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Clustering Hidden Markov Models with Variational
Bayesian Hierarchical EM

Hui Lan, Ziquan Liu, Janet H. Hsiao, Dan Yu, Antoni B. Chan

Abstract—The hidden Markov model (HMM) is a broadly
applied generative model for representing time series data,
and clustering HMMs attracts increased interests from machine
learning researchers. However, the number of clusters (K) and
the number of hidden states (S) for cluster centers are still
difficult to determine. In this paper, we propose a novel HMM-
based clustering algorithm, the variational Bayesian hierarchical
EM algorithm, which clusters HMMs through their densities and
priors, and simultaneously learns posteriors for the novel HMM
cluster centers that compactly represent the structure of each
cluster. The numbers K and S are automatically determined
in two ways. First, we place a prior on the pair (K,S) and
approximate their posterior probabilities, from which the values
with the maximum posterior are selected. Second, some clusters
and states are pruned out implicitly when no data samples
are assigned to them, thereby leading to automatic selection of
the model complexity. Experiments on synthetic and real data
demonstrate that our algorithm performs better than using model
selection techniques with maximum likelihood estimation.

Index Terms—Variational Bayesian, Hidden Markov mixture
model, Clustering, Hierarchical EM

I. INTRODUCTION

THE hidden Markov model (HMM) [1] is an effective
method for statistically representing time series data,

assuming that each observation in a sequence is generated
conditioned on a discrete state of a hidden Markov chain, i.e.,
a hidden state sequence. HMM has been popularly applied
in many areas that need to analyze time series data, such
as speech recognition [2, 3], cognitive science [4, 5], and
bioinformatics [6, 7]. Although neural networks (NN) [8, 9]
and reinforcement learning [10] are also works in these areas,
they typically require large datasets to prevent over-fitting
and learn models that are difficult to interpret. In contrast,
as a generative probabilistic model, HMMs work well on
smaller datasets with Bayesian estimation preventing over-
fitting, while also being interpretable models.

Clustering HMMs to explore the hidden cluster structure
can be an effective method for discovering commonalities and
differences among HMMs, and the cluster center serves as
a representation of the HMMs in each cluster. In particular,
recent works represent an individual’s eye gaze pattern by
estimating an HMM from their eye fixation sequences on a
stimuli, and then clusters the individual HMMs into groups
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to discover common eye gaze strategies, represented by the
HMM cluster centers. In the context of eye gaze, the hidden
state of the HMM corresponds to a region-of-interest (ROI) on
the stimuli, with the extent determined by the emission density,
and the state transition matrix of the HMM contains the
probabilities of viewing the next ROI after viewing the current
ROI. This bottom-up clustering method has enabled interesting
discoveries about the role of eye gaze in cognitive processes,
including optimal strategies for face recognition [11–14],
masking effects in visual search [15], and the association of
eye gaze patterns to cognitive decline [5], emotion recognition
[16, 17], scene perception [18], chronic pain [19, 20], and
decision making [21].

In these previous works, the individual HMMs are estimated
using a variational Bayesian method, which automatically
determines the number of hidden states (i.e., number of ROIs)
as well as other hyperparameters. However, in contrast, the
clustering of HMMs is performed with a predefined number of
clusters and states, which is manually set by the experimenters.
Manual selection of the model hyperparameters could intro-
duce experimenter bias into the data analysis, and thus a data-
driven approach for automatically selecting the model hyper-
parameters is preferred. In this paper, we propose a Bayesian
method for clustering HMMs that automatically estimates the
number of clusters (i.e., number of gaze strategies) and number
of states (i.e., number of ROIs).

Note that clustering HMMs is not the same as clustering
time-series data with HMMs. The latter aims to form K groups
from N observation sequences, with each group modeled by
one HMM. For example, [22] proposed a Dirichlet process
for learning an HMM mixture from music clips to represent a
song, while [23] clusters sequences by forming a single HMM
with a block-diagonal transition matrix and then training on all
sequences with the Baum-Welch [24] algorithm. In contrast,
clustering HMMs aims to form K groups of N HMMs, with
each group represented by one HMM. Clustering HMMs is
equivalent to building a large mixture model of HMMs, and
then reducing it into a mixture model with fewer components
and states, which can concisely represent the original HMMs.
To this end, [25] proposes a variational hierarchical EM
(VHEM) algorithm to cluster HMMs directly using their prob-
ability densities of the observation sequence, by minimizing
the Kullback-Leibler divergence (KLD) [26] between the input
HMMs and cluster center HMMs. In summary, clustering time
series data with HMMs is a process mapping data to model,
while clustering HMMs maps from model to model. Clustering
HMMs is preferred in the above cognitive science works
because it allows modeling and analysis of both individual
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differences and group similarities.
Our Contributions. In this paper, we propose a varia-

tional hierarchical EM algorithm that clusters HMMs within a
Bayesian framework (VBHEM-H3M). VBHEM automatically
determines the number of clusters and the number of hidden
states, clusters HMMs directly, and estimates novel HMM
cluster centers. Compared with VHEM, firstly, VBHEM auto-
matically performs model selection (i.e., estimates the model
hyperparameters, e.g., the number of clusters), while VHEM
cannot. Automatic model selection is important for analyz-
ing experiment data, since it removes the experimenter bias
caused when manually selecting the model hyperparameters.
Secondly, each input HMM of VBHEM is represented with a
prior distribution over its parameters, which better incorporates
the uncertainty of parameter estimation of the input HMMs as
they are estimated from limited data samples. In contrast, this
uncertainty information about the input HMMs is discarded
by VHEM. In experiment, we demonstrate that using the input
HMM uncertainty leads to better cluster performance; Thirdly,
VBHEM computes a posterior distribution over the HMM
cluster centers (c.f., a point-estimate obtained by VHEM),
which gives a better characterization of the uncertainty in the
estimated model. More detailed comparisons can be found in
Sec. IV-D. Finally, we give complete derivations of Bayesian
HEM algorithm for H3M with its prior distributions, which
could be generalized to other mixture of mixture models.

The remainder of this paper is organized as follows. In
Sec. II, we provide the related works. In Sec. III we review the
necessary related knowledge. In Sec. IV we introduce a new
objective function and derive the VBHEM algorithm. Sec. V
presents experimental results obtained by applying VBHEM
algorithm to synthetic data and real data. Finally, Sec. VI
concludes this paper.

II. RELATED WORK

Clustering HMMs. The existing approaches to cluster
HMMs leverage different distances or similarity between two
HMMs. [27] clustered HMMs by calculating a probability
product kernel (PPK) similarity matrix between all HMMs,
and then applying spectral clustering. [25] proposed the vari-
ational hierarchical EM (VHEM) algorithm to cluster HMMs
directly using their probability densities of the observation
sequence and estimate HMM cluster centers, via minimizing
the KLD between input HMMs and cluster center HMMs.
[28] modeled each gene sequence with an HMM and defined a
distance matrix based on likelihood, and applied a hierarchical
clustering algorithm to find the best clusters. [29] used a
bagging method, where a large set of HMMs is computed
from the data, the HMMs are grouped together based on
KLD, and the cluster centers are found by averaging HMMs
in the same group. For works [28, 29], data is used in the
clustering process, while [25, 27] are only based on the input
HMMs. [30] proposed a framework, Aggregated Wasserstein,
for computing distances between two HMMs with state con-
ditional distributions as Gaussians. However, clustering based
on Wasserstein distance has not been studied for HMMs.

For the above HMM clustering methods, the numbers of
clusters and states are set manually. Therefore, these methods

need to resort to other model selection techniques, such as
Akaike information criterion (AIC) [31], Bayesian information
criterion (BIC) [32], Monte-Carlo cross-validation [33], and
minimum description length (MDL) [34]. In our work, we
propose a method that both clusters HMMs directly and auto-
matically performs model selection via Bayesian formulation.

Bayesian Model Selection. The Bayesian view of model
comparison involves the use of probabilities to represent
uncertainty in the choice of model – the model structure is
determined using the posterior distribution over the model
structure, conditioned on the training data. Suppose we wish
to compare a set of M models mi where i ∈ {1, . . . ,M}. We
then need to evaluate the posterior distribution p(mi|Y ) ∝
p(mi)p(Y |mi), where the uncertainty is expressed through
a model prior probability distribution p(mi), and the model
evidence p(Y |mi) expresses the preference shown by the data
Y for different models. Variational inference (VI) [35, 36] is
widely used to approximate the model evidence for Bayesian
models, while an alternative, but computationally expensive,
strategy is Markov chain Monte Carlo (MCMC) sampling
[37]. VI first posits a family of densities for the approximate
posterior distribution, and then finds a member of that family
that is closest to the target density, as measured by KLD.

The previous works using VI with Bayesian model selection
focus on mixture of experts model [38], HMMs [39], and
Dirichlet process mixture models [40]. In most cases, the
model evidence p(Y |mi) is intractable, and thus the evidence
lower bound (ELBO) is used as a model selection criterion.
VI has been explored for mixture models [41, 42] and more
generally [43]. [44] derived VI in the Bayesian framework
for hidden Markov mixture models (H3M) [23], but [44] only
considered learning H3M from data, not from the HMMs. [45]
proposed a VB method for clustering Gaussians, i.e., learning a
Gaussian mixture model from a set of input GMMs. However,
a VB method for clustering HMMs, by learning an H3M from
a set of input HMMs, has not been studied so far.

Other model selection methods. Other clustering methods
also focus on automatic selection of the number of cluster
centers, but are not proposed for HMMs. [46] proposed an ap-
proach based on the idea that cluster centers are characterized
by a higher density than their neighbors, and by a relatively
large distance from points with higher densities. However, this
method needs to draw a rectangle to manually select the cluster
centers. [47] proposed a cluster center fast determination
(CCFD) algorithm, which overcomes this problem and realizes
automatic selection of the cluster centers. CCFD has been
applied to image segmentation [48] and hybrid data stream
clustering [49].

