

where ci is the ground truth count and ĉi is the predicted count, 656

and N is the number of testing images. 657

2) Results for Training With Synced and Unsynced Frames: 658

The experimental results using training with synchronized 659

and unsynchronized frames are shown in Table III. The 660

hyperparameter γ = 1 is used for feature warping loss. 661

On both datasets, our CLS methods, CLS-cor and CLS-epi, 662

perform better than other methods, including the baselines, 663

demonstrating the efficicacy of our approach. SLS performs 664

worse than CLS methods, due to the ambiguity of the projected 665

features from multiviews. Furthermore after projection to the 666

ground-plane, the crowd movement between frames I t0
i and I ti

i 667

on the ground-plane is less salient due to the low resolution of 668

the ground-plane feature map. CLS-cat performs worse among 669

the CLS methods because simple concatenation of features 670

cannot capture the image correspondence between different 671

views to estimate the motion flow. Finally, the two baselines 672

(BaseS and BaseSU) perform badly on CityStreet because 673

of the larger scene with larger crowd movement between 674

neighboring frames (due to lower frame rate). 675

3) Results for Training With Only Unsynchronized Frames: 676

The experiment results by training with only unsynchronized 677

frames (which is a more practical real-world case) are shown 678

in Table IV. Since the synchronized frames are not available, 679

the MVMS model weights are trained from scratch using only 680

unsynchronized data. Our models are trained with the similar- 681

ity loss �s (with hyperparameter γ = 1000), which encourages 682

alignment of the projected multiview features. Generally, with- 683

out the synchronized frames in the training stage, the counting 684

2We obtained the higher fps version from the dataset authors.



ZHANG AND CHAN: SINGLE-FRAME BASED DEEP VIEW SYNCHRONIZATION FOR UNSYNCHRONIZED MULTICAMERA SURVEILLANCE 9

TABLE VI

ABLATION STUDY ON THE MULTISCALE ARCHITECTURE OF THE PRO-
POSED METHODS FOR MULTIVIEW COUNTING ON CITYSTREET

DATASET. THE TOP ROWS SHOW PERFORMANCE WHEN TRAIN-
ING WITH SYNCHRONIZED AND UNSYNCHRONIZED FRAMES

AND USING FEATURE WARPING LOSS �W . THE BOTTOM IS
TRAINING ONLY ON UNSYNCHRONIZED FRAMES USING

FEATURE SIMILARITY LOSS �s

TABLE VII

AVERAGE FEATURE MAPS VALUE MEAN AND VARIANCE BEFORE AND

AFTER THE FEATURE WARPING OF VIEWS 2 AND 3 OF

CITYSTREET DATASET

error increases for each method. Nonetheless, the proposed685

CLS models CLS-cor and CLS-epi perform much better than686

the baseline BaseU. CLS-cor and CLS-epi trained on only687

unsynchronized data also performs better (on CityStreet) or on688

par with (on PETS2009) the baseline BaseSU, which uses both689

synchronized and unsynchronized training data. These two690

results demonstrate the efficacy of our synchronization model691

when only unsynchronized training data are available. Finally,692

the error for almost all synchronization models increases on693

both datasets when training without the similarity loss (�p in694

Table IV). This demonstrates the effectiveness of using �s to695

align the multiview features in training.696

4) Results for Using Ground-Truth From Unsynchronized697

Multiview Images: In the previous experiments (training698

with only unsynchronized frames, see Section IV-C.3), the699

ground-truth is corresponded (synchronized) to the frames700

of the reference view. We also perform experiments when701

the ground-truth scene-level density maps are calculated702

from the unsynchronized multiview images. Specifically,703

we project the same person’s image coordinates of each704

unsynchronized view to the world plane and the average of the705

projection results is used as the ground-truth person location706

on the ground. Then, we use the obtained person location map707

to generate the scene-level density map.708

The results for training with ground-truth from unsynchro-709

nized multiview images and only unsynchronized frames can710

be seen in Table V. From the table, we can also find that711

the proposed method CLS-cor/CLS-epi can achieve better712

performance than other methods and CLS-epi achieves the best713

performance, and the performance can be further improved by714

adding similarity loss �s .715

5) Ablation Study on the Multiscale Architecture: We next716

present an ablation study on the multiscale architecture for717

the multiview counting in Table VI. Generally, the multi-718

scale architecture performs better than single-scale architecture719

models, and the proposed CLS-cor/CLS-epi can perform better720

TABLE VIII

COMPARISON OF METHODS ON THE CITYSTREET DATASET WITH ONLY
UNSYNCHRONIZED FRAMES (BOTH CONSTANT AND RANDOM

UNSYNCHRONIZED FRAMES)