III. PRELIMINARIES

A. Hidden Markov (Mixture) Model

We first briefly review hidden Markov models (HMMs) and
the hidden Markov mixture model (H3M) [23], and define the
notation used in the derivation (see summary in Table I, II).

An H3M models a set of observation sequences as samples
from a group of K hidden Markov models (HMMs), and
is parameterized by M = {ωi,Mi}Ki=1, where Mi is the
i-th HMM and ωi is the corresponding mixture component
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TABLE I
NOTATIONS USED IN THE DERIVATION OF THE VBHEM-H3M ALGORITHM.

variables base model (b) reduced model (r)
number of HMM components K(b) K(r)

index for HMM components i ∈ {1, 2, ...,K(b)} = [1,K(b)] j ∈ {1, 2, ...,K(r)}
number of HMM states S(b) S(r)

index for HMM state at time t βt ∈ {1, 2, ..., S(b)} ρt ∈ {1, 2, ..., S(r)}
sequence length τ τ

HMM state sequence β = {βt}τt=1, βt ∈ {1, 2, ..., S(b)} ρ = {ρt}τt=1, ρt ∈ {1, 2, ..., S(r)}
models

H3M M(b) = {ω(b), {M(b)
i }

K(b)

i=1 } M(r) = {ω(r), {M(r)
j }

K(r)

j=1 }
HMM component (of H3M) M(b)

i = {π(b),i,A(b),i, {Θ(b),i
β }S(b)

β=1} M(r)
j = {π(r),j ,A(r),j , {Θ(r),j

ρ }S(r)

ρ=1 }
Gaussian emission Θ

(b),i
β = {µ(b),i

β ,Λ
(b),i
β } Θ

(r),j
ρ = {µ(r),j

ρ ,Λ
(r),j
ρ }

latent variables
assignment variable Z′ Z
hidden state sequence X′ X

H3M mixture weights ω(b) = {ω(b)
i } ω(r) = {ω(r)

j }
HMM initial state probability π(b),i = {π(b),i

β } π(r),j = {π(r),j
ρ }

HMM state transition matrix A(b),i = [a
(b),i
β,β′ ] A(r),j = [a

(r),j
ρ,ρ′ ]

Emission mean and covariance {µ(b),i
β , (Λ

(b),i
β )−1} {µ(r),j

ρ , (Λ
(r),j
ρ )−1}

prior distributions base model (b) reduced model (r)
hyperparameters P(b) = {α(b)

0 , {η(b),i
0 , ε

(b),i
β,0 ,γ

(b),i
β,0 , P(r) = {α(r)

0 , η
(r)
0 , ε

(r)
0 , γ

(r)
0 ,

m
(b),i
β,0 ,W

(b),i
β,0 ,ν

(b),i
β,0 }

S(b),K(b)

β=1,i=1 } m
(r)
0 ,W

(r)
0 , ν

(r)
0 }

p(ω) Dir(ω(b)|α(b)
0 ) Dir(ω(r)|α(r)

0 )

p(π) Dir(π(b),i|η(b),i
0 ) Dir(π(r),j |η(r)

0 )

p(a), a is a row of A Dir(a
(b),i
β |ε(b),iβ,0 ) Dir(a

(r),j
ρ |ε(r)0 )

p(µ|Λ) N (µ
(b),i
β |m(b),i

β,0 , (γ
(b),i
β,0 Λ

(b),i
β )−1) N (µ

(r),j
ρ |m(r)

0 , (γ
(r)
0 Λ

(r),j
ρ )−1)

p(Λ) W(Λ
(b),i
β |W (b),i

β,0 , ν
(b),i
β,0 ) W(Λ

(r),j
ρ |W (r)

0 , ν
(r)
0 )

TABLE II
NOTATIONS USED IN THE DERIVATION OF THE VBHEM-H3M

ALGORITHM.
probability distributions notation short-hand

HMM state sequence (r) p(x = ρ|zi = j,M(r)) p(ρ|M(r)
j ) = π

(r),j
ρ

HMM observation likelihood (r) p(yi|zi = j,M(r)) p(yi|M(r)
j )

Gaussian emission likelihood (r) p(yit|xt = ρ,M(r)
j ) p(yit|Θ

(r),j
ρt )

HMM state sequence (b) p(x′ = β|z′n = i,M(b)) p(β|M(b)
i ) = π

(b),i
β

HMM observation likelihood (b) p(yn|z′n = i,M(b)) p(yn|M(b)
i )

Gaussian emission likelihood (b) p(ynt|x′nt = β,M(b)
i ) p(ynt|Θ(b),i

βt
)

expectations
HMM observation sequence (b) Ey|z′=i,M(b) [·] E

M(b)
i

[·]

expected log-likelihood lower bound variational distribution
E
y|M(b)

i

[log p(y|M(r)
j )] Li,jHMM -

E
M(b)
i

E
y|M(b)

i

[log p(y|M(r)
j )] Lī,jHMM -

E
M(r)
j

E
M(b)
i

E
y|M(b)

i

[log p(y|M(r)
j )] Lī,j̄HMM qi,j(ρ|β)

weight. An observation sequence with length τ is denoted by
y = (y1, y2, ..., yτ ), and depends on a hidden state sequence
x = (x1, x2, ..., xτ ). The observation likelihood for y ∼M is
p(y|M) =

∑
i ωip(y|Mi), where the i-th HMM Mi with S

states is specified by parameters Mi = {πi,Ai, {Θi
β}Sβ=1}.

In detail, πi = [πi1, ..., π
i
S ] is the initial state probability, where

πiβ = p(x1 = β|Mi). Ai = (aiβ,β′)S×S is the state transition
matrix, where aiβ,β′ = p(xt+1 = β′|xt = β,Mi) is the
transition probability from state β to β′. Thus the probability
of a state sequence β = (β1, · · · , βτ ) will be p(x = β|Mi) =
πiβ1

∏τ
t=2 a

i
βt−1,βt

, πiβ. Θi
β is the parameter set of emission

density at state β. Here, we assume a Gaussian distribution,
p(yt|xt = β,Mi) = N (yt|µiβ , (Λi

β)−1) , p(yt|Θi
β), with

mean µiβ and precision matrix Λi
β . Thus, the probability

of an observation y generated by Mi will be p(y|Mi) =∑
x=β p(y,x = β|Mi) =

∑
x=β p(y|x = β,Mi)p(x =

β|Mi), where p(y|x = β,Mi) =
∏τ
t p(yt|Θi

βt
) and the

summation is over all state sequences of length τ .
Considering the H3M with unknown number of components

K and number of states S, and treating them as random
variables, the observation likelihood will be p(y|M) =

∑
K,S p(K,S)p(y|M,K, S), where p(K,S) is a prior of pair

(K,S) and the summation is over all candidate number of
components K ∈ [Kmin,Kmax] and states S ∈ [Smin, Smax],
where we use shorthand [A,B] = {A, · · · , B}.

B. Variational Bayesian Inference

A central task in the application of probabilistic models is
evaluating the posterior distribution p(H|Y ) of the hidden
(latent) variables H given the observed data Y . In a fully
Bayesian framework, any unknown model parameters are
given prior distributions and are absorbed into the set of
latent variables H . When it is infeasible to evaluate the
posterior distribution directly, e.g., it has a highly complex
form, then variational inference can be used to approximate
p(H|Y ) with a variational distribution q(H). Furthermore,
to consider different model structures, the number of mixture
components and hidden states (K,S) can be considered as
latent variables with prior distributions. Hence, we introduce
a variational distribution q(H,K, S) as an approximation of
the true posterior distribution p(H,K, S|Y ).

The VB framework for an H3M is formulated as follows.
The marginal log-likelihood (i.e., model evidence) log p(Y )
is decomposed into a lower-bound and Kullback-Leibler di-
vergence (KLD) term [26] (see derivation in Appendix A),

log p(Y ) = L(q) + KL(q||p)
where we define

L(q) =
∑
K,S

q(K,S)

[
L(K,S)(q) + log

p(K,S)

q(K,S)

]
, (1)

L(K,S)(q) =

∫
q(H|K,S) log

p(Y ,H|K,S)

q(H|K,S)
dH, (2)

KL(q||p) =
∑
K,S

∫
q(H,K, S) log

q(H,K, S)

p(H,K, S|Y )
dH.
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Fig. 1. Graphical model representing the Bayesian H3M. The plate denotes
a set of N i.i.d. observations. yn is one observation sequence, xn is the
state sequence that emits yn, and zn indicates which HMM component yn
and xn are assigned to. The variables outside the plate (e.g., µ) are HMM
parameters ω = {ωj},µ = {µjρ},Λ = {Λjρ},π = {πjρ},A = {Ajρ}.
{α0, η0, ερ,0, γ0,m0,W0, ν0} are the hyperparameters.

Since KL(q||p)) ≥ 0, we have log p(Y ) ≥ L(q), which holds
for any distribution q(H,K, S), and equality occurs when
q(H,K, S) = p(H,K, S|Y ) (i.e. KL(q||p)) = 0). Therefore,
L(q) is a lower bound on log p(Y ), and optimizing L(q) w.r.t
q(H,K, S) will obtain an approximation of the true posterior
distribution p(H,K, S|Y ).

However, if we maximize L(q) w.r.t. q(H|K,S), the results
for different pairs of (K,S) are coupled since they are
conditioned on (K,S). Instead we first optimize each of the
q(H|K,S) individually by optimizing L(K,S)(q). Assuming
that q(H|K,S) =

∏L
l ql(Hl|K,S) and {Hl}l∈[L] is a parti-

tion of H , then the optimal solution q∗l (Hl|K,S) is [26]:
log q∗l (Hl|K,S) = El′ 6=l[log p(Y ,H|K,S)] + const, (3)
El′ 6=l[log p(Y ,H|K,S]

=

∫
(log p(Y ,H|K,S))

∏
l′ 6=l

ql′(Hl′ |K,S)dHl′ .

Model Selection. For a set of candidate models, i.e. differ-
ent pairs of (K,S). We can rewrite (1) as

L(q) =
∑
K,S

q(K,S) log
p(K,S) exp{L(K,S)(q)}

q(K,S)
. (4)

Recognizing (4) as the negative KLD between q(K,S) and the
unnormalized distribution p(K,S) exp{L(K,S)(q)}. The lower
bound L will be maximized when the KLD is minimized when

q∗(K,S) ∝ p(K,S) exp
{
L(K,S)(q)

}
. (5)

Thus, the optimal model structure is found by (K∗, S∗) =
arg max
K,S

q∗(K,S).

IV. VARIATIONAL BAYESIAN HIERARCHICAL EM
ALGORITHM FOR H3MS

In this section, we derive a variational Bayesian (VB) hierar-
chical EM algorithm, which takes as input an H3M with priors
over each parameter and outputs posteriors over the parameters
of an equivalent H3M with fewer number of components
(VBHEM-H3M). Formally, let M(b) = {ω(b)

i ,M(b)
i }K

(b)

i=1

represents a “base” H3M with K(b) components (HMMs)
and S(b) states for each component. The input is the prior
p(M(b)), consisting of priors over each parameter of M(b),
denoted by p(ω(b)), p(µ(b),i

β |Λ(b),i
β ), p(Λ(b),i

β ), p(π(b),i), and
p(a

(b),i
β ), where a(b),i

β is a row of A(b),i, β ∈ [1, S(b)]. Our
goal is to simplify the base model M(b) to a “reduced”

mixture modelM(r) and automatically determine the number
of components K(r) and states S(r) in M(r). Rather than
learning a single model M(r) as in VHEM, VBHEM-H3M
estimates a posterior distribution over the reduced model’s
parameters and structures. The reduced model is denoted by
M(r) = {ω(r)

j ,M(r)
j }K

(r)

j=1 with K(r) components and S(r)

states, where K(b) > K(r) and S(b) ≥ S(r). In the Bayesian
framework, we also assume priors on all unknown parameters
in M(r), denoted by p(K(r), S(r)), p(ω(r)), p(µ(r),j

ρ |Λ(r),j
ρ ),

p(Λ
(r),j
ρ ), p(π(r),j), and p(a

(r),j
ρ ), where a(r),j

ρ is a row of
A(r),j , ρ ∈ [1, S(r)] . Note that we will always use superscripts
(b) and (r) to distinguish the parameters for base and reduced
model, i and j to index the mixture component in the base and
reduced models, and β and ρ to index the hidden states in the
base and reduced models, respectively. Table I and II summa-
rize the notation used in the derivation, including the variable
names, latent variables, model names, prior distributions and
expectations and expected log-likelihood.
A. Framework

One possible solution to estimateM(r) is to directly sample
from M(b) and then estimate M(r) with any needed number
of components and states by the EM algorithm. However,
this would be inefficient when handling large-scale high-
dimensional data. Also, the number of components and states
must be set by hand, which introduces experimenter bias.
Instead, we take our inspiration from VBmerge [45], which
reduces a Gaussian mixture model (GMM) by directly clus-
tering the Gaussian components in the Bayesian framework,
and the number of components is simultaneously determined.

We define a set of N sequence samples Y =
{y1,y2, ...,yN}, where yn = (yn,1, yn,2, ..., yn,τ ) is a se-
quence, and yn,t ∈ Rd is the observation at time t. The
generative process of the data set Y is:

1) Sample a base model M(b) ∼ p(M(b));
2) Sample (i.i.d.) data sequences yn ∼M(b), n = [1, N ].

Thus, the marginal likelihood over the data according to the
base model prior p(M(b)) is

p′(Y ) =

∫
p(Y |M(b))p(M(b))dM(b) (6)

A similar generative process also exists for the reduced model,
and thus the marginal likelihood of the data according to the
reduced model prior p(M(r)) is

p(Y ) =

∫
p(Y |M(r))p(M(r))dM(r). (7)

A typical VB method constructs a lower bound of the
evidence log p(Y ), under the model being learned, which in
our case is the reduced modelM(r). However, in our scenario,
we do not have direct access to the data Y , but instead have
access to the model M(b) that generates the data. Thus, our
starting point is the expected evidence, where the “evidence”
Y ∼ p′ is generated from the input modelM(b), and evaluated
according to the reduced model M(r),

EY ∼p′ log p(Y )

=

∫ [ ∫
p(Y |M(b))p(M(b))dM(b)

]
log p(Y )dY

= EM(b)EY |M(b) log p(Y ), (8)
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where the exchange of the integral is guaranteed by Fubini’s
theorem. Substituting the lower bound in (1) of the marginal
log-likelihood into (8), we have

EM(b)EY |M(b) log p(Y ) ≥
∑
K(r)

∑
S(r)

q(K(r), S(r))·[
EY [L(K(r),S(r))(q)] + log

p(K(r), S(r))

q(K(r), S(r))

]
= L̄(q), (9)

where the inequality holds due to the non-negativity of prob-
ability density functions. Note that the expectation EY [·] =
EM(b)EY |M(b) [·] only influences L(K(r),S(r))(q) on the RHS
of (9). The set of hidden variables is

H =
{
Z, {ω(r),j ,π(r),j ,A(r),j ,µ(r),j ,Λ(r),j}K

(r)

j=1

}
.

Looking at each hidden variable Hl in H and using (3), the
optimal solution for q∗l (Hl|K(r), S(r)) is

log q∗l (Hl|K(r), S(r)) ∝ El′ 6=l[EY log p(Y ,H|K(r), S(r))],
(10)

and using (5), the optimal q∗(K(r), S(r)) is
log q∗(K(r), S(r)) ∝ log p(K(r), S(r)) + EY [L(K(r),S(r))(q)].

(11)
From (10-11), our algorithm contains two steps:

Step 1: For each candidate pair (K(r), S(r)), calculate each
optimal solution q∗l (Hl|K(r), S(r)).

Step 2: Find the optimal model structure through
(K(r),∗, S(r),∗) = arg max(K(r),S(r)) log q∗(K(r), S(r)).

However, the expectation in (10) cannot be calculated in
the closed-form. We will show how to approximate that in the
following sections.

B. Priors

In this section, we introduce the conjugate prior distributions
over the parameters of the H3M M with K components and
S states (see Fig. 1),

p(M|K,S) = p(ω|K,S)

K∏
i=1

p(Mi|K,S)

= p(ω|K,S)
∏
i

p(πi|K,S)p(Ai|K,S)p(µi,Λi|K,S).

Here, we assume that (K,S) are fixed and do not explicitly
condition on them to remove clutter. The priors for M(b) are

p(ω(b)) = Dir(ω(b)|α(b)
0 ),

p(π(b),i) = Dir(π(b),i|η(b),i
0 ),

p(A(b),i) =
∏
β

p(a
(b),i
β ) =

∏
β

Dir(a
(b),i
β |ε(b),i

β,0 ),

p(µ(b),i,Λ(b),i) =
∏
β

p(µ
(b),i
β ,Λ

(b),i
β ),

p(µ
(b),i
β ,Λ

(b),i
β ) = N (µ

(b),i
β |m(b),i

β,0 , (γ
(b),i
β,0 Λ

(b),i
β )−1)

· W(Λ
(b),i
β |W (b),i

β,0 , ν
(b),i
β,0 ),

where Dir(·|α) is a Dirichlet distribution with concentration
vector α, N (·|µ,Σ) is a Gaussian distribution with mean µ
and covariance Σ, and W(·|W , ν) is a Wishart distribution
with scale matrix W and degrees-of-freedom ν (see Appendix
B for the details of each distribution). The hyperparameters of

Algorithm 1 Optimizing the Variational Distribution

Input: hyperparameter sets P(b) and P(r), and the number of
virtual samples N , clusters K(r), and states S(r).
Output: variational distributions q∗(Z), q∗(ω(r)),
q∗(π(r),j), q∗(A(r),j), q∗(µ(r),j ,Λ(r),j), j ∈ [1,K(r)].

1: Pre-process base model using (16)-(21).
2: repeat
3: VBH E-step : compute responsibilities ẑi,j using (22).
4: VBH M-step: update variational parameters α(r),

η(r),j , ε(r),j , m(r),j , λ(r),j , Λ(r),j and ν(r),j for each
j using (24)-(25) .

5: until convergence of EY [L(K(r),S(r))(q
∗)].

the base model are summarized as the set P(b)={α(b)
0 ,

{η(b),i
0 , ε

(b),i
β,0 ,γ

(b),i
β,0 ,m

(b),i
β,0 ,W

(b),i
β,0 ,ν

(b),i
β,0 }

S(b),K(b)

β=1,i=1 }.
The priors for reduced model M(r) share the same prob-

abilities form as p(M(b)) but with simpler hyperparame-
ters. We set α(r),j

0 ≡α(r)
0 (scalar), η(r),j

0 ≡η(r)
0 , ε(r),j

ρ,0 ≡ε
(r)
0 ,

m
(r),j
ρ,0 ≡m

(r)
0 , γ(r),j

ρ,0 ≡γ
(r)
0 , W (r),j

ρ,0 ≡W
(r)
0 , and ν

(r),j
ρ,0 ≡ν

(r)
0

which are common for all components j and states ρ in the
reduced model. Similarly, we summary the hyperparameters
as the set P(r) = {α(r)

0 , η
(r)
0 , ε

(r)
0 , γ

(r)
0 ,m

(r)
0 ,W

(r)
0 , ν

(r)
0 }.