TABLE IX

MODEL PARAMETER NUMBER AND RUNNING SPEED COMPARISON OF THE

BASELINE METHODS BASES/BASESU/BASEU AND THE PROPOSED
SLS, CLS-CAT, CLS-COR, AND CLS-EPI FOR MULTIVIEW COUNT-

ING ON CITYSTREET DATASET. THE INPUT RESOLUTION FOR

THE CORRELATION STEP OF THE CAMERA-VIEW SYNCHRO-
NIZATION MODULE IS 160 × 95

than SLS or CLS-cat under both single-scale or multiscale 721

architecture, and under both training paradigms (sync and 722

unsynced, or only unsynced). 723

6) Ablation Study on Color Correlation: The feature warp- 724

ing module only applies spatial shifting on the features of 725

the unsynced views, i.e., it does not change the values 726

(e.g., color) of the unsynced features [see (5) and (10)]. 727

To demonstrate this, we calculate the average statistics (mean 728

and variance) of the feature maps before and after feature 729

warping of Views 2 and 3 of CityStreet, and present the 730

results in Table VII. The statistics of the feature maps do not 731

change much after performing feature warping, and thus the 732

performance improvement of the feature warping module is 733

not due to color correction (feature value changes). 734

We further perform an ablation study to show that image 735

color correction by itself cannot solve the frame desynchro- 736

nization problem. On the CityStreet dataset, in the baseline 737

model (MVMS [9]), we add a learnable “color correction” 738

layer, comprising an extra 1 × 1 convolution layer (32 739

channels) in the branches of the other camera views before 740

the projection and fusion step. The results are denoted as 741

“color correction” in Table VIII. The error for using “color 742

correction” is worse than the proposed SLS, CLS-cor, and 743

CLS-epi. The reason is that the desynchronization issue comes 744

from the capture time difference between camera views, which 745

is better solved by spatial shifting of features rather than color 746

correction (changing feature values). 747

7) Model Size and Running Speed Comparison: We present 748

the model size (number of parameters) and running speed 749

of the baseline methods and the proposed SLS, CLS-cat, 750

CLS-cor, and CLS-epi in Table IX. The input resolution 751

for the correlation step of the camera-view synchronization 752

module is 160 × 95. All models are tested on the CityStreet 753

dataset with a NVIDIA 1080Ti GPU. The baseline methods 754

(BaseS, BaseSU, and BaseU) do not use view synchronization 755

modules, so their model sizes are smaller and running speeds 756

are faster. The proposed CLS-cor and CLS-epi methods have 757



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE X

UNSYNCHRONIZED 3-D HUMAN POSE ESTIMATION: EXPERIMENT
RESULTS WITH RANDOM LATENCY. FOR “CLS-COR” AND “CLS-EPI,”

THE CONSISTENCY LOSS HYPERPARAMETER γ = 0.01. THE EVAL-
UATION METRIC IS MPJPE AND ABSOLUTE

POSITION MPJPE (LEFT/RIGHT)