For the priors over the number of components K(r) and
states S(r), we assume a Poisson distribution on K(r) and a
uniform distribution on S(r),

p(K(r) = K,S(r) = S) =
λK0 e

−λ0

K!

1

Smax − Smin + 1
.

This prior allows us to express a preference for different
models, through the hyperparameter λ0.

C. Optimizing the Variational Distribution

We next explain how to utilize the prior distributions
over the parameters of base model M(b) and optimize the
variational distribution. We assume grouped observations Y =

{Y1, ...,YK(b)} as in [50]. The subset Yi has size Ni = Nω
(b)
i ,

and consists of all yn that are generated by M(b)
i . Similarly

the grouped assignments are Z = {z1, ...,zK(b)}, and zi is
a 1-of-K(r) binary vector where each element is an indicator
variable zij , with zij = 1 if the observations Yi are assigned
to the j-th reduced model M(r)

j , and zij = 0 otherwise.
Revisiting (10), the joint distribution of random variables

Y and H condition on K(r) and S(r) is
log p(Y ,H|K(r), S(r)) (12)

= log p(Y |Z, {M(r)
j },K

(r), S(r)) + log p(ω(r)|K(r))

+ log p(Z|ω(r),K(r)) +
∑
j

log p(M(r)
j |K

(r), S(r)).

In the following, we consider a fixed pair (K(r), S(r)), and
do not explicitly write the dependence to reduce clutter. Note
that taking the expectation EY [·] = EM(b)EY |M(b) [·] w.r.t.
(12) only affects the first term in the RHS of (12), i.e., (see
Appendix C for the detailed derivation) ,

EY log p(Y |Z, {M(r)
j }) (13)

=
∑
i,j

zijNEω(b) [ω
(b)
i ]EM(b)

i
E
y|M(b)

i
[log p(y|M(r)

j )].
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Then, we consider a variational distribution which factorizes
between the latent variables and the parameters so that

q(Z, ω(r),π(r),A(r),µ(r),Λ(r))

= q(Z)q(ω(r),π(r),A(r),µ(r),Λ(r)).

The corresponding sequential update equations for these fac-
tors can be derived from (10). In particular, the functional
form of the factors q(Z) and q(ω(r),π(r),A(r),µ(r),Λ(r))
will be determined automatically by optimization of the vari-
ational distribution. The whole algorithm for optimizing the
variational distribution is summarized in Alg. 1. We explain
each step in the following sections.

1) Pre-processing the Input Prior over HMMs: In our
algorithm, the input is the prior of base model, and in (13) the
expectation w.r.t. the base model results in a new equivalent
base model. In detail, for the expected log-likelihood, we have

EM(b)
i
E
y|M(b)

i
[log p(y|M(r)

j )] ≥ Lī,jHMM ,

where
Lī,jHMM =

∑
β

E{π(b),i,A(b),i}[π
(b),i
β ]

∑
ρ

qi,j(ρ|β)· (14){
log

π(r),j
ρ

qi,j(ρ|β) +
∑
t EΘ

(b),i
βt

E
y|Θ(b),i

βt

[
logN (y|Θ(r)

j,ρt
)
]}

where we introduce a variational distribution qi,j(ρ|β) on
the state sequence ρ, which depends on a state sequence β
from M(b)

i . qi,j(ρ|β) represents the probability of the state
sequence ρ in HMMM(r)

j , whenM(r)
j is used to explain the

observation sequence in Yi that evolved through state sequence
β. The summation over state sequences β and ρ in (14) can
be efficiently calculated using a recursive algorithm from [51].

For all the expectations in (13) and (14),

Eω(b) [ω
(b)
i ] = ω̃

(b)
i ,

E{π(b),i,A(b),i}[π
(b),i
β ] ≥ π̃(b),i

β1
·
τ∏
t=2

ã
(b),i
βt−1βt

, (15)

E
Θ

(b),i
βt

E
y|Θ(b),i

βt

logN (y|Θ(r),j
ρt )

= −1

2
(µ̃

(b),i
βt
− µ(r),j

ρt )TΛ(r),j
ρt (µ̃

(b),i
βt
− µ(r),j

ρt )

− 1

2
Tr
(
Λ(r),j
ρt [Λ̃

(b),i
βt

]−1
)

+
1

2
log |Λ(r),j

ρt | −
1

2
log(2π)

and we have defined (see Appendix B for results),

ω̃
(b)
i = Eω(b) [ω

(b)
i ], (16)

π̃
(b),i
β1

= exp
{
Eπ(b),i [log π

(b),i
β1

]
}
, (17)

ã
(b),i
βt−1βt

= exp
{
E
a

(b),i
βt−1

[log a
(b),i
βt−1βt

]
}
, (18)

µ̃
(b),i
βt

= E{µ(b),i
βt
}[µ

(b),i
βt

], (19)

[Λ̃
(b),i
βt

]−1 = c
(b),i
βt

E
Λ

(b),i
βt

[(Λ
(b),i
βt

)−1], (20)

c
(b),i
βt

=
γ

(b),i
βt

+ 1

γ
(b),i
βt

. (21)

Thus, the pre-processed base model is an equivalent model
with parameters as in (16-20).

Effect of Input Priors: We have stated that the main
motivation for introducing an expectation EY [·] is to directly
cluster the input HMMs without requiring the original data

(through EY |M(b) [·]) . A common way to estimate an input
HMM is using VBHMM [39, 52], which computes an ap-
proximate posterior over the HMM parameters given the data.
When clustering HMMs learned with VBHMM, we can take
advantage of the computed posteriors (through EM(b) [·]) by
using the output posteriors of VBHMM as the priors p(M(b)

i )
for the input HMMs for clustering. This should give more
robust results than just using the point-estimate from MLE or
MAP estimation, since the model uncertainty is accounted for.

Specifically, we compare VHEM using point-estimates as
input and VBHEM using prior distributions as input. Consider
VHEM using the expectation of the base model prior as the
point-estimate for the input HMM, whereas VBHEM uses the
prior distribution for each base model as input. Both VHEM
and VBHEM use the same weight ω̃(b)

i and mean µ̃(b),i
βt

for the
input HMM. However, the initial probabilities and transition
probabilities are different, but still order-preserving, and the
effect of VBHEM is to “saturate” the initial state probability
distribution, by increasing the probability of higher probability
states and decreasing the probability of low probability states
(see Appendix F). Thus, VBHEM has a tendency to keep the
the states with high probability, especially when the sequence
length τ is long. Finally, the covariance matrix (Λ̃

(b),i
βt

)−1 ≥
(Λ

(b),i
βt

)−1 because the coefficient c(b),iβt
≥ 1. Thus, the HMM

with the updated emission probability in (19-21) incorporates
the model uncertainty through generating more diverse data
on each state. The benefit of modeling the input uncertainty
is validated in the experiments in Sec V-A.

2) Variational E-Step: In the variational E-Step, we derive
the optimal variational distribution of the assignment variables
Z (i.e., calculate the responsibilities). The conditional distri-
bution of Z, given the mixing coefficients ω(r), is

p(Z|ω(r)) =
∏
i

∏
j

[
ω

(r)
j

]Nizij
.

Making use of the result (10), the optimized q(Z) is

log q∗(Z) ∝ E
ω(r),{M(r)

j }
EY log p(Y ,Z,ω(r), {M(r)

j }).
After normalization, we have (see App. D for derivations):

q∗(Z) =
∏
i

∏
j

[ẑij ]
zij ,

ẑij = E[zij ] =
(ω̃

(r)
j )Ñi exp (ÑiL̂ī,j̄HMM )∑

j′
(ω̃

(r)
j′ )Ñi exp (ÑiL̂ī,j̄

′

HMM )
, (22)

where ω̃(r)
j = exp (Eω(r) [logω

(r)
j ]) and Ñi = ω̃

(b)
i N . L̂ī,j̄HMM

is the optimized expected lower bound (w.r.t model j),

L̂ī,j̄HMM = max
qi,j
Lī,j̄HMM , L

ī,j̄
HMM = EM(r)

j
Lī,jHMM .

In (22), the quantities ẑij are the responsibilities. Note that the
optimal solution q∗(Z) depends on moments evaluated w.r.t
the distributions of other variables, and thus the variational
update equations are coupled and must be solved iteratively.

3) Variational M-step: In the variational M-step, we up-
date the variational parameters α(r), η(r),j , ε(r),j , m(r),j ,
λ(r),j , Λ(r),j and ν(r),j for each component (i.e., compute
the optimized distributions of parameters ω(r), π(r),j , A(r),j ,
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Algorithm 2 VBHEM-H3M

Input: hyperparameter sets P(b) and P(r), the number of
virtual samples N , candidates for number of clusters and states
K(r) ∈ [K

(r)
min,K

(r)
max] and S(r) ∈ [S

(r)
min, S

(r)
max].

Output: reduced H3M M = {ωj ,Mj}Kj=1.
1: for each pair (K(r), S(r)) do
2: repeat
3: Run Alg.1 and obtain EY [L(K(r),S(r))(q

∗)].
4: Update hyperparameters α

(r)
0 , η

(r)
0 , ε

(r)
ρ,0, m

(r)
0 ,

W
(r)
0 , γ

(r)
0 , ν

(r)
0 using gradient ascent on

EY [L(K(r),S(r))(q
∗)].

5: until convergence
6: end for
7: Select the reduced H3M M(r) = {ωj ,Mj}K

(r)∗

j=1 with
maximum log q∗(K(r), S(r)).