TABLE XI

DETAILED PERFORMANCE FOR UNSYNCHRONIZED 3-D HUMAN POSE

ESTIMATION WITH RANDOM LATENCY κi = 8/50 s. THE EVALUATION
METRIC IS MPJPE

the correlation module, and thus have more parameters than758

SLS or CLS-cat. CLS-epi is slower than CLS-cor due to the759

extra multiplication step with the epipolar weights.760

8) Visualization Results: Example results are shown in761

Fig. 5. Generally, the proposed synchronization methods762

CLS-epi and CLS-cor can predict better quality density maps,763

such as in the red box regions in the figure, where comparison764

methods tend to over-count these regions due to the same per-765

son being counted multiple times in unsynchronized frames.766

Furthermore, we also observe that the predicted density map767

is with better quality when synchronized frames are avail-768

able compared to training with only unsynchronized frames.769

Finally, the prediction results are improved if similarity loss770

is enforced when training with only unsynchronized frames,771

such as the methods CLS-epi and CLS-cor on PETS2009.772

D. Unsynchronized 3-D Human Pose Estimation773

We next apply our synchronization model to the unsyn-774

chronized 3-D human pose estimation task. The DNNs model775

for 3-D human pose estimation is adopted from [2], which776

proposed two learnable triangulation methods for multiview777

3-D human pose from multiple 2-D views: algebraic triangu-778

lation and volumetric aggregation. Here, we use volumetric779

aggregation (softmax aggregation) as the multiview fusion780

DNN in the experiments.781

1) Datasets and Metrics: We use the Human3.6M [57]782

dataset, which consists of 3.6 million frames from four syn-783

chronized 50 Hz digital cameras along with the 3-D pose784

TABLE XII

DETAILED PERFORMANCE FOR UNSYNCHRONIZED 3-D HUMAN POSE
ESTIMATION WITH RANDOM LATENCY κi = 32/50 s.

THE EVALUATION METRIC IS MPJPE

TABLE XIII

DETAILED PERFORMANCE FOR UNSYNCHRONIZED 3-D HUMAN POSE
ESTIMATION WITH RANDOM LATENCY κi = 64/50 s. THE

EVALUATION METRIC IS MPJPE

TABLE XIV

UNSYNCHRONIZED 3-D HUMAN POSE ESTIMATION: CLS-EPI
EXPERIMENT RESULTS WITH DIFFERENT HYPERPARAMETER γ .

THE EVALUATION METRIC IS MPJPE

annotations. We follow the preprocessing step3 recommended 785

in [57], and sample one of every 64 frames (�t = 64/50) 786

for the testing set, and sample one of every four frames 787

(�t = 4/50) as the training set. The first camera view is 788

always used as the reference view (if the first camera view is 789

missing, the second one is used). We test desynchronization 790

via random frame latency, with κi ∈ {8/50, 32/50, 64/50} s, 791

and only use unsynchronized data for training. Following [2], 792

mean per point position error (MPJPE) and absolute position 793

MPJPE are used as the metric for evaluation. In training, 794

the single-view backbone uses the pretrained weights from 795

the original 3-D pose estimation model. Baseline methods 796

3https://github.com/anibali/h36m-fetch. Accessed: October 10, 2019.
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Fig. 5. Examples of unsynchronized multiview crowd counting on PETS2009 (top) and CityStreet (bottom). The left shows the input multiview frames, and
note that the synchronized frames (in dotted box) are not used when training with only unsynchronized frames. The input unsynchronized frames are randomly
selected around the synchronized frames. For each dataset, the result of training with synchronized and unsynchronized frames (lp and lW ) is in row 1, the
result of training only with unsynchronized frames (lp ) is shown in row 2, and the result of training with unsynchronized frames and using similarity loss
between projected features (lp and ls ) is shown in row 3. Generally, 1) the proposed synchronization methods CLS-epi and CLS-cor predict density maps
with better quality compared to other comparison methods; 2) the methods achieve better performance when synchronized frames are available in training;
and 3) when training only with unsynchronized frames, enforcing the similarity loss ls can help improve the performance.

BaseS, BaseSU and BaseU are compared with our proposed797

camera-view synchronization models CLS-cor and CLS-epi.798

2) Experiment Results: The experiments results are pre-799

sented in Table X. The original 3-D pose estimation method800

(BaseS, BaseSU, and BaseU) cannot perform well under801

the unsynchronized test condition, especially under large802

latencies (e.g., 64/50 s). Our camera-view synchronization803

methods performs better than the baseline methods, with the804

performance gap increasing as the latency increases. Using805

similarity loss �s improves the performance of our models,806

and adding epipolar-guided weights can suppress false matches807

and further reduces the error. The detailed performance for808

each pose type under different frame latency settings is shown809

in Tables XI–XIII. From the tables, we can find that the810

proposed methods can perform especially better on the poses811

with larger movement between unsynchronized frames, e.g.,812

Walking, WalkingDogs and WalkingTogether.813

3) Ablation Study on γ for 3-D Pose Estimation: The814

ablation study on hyperparameter γ for the method CLS-epi815

for 3-D pose estimation is presented in Table XIV. In general, 816

γ = 0.01 achieves better performance than other weights. 817

4) Model Size and Running Speed Comparison: We present 818

the model sizes and running speed comparisons of our pro- 819

posed models and the baselines for 3-D pose estimation 820

in Table XV. The input resolution for the correlation step 821

of the camera-view synchronization module is 48 × 48. 822

As the original synchronized 3-D pose estimation model [2] is 823

already very large, the running speed of the proposed models 824

CLS-cor and CLS-epi is similar to the baseline methods 825

BaseS/BaseSU/BaseU. 826

5) Visualization Results: Visualization results of unsynchro- 827

nized 3-D pose estimation are presented in Figs. 6 and 7. In the 828

figures, the first row shows the input unsynchronized multi- 829

view frames, and the top labels indicate the unsynchronized 830

frame latency. Rows 2–8 show the 2-D key-joints projected 831

from 3-D poses of Ground-truth, BaseS, BaseSU, BaseU, 832

CLS-cor (γ = 0), CLS-cor, and CLS-epi, respectively, where 833

synchronized frames are displayed for better visualization 834
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Fig. 6. Examples of unsynchronized 3-D pose estimation (Walking Dogs). The first row shows the input unsynchronized multiview frames and the top labels
indicate the unsynchronized frame latency (in seconds). The remaining rows show the ground-truth key joints and the predicted results. Blue lines are the
2-D key joints projected from 3-D poses, and the synchronized frames are used for better visualization. CLS-epi achieves the best performance among all
methods, especially the prediction result of arms in view 0.



ZHANG AND CHAN: SINGLE-FRAME BASED DEEP VIEW SYNCHRONIZATION FOR UNSYNCHRONIZED MULTICAMERA SURVEILLANCE 13

Fig. 7. Examples of unsynchronized 3-D pose estimation (Greeting). Blue lines are the 2-D key-joints projected from 3-D poses, and the synchronized
frames are used for better visualization. CLS-epi achieves the best performance.
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TABLE XV

MODEL PARAMETER NUMBER AND RUNNING SPEED COMPARISON OF
THE BASELINE METHODS BASES/BASESU/BASEU AND THE PRO-

POSED CLS-COR AND CLS-EPI FOR 3-D POSE ESTIMATION ON

THE HUMAN3.6M DATASET. THE INPUT RESOLUTION FOR

THE CORRELATION STEP OF THE CAMERA-VIEW SYNCHRO-
NIZATION MODULE IS 48 × 48

effect. In Fig. 6, BaseU fails on the unsynchronized input, and835

CLS-epi achieves the best performance among all methods,836

especially the prediction of the arms in view 1. In Fig. 7,837

the CLS-epi also achieves the best performance among all838

comparison methods.839

V. CONCLUSION840

In this article, we focus on the issue of unsynchronized841

cameras in DNNs-based multiview computer vision tasks.842

We propose two view synchronization models based on single843

frames (not videos) from each view, SLS and CLS. The two844

models are trained and evaluated under two training settings845

(with or without synchronized frame pairs), and a similarity846

loss of the projected multiview features is proposed to boost847

the performance when synchronized training pairs are not848

available. Furthermore, to show its generality to different849

conditions of desynchronization, the proposed models are850

tested with desynchronization based on both constant and851

random latency. Finally, the proposed models are applied852

to unsynchronized multiview counting and unsynchronized853

3-D human pose estimation, and achieve better performance854

compared to the baseline methods. Overall, CLS model using855

correlation and epipolar weights (CLS-epi) performs best856

among the proposed models.857

In addition to unsynchronized multicamera crowd counting858

and 3-D pose estimation, the proposed method can also be859

applied to other multicamera vision tasks, such as multi-860

camera detection [7], multicamera tracking [18]. In these861

tasks, multicameras may also be unsynchronized due to no862

synchronization clock or limited network bandwidth. As these863

DNN models [7], [18] generally follow the three-stage pipeline864

(single-view feature extraction, multiview projection and865

fusion, and prediction), our proposed synchronization modules866

can be inserted to adapt them to unsynchronized frames.867

In our current model, image content matching is used868

for view synchronization, while the 2-D-to-3-D projection869

for multiview fusion relies on known camera parameters.870

The multicamera surveillance tasks themselves require known871

calibration for better multiview fusion. Note that our pro-872

posed view synchronization module based on correlation maps873

(CLS-cor) does not require camera calibrations due to the874

single-frame basis, and still achieves good performance. When875

the calibrations are provided, epipolar constraint can be uti-876

lized to achieve better results (CLS-epi). In future work, the877

2-D–3-D projection in the original multiview models could878

be replaced with camera self-calibration modules, which can879

allow the model to handle unsynchronized and uncalibrated880

multicameras.881
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