8: Prune out component j with low weight E[ω
(r)
j ], and state

ρ with low probability E[π
(r),j
ρ ] +

∑
ρ′ E[a

(r),j
ρ′,ρ ].

µ(r),j ,Λ(r),j). Revisiting (10), we have
log q∗(ω(r),π(r),A(r),µ(r),Λ(r))

∝ EZEY log p(Y ,Z,ω(r), {M(r)
j }). (23)

Decomposing the RHS of (23), the optimized variational
posterior factorizes as
q∗(ω(r),π(r),A(r),µ(r),Λ(r))

= q∗(ω(r))
∏
j

q∗(π(r),j)q∗(A(r),j)q∗(µ(r),j ,Λ(r),j),

and the form of each q distribution is automatically determined
via the expectation in (23) (see Appendix D for the details),

q∗(ω(r)) = Dir(ω(r)|α(r)),

q∗(π(r),j) = Dir(π(r),j |η(r),j),

q∗(a(r),j
ρ ) = Dir(a(r),j

ρ |ε(r),j
ρ ),

where parameter vectors α(r), η(r),j and ε(r),j
ρ have elements

α
(r)
j = α

(r)
0 +N j , N j =

∑K(b)

i=1 ẑijÑi

η
(r),j
ρ1 = η

(r)
0 +N j

ρ1 , N j
ρ1 =

∑K(b)

i=1 ẑijÑiν̂
i,j
1 (ρ1),

ε
(r),j
ρ,ρ′ = ε

(r)
ρ,0 +N j

ρ,ρ′ , N j
ρ,ρ′ =

∑K(b)

i=1 ẑijÑiξ̂
i,j(ρ, ρ′).

(24)

Here ν̂i,j1 (ρ1) and ξ̂i,j(ρ, ρ′) have the same form as in VHEM
[25]. In each iteration, we update N j (the number of samples
assigned to j-th component M(r)

j ), N j
ρ1 (the number of

samples which have been assigned to M(r)
j and have initial

state ρ1), and N j
ρ,ρ′ (the number of samples which have been

assigned to M(r)
j and have transition from state ρ to ρ′).

Consider the expectation of ω(r)
j w.r.t. a Dirichlet distribu-

tion, E[ω
(r)
j ] =

α
(r)
0 +Nj

K(r)α
(r)
0 +N

. If a component for which N j ' 0

and α(r)
j ' α

(r)
0 and the prior is broad so that α(r)

0 → 0, then
E[ω

(r)
j ] → 0 and j-th component plays no role in the model

and will be pruned out automatically. Hyperparameters η(r),j
ρ1

and ε(r),jρ,ρ′ can be analyzed in a similar way, and the states with
near 0 initial probability E[π

(r),j
ρ1 ] and no transitions from other

states
∑
ρ E[a

(r),j
ρ,ρ′ ] will have no role, and can be pruned.

Finally, using the product rule, the variational posterior
distribution q(µ(r),j

ρ ,Λ
(r),j
ρ ) can be written as

q∗(µ(r),j
ρ ,Λ(r),j

ρ ) = q(µ(r),j
ρ |Λ(r),j

ρ )q(Λ(r),j
ρ )

= N (µ(r),j
ρ |m(r),j

ρ , (γ(r),j
ρ Λ(r),j

ρ )−1)W(Λ(r),j
ρ |W (r),j

ρ , ν(r),j
ρ ),

i.e., a Gaussian-Wishart distribution, where we have defined
γ(r),j
ρ = γ

(r)
0 +N j

ρ , ν(r),j
ρ = ν

(r)
0 +N j

ρ + 1, (25)

m(r),j
ρ =

1

γ
(r),j
ρ

(γ
(r)
0 m

(r)
0 +N j

ρ ȳ
j
ρ),

(W (r),j
ρ )−1 = (W

(r)
0 )−1 +N j

ρS
j
ρ +N j

ρC
j
ρ

+
γ

(r)
0 N j

ρ

γ
(r)
0 +N j

ρ

(ȳjρ −m
(r)
0 )(ȳjρ −m

(r)
0 )T .

The sufficient synthetic statistics in (25) are defined as:

N j
ρ =

∑
i

ẑijÑi
∑
β

ν̂i,j(ρ, β),

ȳjρ =
1

N j
ρ

∑
i

ẑijÑi
∑
β

ν̂i,j(ρ, β)µ̃
(b),i
β ,

Sjρ =
1

N j
ρ

∑
i

ẑijÑi
∑
β

ν̂i,j(ρ, β)(µ̃
(b),i
β − ȳjρ)(µ̃

(b),i
β − ȳjρ)T ,

Cj
ρ =

1

N j
ρ

∑
i

ẑijÑi
∑
β

ν̂i,j(ρ, β)(Λ̃
(b),i
β )−1, (26)

where ν̂i,j(ρ, β) has the same form as that in VHEM [25],
and N j

ρ is the expected number of samples that have been
assigned to M(r)

j with state ρ during the whole time.

From (25), as more samples are assigned to M(r)
j with

state ρ (i.e., N j
ρ increases), the γ

(r),j
ρ will increase and the

covariance of posterior of µ(r),j
ρ will decrease; At the same

time, the degree of freedom ν
(r),j
ρ will increase, which leads

to increasing precision of the posterior of µ(r),j
ρ . The update

equation of m(r),j
ρ is a mix between the prior and the soft

sample mean ȳjρ. Similarly, the update for W (r),j
ρ is the mix

between the prior and the soft sample covariance Sjρ and mean
base covariance Cj

ρ . Thus the optimization of the variational
posterior involves cycling between two stages analogous to the
E and M steps of EM algorithm (see Alg. 1).

D. Comparison with VHEM-H3M

We compare our VBHEM-H3M algorithm with the VHEM-
H3M algorithm of [25] in this section. Firstly, our method
VBHEM uses a Bayesian framework, compared to VHEM,
which is not Bayesian. We provide priors for all the unknown
parameters in the reduced model M(r) and estimate an ap-
proximate posterior distribution of M(r), rather than a point-
estimate for each parameter as in VHEM.

Secondly, in addition to the prior on the reduced model
M(r), which is common for traditional Bayesian inference,
we also assume priors on the input base model M(b), while
VHEM uses the point-estimate of the parameters of the input
HMMs. When we assume a delta function prior forM(b)

i , then
VBHEM is a Bayesian version of VHEM, where the point-
estimate base models are inputs and Bayesian priors are placed
on the reduced models. In this case, equality holds in (15) and
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(a) Synthetic for K (b) Synthetic for S (c) MoCap Data (d) Hand-Writing Data (e) Music Data
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Fig. 2. Model selection results (K(r)∗, S(r)∗) from VH+AIC, VH+BIC, SC+AIC, SC+BIC, DIC and VBHEM on different datasets: (a), (b) Synthetic data,
(c) Mocap data; (d) Hand-writing data; (e) Music data. The penalized log-likelihood scores are plotted for AIC, BIC, and DIC methods, and thus larger scores
indicate better model fits (consistent with VBHEM). The scores for each method are normalized between [0,1] for better visualization. For VBHEM, the
model selection curve for S in (b) uses (27) with K(r) = K(r)∗, and the model selection curve for K is based on (28).

c
(b),i
β = 1, and thus the expectations in (17 -20) yield back the

point-estimates.
Thirdly, a coefficient c(b),iβ is introduced in VBHEM in (20).

It is worth emphasizing that c(b),iβ > 1, which makes Cj
ρ

in (26) “larger” (in the positive definite sense), i.e., variance
(Λ

(r),j
ρ )−1 ∝ (W

(r),j
ρ )−1, increases, compared to VHEM

where c
(b),i
β = 1. Note that this will help to mitigate the

problem that variational inference generally underestimates the
variance of the posterior density [35].

Fourthly, VBHEM enlarges (reduces) the responsibilities of
the components with large (small) weight. The assignment
variable ẑij in VHEM is

ẑij =
ω

(r)
j exp (NiLi,jHMM )∑
j′ ω

(r)
j′ exp (NiLi,j

′

HMM )
,

in contrast to (22) for VBHEM. For VBHEM, the power of
ω̃

(r)
j in (22) increases the gap among the weights, e.g., the ratio

between the maximum and minimum of ω̃(r), b =
maxj ω̃

(r)
j

minj ω̃
(r)
j

>

1, is smaller than bÑi , thus the probability of component with
largest ω̃(r)

j will increase, and vice versa for the smallest ω̃(r)
j .

Fifthly, as discussed in the next section, VBHEM can
simultaneously perform model selection, while VHEM cannot.

E. Optimizing the Hyperparameters
Given a pair of (K(r), S(r)), our model contains hyper-

parameters P(r) = {α(r)
0 , η

(r)
0 , ε

(r)
ρ,0,m

(r)
0 ,W

(r)
0 , γ(r)

0 , ν(r)
0 }

(now assumed λ0 is known and determined according to data).
One approach for estimating the hyperparameters is to max-
imize the marginal log-likelihood of the data (i.e., empirical
Bayes, type-II maximum likelihood), or a lower bound when
the marginal log-likelihood is intractable. Applying this to our
model, we maximize the expected lower bound L̄(q), and
proceed by firstly maximizing EY [L(K(r),S(r))(q

∗)] under a
fixed model structure (K(r), S(r)) (see Appendix E for details
of EY [L(K(r),S(r))(q

∗)]). For the continuous parameters (e.g.,
α0), EY [L(K(r),S(r))(q

∗)] is maximized using gradient ascent.
For the discrete parameters K(r) and S(r), we train on a range
of possible K(r) and S(r), and select the pair that yields the
highest L̄(q). Recall from (11), we have

log q∗(K(r), S(r)) ∝ log p(K(r)) + log p(S(r)|K(r))

+ EY [L(K(r),S(r))(q
∗)].

Thus, the model selection can be done by:
1) For each candidate K(r), select the optimal

S(r)∗(K(r)) = arg max
S(r)

log p(S(r)|K(r)) + EY [L(K(r),S(r))(q
∗)]

(27)

2) Select the optimal
K(r)∗ = arg max

K(r)

log q∗
(
K(r), S(r)∗(K(r))

)
. (28)

The entire VBHEM algorithm is summarized in Alg. 2.

V. EXPERIMENTS

We present experiment results on synthetic data and real
data to demonstrate that our proposed VBHEM-H3M1 can
be effectively applied in several domains. The experiments
on the synthetic data show the performance of VBHEM in
various aspects, including estimating the parameters, automat-
ically choosing the number of clusters K and the number
of states S, sensitivity analysis of VBHEM to (K,S). The
experiments on real data include a motion capture (MoCap)
dataset2, Eye Movement dataset [5], Hand-writing dataset3

and Music dataset [53], showing that VBHEM correctly finds
the number of clusters K. In the experiments, we remove
components/states with weights lower than 10−3 (for all the
cluster centers from all the compared methods). Finally, we
compare our VBHEM-H3M using marginal likelihood (de-
noted as VBHEM), with VBHEM using DIC [54] (denoted
as DIC), VHEM [25] with AIC [31] and BIC [32] (denoted
as VH+AIC, and VH+BIC), PPK-SC [27] with AIC and BIC
(denoted as SC+AIC, and SC+BIC) and CCFD algorithm [47]
(see Appendix G-A for details of each compared method).
A. Synthetic Data

a) Experiment 1: We first consider a 2-dimensional
case of a deceptively simple “toy” problem, which is also
considered in [23, 55]. The ground truth is a 2D H3M with 2
components (HMMs), and each with 2 states. The transition
matrices are

A(1) =

[
0.6 0.4
0.4 0.6

]
,A(2) =

[
0.4 0.6
0.6 0.4

]
. (29)

The two HMMs share the same 2D Gaussian emis-
sion densities N (y|µ(i)

s ,Σ
(i)
s ), s=1, 2, i=1, 2, where means

µ(i)=[µ
(i)
1 ,µ

(i)
2 ]=

[
0 3
0 3

]
, and variances Σ(i)

1 =Σ
(i)
2 =

[
1 0
0 1

]
.

The weights and initial probabilities are all uniform.
The synthetic experiment proceeds as follows: (1) generate

20 sample sets from each HMM, where each sample set
contains 25 sequences with length τ = 50 [56]; (2) add
noise e ∼ N (0, 0.1 · I2) to each observation; (3) estimate
the posteriors over HMM parameters for each noisy sample
set via the EMHMM toolbox [4]4, resulting in 20 HMMs

1source code is released at https://doi.org/10.5281/zenodo.4468501
2http://mocap.cs.cmu.edu/
3https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
4available at http://visal.cs.cityu.edu.hk/research/emhmm/
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TABLE III
EXPERIMENT RESULTS FROM CLUSTERING SYNTHETIC DATA, AVERAGED OVER 1000 TRIALS. RI, ACC, OVER-EST, UNDER-EST ARE RAND-INDEX,

ACCURACY, OVERESTIMATE AND UNDERESTIMATE, RESPECTIVELY. THE NUMBERS IN PARENTHESES ARE THE STANDARD DEVIATIONS.

Ri ↑ Purity ↑ Acc % ↑ Over-est % ↓ Under-est % ↓
K S K S K S

VHEM 0.827(.01) 0.832(.01) 65.9(.02) 20.0(.00) 0.6(.01) 60.0(.00) 33.5(.01) 20.0(.00)
VH+AIC 1.000(.00) 1.000(.00) 100.0(.00) 90.5(.29) 0.0(.00) 9.5(.29) 0.0(.00) 0.0(.00)
VH+BIC 1.000(.00) 1.000(.00) 100.0(.00) 98.0(.14) 0.0(.00) 2.0(.14) 0.0(.00) 0.0(.00)
SC+AIC 0.508(.10) 0.520(.10) 4.0(.20) 100.0(.00) 0.0(.00) 0.0(.00) 96.0(.20) 0.0(.00)
SC+BIC 0.487(.00) 0.500(.00) 0.0(.00) 100.0(.00) 0.0(.00) 0.0(.00) 100.0(.00) 0.0(.00)

DIC 0.999(.02) 1.000(.00) 99.5(.07) 99.5(.07) 0.5(.07) 0.5(.07) 0.0(.00) 0.0(.00)
CCFD 0.990(.10) 0.990(.10) 99.0(.10) - 0.0(.00) - 1.0(.10) -

VBHEM (ours) 1.000(.00) 1.000(.00) 100.0(.00) 100.0(.00) 0.0(.00) 0.0(.00) 0.0(.00) 0.0(.00)
VBHEM

(γ(r)
0 , ν

(r)
0 →∞) 0.487(.00) 0.500(.00) 0.0(.00) 0.0(.00) 0.0(.00) 0.0(.00) 100(.00) 100(.00)

TABLE IV
EXPERIMENT RESULTS FROM CLUSTERING SYNTHETIC DATA USING
VBHEM FOR DIFFERENT PAIRS OF (K,S), AVERAGED OVER 1000

TRIALS.

(K,S) Ri ↑ Purity ↑ Acc % ↑
K S

VHEM
(3,3) 0.909(.00) 0.899(.00) 79.5(.01) 17.4(.03)
(3,5) 0.897(.01) 0.899(.00) 51.5(.20) 14.5(.02)
(5,3) 0.846(.01) 0.784(.01) 27.0(.14) 13.2(.01)

VH+AIC
(3,3) 0.977(.07) 0.967(.10) 90.5(.29) 81.7(.37)
(3,5) 0.964(.03) 1.000(.00) 30.2(.46) 41.3(.30)
(5,3) 0.976(.02) 0.999(.00) 15.9(.37) 56.9(.41)

VH+BIC
(3,3) 0.977(.07) 0.967(.10) 90.5(.29) 81.7(.37)
(3,5) 0.976(.02) 0.998(.01) 35.4(.48) 58.2(.31)
(5,3) 0.970(.03) 0.983(.06) 15.9(.37) 62.6(.39)

SC+AIC
(3,3) 0.986(.02) 1.000(.00) 75.3(.43) 95.0(.22)
(3,5) 0.995(.01) 1.000(.00) 84.9(.36) 60.0(.49)
(5,3) 0.963(.02) 0.988(.02) 15.4(.36) 85.9(.35)

SC+BIC
(3,3) 0.986(.02) 1.000(.00) 75.3(.44) 95.0(.22)
(3,5) 0.987(.03) 0.997(.01) 80.0(.40) 55.0(.50)
(5,3) 0.964(.02) 0.982(.03) 25.4(.44) 90.5(.29)

DIC
(3,3) 0.999(.00) 1.000(.00) 95.0(.22) 98.8(.05)
(3,5) 1.000(.00) 1.000(.00) 100.0(.00) 53.3(.37)
(5,3) 0.910(.11) 0.800(.23) 70.9(.45) 32.2(.32)

CCFD
(3,3) 0.989(.05) 0.983(.07) 95.6(.21) -
(3,5) 0.955(.09) 0.933(.13) 80.2(.40) -
(5,3) 0.975(.04) 0.940(.10) 70.2(.46) -

VBHEM
(3,3) 1.000(.00) 1.000(.00) 100.0(.00) 100.0(.00)
(3,5) 1.000(.00) 1.000(.00) 100.0(.00) 96.0(.16)

(ours) (5,3) 0.996(.02) 0.990(.04) 95.6(.21) 92.3(.27)

(K(b) = 2 × 20, S(b) = 2); (4) use these posteriors as
the input HMMs, and run VBHEM with K(r) ∈ [1, 6] and
S(r) ∈ [1, 5] to automatically determine the model structure.
We run steps (1-4) 1000 times with VBHEM with different
random initializations. We set N = 100×K(b), and λ0 = 1.
For comparison we also run steps (1-3) with VHEM, PPK-SC
and CCFD for 1000 trials. Note that VHEM clusters HMMs
for each (K(r), S(r)) pair separately, and likewise for PPK-SC.
For VHEM and PPK-SC, we compute AIC and BIC (denoted
as VH+AIC, VH+BIC and SC+AIC, SC+BIC) to select the
model structure among all K(r) and S(r) combinations with
smallest AIC or BIC. We evaluate the methods using five
criteria: the accuracy of selecting the correct K or S, the
percentage of over-estimating K or S, the percentage of under-
estimating K or S, the Rand-index (Ri) [57], which measures
the correctness of the computed clustering against the ground-
truth clustering, and the Purity [58], which measures the extent
to which clusters contain a single class.

The average results over 1000 trials are summarized in Table
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Fig. 3. The decision graph in CCFD algorithm for (a) Synthetic data (K = 2),
(b) MoCap data set (K = 1), (c) Hand-writing data set (K = 10), (d) Music
data set (K = 32).

III. Our VBHEM-H3M is the most consistent (100% accuracy)
in selecting the correct number of components K = 2 and
number of states S = 2, as compared to the other methods.
Furthermore, VBHEM obtains perfect Rand-index (Ri) of 1
and perfect Purity of 1, and thus finds the correct clustering
consistently. For VHEM, note that we also pruned out the
components and states with no samples assigned. VHEM has
65.9% accuracy in selecting the true number of components
K. VHEM overestimates the number of states S in 60.0% of
the trials, i.e., the maximum-likelihood-based VHEM is likely
to over-fit the emission model. The over-fitting problem is
mitigated using Bayesian methods, i.e., VBHEM, or by adding
complexity penalization terms, such as AIC and BIC. Using
complexity terms, VH+AIC and VH+BIC, are slightly less
accurate than VBHEM in estimating S.

Spectral clustering (SC+AIC, SC+BIC) performed worst in
selecting K, resulting in lower Rand-index and Purity, but was
perfect at selecting S. Since SC clusters the HMMs learned
with different states numbers, it can perfectly select S possibly
because the input HMMs under that S are learned well. Thus,
SC-AIC and SC+BIC cannot obtain the true K are because
the AIC penalty is too heavy for SC to select K, and the
BIC penalty is even worse. DIC performs well at selecting
the number of components and states, but slightly worse than
VBHEM. Note that DIC takes advantage of the good posterior
estimate of the reduced model from VBHEM. CCFD also
works well when selecting K (99% accuracy), and shows
good clustering performance with Rand-index 0.990 and Purity
0.990. The decision graph shows CCFD can successfully find
two cluster centers (see Fig. 3a).
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TABLE V
EXPERIMENT RESULTS FROM CLUSTERING MOCAP DATA SET,

AVERAGED OVER 20 TRIALS.

Ri ↑ Purity↑ Acc↑ Over-est↓ Under-est↓
K %

VHEM 0.823(.00) 0.534(.01) 14(.01) 43(.00) 43(.01)
VH+AIC 0.827(.01) 0.502(.04) 0(.00) 100(.00) 0(.00)
VH+BIC 0.827(.01) 0.502(.04) 0(.00) 100(.00) 0(.00)

VH/τ+AIC 0.827(.01) 0.502(.04) 0(.00) 100(.00) 0(.00)
VH/τ+BIC 0.827(.01) 0.502(.04) 0(.00) 100(.00) 0(.00)

SC+AIC 0.795(.01) 0.349(.03) 0(.00) 100(.00) 0(.00)
SC+BIC 0.794(.01) 0.348(.03) 0(.00) 100(.00) 0(.00)

SC/τ+AIC 0.794(.01) 0.347(.03) 0(.00) 100(.00) 0(.00)
SC/τ+BIC 0.794(.01) 0.347(.03) 0(.00) 100(.00) 0(.00)

DIC 0.993(.01) 0.991(.03) 40(.49) 55(.50) 5(.22)
DIC/τ 0.898(.04) 0.688(.08) 0(.00) 0(.00) 100(.00)
CCFD 0.129(.00) 0.143(.00) 0(.00) 0(.00) 100(.00)

VBHEM (ours) 0.994(.01) 1.000(.00) 90(.31) 10(.31) 0(.00)

To show the effectiveness of the prior distributions on the
input, we also train VBHEM where the priors of the mean and
precision matrices are collapsed into delta function priors by
letting γ(r)

0 , ν
(r)
0 →∞, which is equivalent to using point-wise

estimates of the mean and precision. The results are in the last
row of Table III, and always underestimate K and S, i.e., the
HMMs could not be separated. Thus, using prior distributions
on the input HMMs can better handle the uncertainty and leads
to better clustering results.

Fig. 2a shows the model selection criteria for varying K(r)

and fixed S(r)∗, while Fig. 2b shows the criteria for fixed
K(r)∗ and varying S(r). In Fig. 2a, VH+AIC, VH+BIC, DIC
and VBHEM all successfully find the true number of compo-
nents, while SC+AIC and SC+BIC underestimate the number
of components. In Fig. 2b, the six methods all successfully
select the true number of states. Finally, Appendix G-B shows
an example result.

b) Experiment 2: We next test the robustness of VBHEM
for different settings of true number of clusters and true
number of states. We generate the synthetic data for different
K and S by: (1) randomly generating K HMMs, each with
S states; (2) use EMHMM toolbox [4] to learn 20 HMMs
(K(b) = 20×K) for each given true HMM. Here we test three
pairs of (K,S) ∈ {(3, 3), (3, 5), (5, 3)}. For each (K,S) pair,
we run VBHEM with K(r) ∈ [1, 10] and S(r) ∈ [1, 10] for
1000 times with different random initializations. For compar-
ison we also run VHEM, PPK-SC, and CCFD for 1000 trials.
Note that the number of states can be different for each HMM
component in the reduced H3M M(r); e.g., for the selected
S(r) = 5, the final number of states can be less than 5, since
some states may be pruned out in Step 8 of Alg. 2.

Table IV shows the average performance over 1000 trials,
showing that our VBHEM-H3M method outperforms other
methods. The Rand-index, Purity and Accuracy do not change
significantly with different (K,S), and thus VBHEM is robust
to changes in the number of clusters/states. DIC performs well
for setting (3, 3), but the accuracy of S decrease sharply as
the model complexity in S increases, and likewise for K.
VHEM, VH+AIC and VH+BIC have similar Rand-index and
Purity, and perform better when (K,S) are small, but are not
robust when they increase. Likewise SC+AIC and SC+BIC are
not robust when K and S are increased. CCFD also obtains
good Rand-index and Purity, but the accuracy decreases as K
increases, which shows that it is less robust than our method.
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Fig. 4. Selection of number of states for different methods in MoCap
experiment, including (a) VHEM, (b) SC, (c) VBHEM and DIC.

B. Motion Capture Data

This experiment uses Motion Capture data (MoCap), which
are time series representing human locomotions and actions.
We use 63 motion examples spanning 7 different classes (sit,
run, jump, yoga, swim, dance, and baseball). Each example
is a sequence of 123-dimensional vectors representing the
(x, y, z)-coordinates of 41 body markers tracked spatially
through time. For each example, we learn the HMM posteriors
over parameters using EMHMM toolbox. This HMM sum-
marizes the appearance ( Gaussian emission) and dynamics
(state prior and transition) of the particular motion sequence
it represents. We then use these posteriors as input to our
algorithm to find the true number of motion classes. For
running VBHEM, we set K(r) ∈ [4, 10] and S(r) ∈ [3, 8],
N = 10K(b), τ = 10, and λ0 = 1. This experiment is repeated
20 times with different random initialization, and the average
results are reported in Table V.

Our VBHEM obtains the true number of motion classes
with 90% accuracy and perfect Purity 1, and outperforms other
methods. Fig. 2c plots the model selection curve, indicating
that VBHEM has a peak at K = 7, leading to the correct
choice of number of clusters. VHEM has 14% accuracy
in selecting the correct K = 7, while overestimating and
underestimating K equally 43% of the time, which is close to
random chance. Fig. 2c shows the model selection criteria for
the various methods versus K. VH+AIC, VH+BIC, SC+AIC
and SC+BIC have a tendency to overestimate K, as their
curves alway increase as K increases, resulting in selection
of K = 10. This is because the log-likelihood approximation
used by VHEM and PPK-SC increase as the model complexity
increases, and the increase cannot be effectively penalized
by the AIC or BIC terms. Moreover, it demonstrates that
as the data becomes noisier (as in real-world data) and the
dimension increases, our method performs better than BIC
and AIC. DIC achieves an Accuracy of 40% in determining
K, which performs better than other methods, but is still
inferior to our VBHEM. Although DIC has a 55% probability
of overestimating K, it obtains high Rand-index and Purity,
which means DIC is still forming consistent groups of data.
CCFD performs the worst in this experiment and always
underestimates K. The main reason is that the cut-off dc
is too small; dc = dmin + (dmax − dmin) ∗ p, where dmin
and dmax are respectively the minimum and maximum among
all distances of two HMMs, and p is searched in [1%, 20%].
However, in this experiment dmin is about 560, dmax is about
730, and the most of distances are centered on 700 (see
Fig. 3b). Thus dc is still small even when p = 20% (about
600), and thus most of the densities are ρi = 0, which causes
CCFD to fail to find the cluster centers.
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Fig. 5. HMMs estimated from VBHEM clustering of eye gaze data: (left)
holistic and (right) analytic eye gaze strategies.
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The analysis of the results show that VH+AIC, VH+BIC,
SC+AIC, SC+BIC and DIC might have failed because the
log-likelihood approximation term is too large compared to
the penalty terms. To alleviate this problem, we modify these
methods by dividing this term by the length of the sequence
τ . The results are shown in Table V, denoted as VH/τ+BIC,
VH/τ+AIC, SC/τ+BIC, SC/τ+AIC and DIC/τ . The clustering
results do not change or even get worse, which shows this
process does not help.

Finally, Fig. 4 presents the selected S for each method.
VBHEM has a high probability to select S = 3 or S = 6 in the
reduced H3M. VHEM is not effective at selecting S, and thus
the percentages are mostly uniform. When using the model
selection methods, VHEM tends to select the largest candidate
S, while PPK-SC tends to select the smallest candidate S. DIC
is more likely to select S = 7 or S = 8, while DIC/τ mostly
selects 3 states. Among the methods with decent Rand-index,
our method selects a more parsimonious model while also
having high Rand-index (0.998). While there is no ground-
truth value for the number of states, a more parsimonious
model may be preferred since it more succinctly summarizes
the data, and also is easier to interpret compared to a model
with many states.

C. Eye Movement Data

In this experiment, we use the Eye Movement dataset
from [5], which is a collection of eye fixation trajectories
from 68 participants (34 older adults and 34 young adults)
while performing a recognition experiment on face images.
An eye movement data is a sequence of 2-dimensional vectors
representing the (x, y)-coordinates of the location of an eye

TABLE VI
THE NUMBER OF PARTICIPANTS BELONGING TO HOLISTIC AND

ANALYTIC PATTERN THOUGH VBHEM AND VHEM.

Holistic Analytic

VBHEM (Ours)
Total 39 29
Old 21 13
Young 18 16

VHEM [5]
Total 33 35
Old 21 13
Young 12 22

fixation on the face image over time. Previous work [59]
models the regions of interest (ROIs) as GMMs and study the
correlation between GMMs and cognitive abilities. [4, 5, 60]
also consider the temporal dynamics, where each participant’s
eye movements are modeled with an HMM, including both
person-specific ROIs and transitions among the ROIs. Individ-
ual HMMs are then clustered using VHEM into two groups
[4, 5] or three groups [60] in order to discover common eye
gaze strategies among the participants, but requires setting the
number of group and number of states by hand.

1) Clustering results: We use VBHEM to automatically
choose the number of clusters and states to discover com-
mon patterns among individuals. We set K(r) ∈ [1, 5] and
S(r) ∈ [1, 5], N = 10K(b), and λ0 = 1 for running VBHEM
and VH+BIC. VBHEM automatically selects an H3M with
2 components and 2 states, and the estimated group HMMs
are shown in Fig. 5. Fig. 6a plots the model selection curve
for VBHEM. The number of selected states is inversely
proportional to the number of components. Given K = 1,
then the best selection is S = 3; increasing K will decrease
the best selection of S. The reason is that when using an
H3M to model the given data, more components means less
data for each component to model, and thus less hidden states
are needed within each component. The pair (K,S) = (2, 2)
has the maximum log q∗(K,S) among all candidate model
structures, and thus is the overall selected model structure.
Compared with BIC (see Fig. 6b), S = 2 is selected when
K ∈ {1, 2, 3}, and S = 1 is selected when K ∈ {4, 5}. The
final selection is (5, 1); BIC cannot effectively penalize the
growth of the log-likelihood caused by increasing K, which
leads to the selection of the largest K.

2) Results analysis: The HMMs clustering results are dis-
played in Fig. 5. The pattern in Fig. 5 (left) resembles a
holistic pattern, a scan path typically started at the nose/mouth
region, and then staying around the same region. In contrast,
the pattern in Fig. 5 (right) resembles an analytic pattern, a
scan path typically started around the face center, and then
transitioned to the eye region. (i.e., more frequent fixation
transitions between the eyes; [4]). The differences can also
be seen in the corresponding fixation heatmap shown in
Fig. 5. The two representative HMMs significantly differ from
each other based on the KL divergence test [4]; using data
from holistic HMMs, t(38)=7.10, p<0.001; using data from
analytic HMMs, t(28)=6.10, p<.001.

Table VI shows the number of young and older participants
belonging to holistic and analytic pattern, and compare with
the VHEM results from [5]. There are 39 adults assigned
to the holistic pattern and 29 adults assigned to the analytic
pattern. Comparing with the results from [5] using VHEM, the
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Fig. 7. Correlation analysis between H-A score and (a) recognize accuracy, (b) recognition performance d′, (c) MoCA score.

main difference is that VBHEM assigns 6 additional young
adults into the holistic group. This difference may be due
to our analytic HMM focusing more on the regions around
the two eyes than the analytic HMM in [5] (our transition
matrix shows a larger probability to stay in the eye regions,
while the transition matrix in [5] is more uniform). Thus, those
participants that do not show significant focus on the eyes are
assigned to holistic pattern by our algorithm.

As we may be interested in individual differences in eye
movement patterns, we also quantify the degree to which a
subject’s eye-movement pattern resembles the representative
holistic and analytic HMMs using the H-A scale [5]. For
each subject, the H-A scale measures a normalized difference
between the log-likelihoods of a subject’s eye movement data
being generated by the representative holistic and analytic
HMM models,

H-A Scale =
log p(Y |Mh)− log p(Y |Ma)

| log p(Y |Mh) + log p(Y |Ma)|
,

where Y is the fixation data for the individual, and Mh and
Ma are the representative holistic and analytic HMMs learned
by VBHEM. A positive H-A value indicates that the subject’s
gaze pattern is more similar to a holistic pattern, while a nega-
tive value indicates similarity to an analytic pattern. According
to the H-A values, older adults tended to exhibit holistic
patterns (M=0.0089), and younger adults tended to exhibit ana-
lytic patterns (M=-0.0029), and this difference was statistically
significant according to a two-sample t-test, t(66)=2.139,
p=0.036. The same comparison between older/young adults
using the H-A scale built using VHEM (i.e. from [5]) yielded a
marginal difference (older adults M=0.0032, young adults M=-
0.010), t(66)=1.916, p=0.060. We also performed correlation
analysis to see how eye gaze patterns (as quantified by H-
A scale) are correlated with the subjects’ behavioral data,
as in [5]. The subjects’ recognition accuracy was negatively
correlated with H-A scale, r(66)= − 0.428, p=.011. The
lower the recognition accuracy, the more holistic the eye-gaze
pattern (see Fig. 7a). In addition, the participants’ recognition
performance d′ was also negatively correlated with H-A scale,
r(66)= − 0.430, p=.011 (see Fig.7b). Finally, the MoCA
scores5 for the older adults was negatively correlated with
the H-A scale, r(32)= − 0.437, p=.009. In other words,
the lower the MoCA score (the more cognitive impairment),
the more holistic the pattern (see Fig.7c). These results from

5Montreal Cognitive Assessment (MoCA) is a valid brief assessment tool
for screening of people with mild cognitive impairment, and 22 points or
more (out of 30) is a normal score

TABLE VII
EXPERIMENT RESULTS FOR CLUSTERING HANDWRITING TRAJECTORIES,

AVERAGED OVER 10 TRIALS.

Ri ↑ Purity↑ Acc↑ Over-est↓ Under-est↓
K %

VHEM 0.966(.00) 0.864(.00) 11(.00) 44(.00) 44(.00)
VH+AIC 0.980(.00) 1.000(.00) 0(.00) 100(.00) 0(.00)
VH+BIC 0.980(.00) 1.000(.00) 0(.00) 100(.00) 0(.00)

VH/τ+AIC 0.958(.01) 0.816(.06) 0(.00) 0(.00) 100(.00)
VH/τ+BIC 0.899(.01) 0.600(.00) 0(.00) 0(.00) 100(.00)

SC+AIC 0.930(.04) 0.751(.11) 10(.32) 0(.00) 90(.32)
SC+BIC 0.904(.02) 0.630(.07) 0(.00) 0(.00) 100(.00)

SC/τ+AIC 0.895(.02) 0.589(.03) 0(.00) 0(.00) 100(.00)
SC/τ+BIC 0.895(.02) 0.589(.03) 0(.00) 0(.00) 100(.00)

DIC 0.985(.00) 0.942(.02) 70(.48) 30(.48) 0(.00)
DIC/τ 0.964(.03) 0.810(.09) 20(.42) 0(.00) 80(.42)
CCFD 0.982(.00) 0.940(.05) 40(.52) 0(.00) 60(.52)

VBHEM (ours) 0.985(.00) 0.942(.02) 70(.48) 30(.48) 0(.00)

VBHEM are consistent with the previous study [4, 5] – two
strategies of eye movements (holistic and analytic patterns)
in face recognition tasks are discovered by clustering HMMs,
and the H-A scales are negatively correlated with recognition
performance and MoCA. However, here we use VBHEM to
automatically determine the number of clusters and the number
of states, whereas [5] set these values by hand.

D. On-Line Hand-Writing Data Set

In this experiment, we evaluate VBHEM for clustering
characters from the Character Trajectories Data Set, which
consists of 2858 examples for 20 characters from the same
writer. Each example is the trajectory of one character that
corresponds to a single pen-down segment. The data was
captured using a WACOM tablet at 200Hz. and consists of
(x, y)-coordinates and pen tip force, and the data has been
numerically differentiated and Gaussian smoothed [61].

In consideration of the aim for VBHEM is to cluster data
while automatically choosing the number of clusters. We
simplify the experiment by only selecting 10 character types.
For each character, we randomly select 25 examples to learn
an HMM, and repeat 10 times, resulting in a base H3M with
K(b) = 100 components. We then perform clustering using
VBHEM, VHEM, PPK-SC and CCFD. For VBHEM, we set
K(r) ∈ [6, 14], S(r) = 6, N = 10K(b), τ = 100, and
λ0 = 1. The experiment is repeated 10 times with different
initializations, and the average results are in Table VII.

VBHEM and DIC obtain the same best performance among
the compared methods. Indeed the model selection curves for
VBHEM and DIC (Fig. 2d) are coincident. Comparatively,
our method of model selection is more straightforward than
DIC, which requires further approximation on top of the VB
framework.

This article has been accepted for publication in IEEE Transactions on Neural Networks and Learning Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNNLS.2021.3105570

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE VIII
EXPERIMENT RESULTS FROM CLUSTERING MUSIC GENRE DATASET,

AVERAGED OVER 10 TRIALS.

Ri ↑ Purity ↑ Acc ↑ Over-est ↓ Under-est ↓
K %

VHEM 0.641(.02) 0.435(.03) 10(.00) 50(.00) 40(.00)
VH+AIC 0.735(.03) 0.502(.05) 0(.00) 100(.00) 0(.00)
VH+BIC 0.735(.03) 0.502(.05) 0(.00) 100(.00) 0(.00)

VH/τ+AIC 0.827(.01) 0.502(.04) 0(.00) 100(.00) 0(.00)
VH/τ+BIC 0.827(.01) 0.502(.04) 0(.00) 100(.00) 0(.00)

SC+AIC 0.742(.01) 0.424(.04) 0(.00) 100(.00) 0(.00)
SC+BIC 0.679(.08) 0.384(.06) 10(.32) 50(.53) 40(.52)

SC/τ+AIC 0.432(.12) 0.260(.04) 0(.00) 0(.00) 100(.00)
SC/τ+BIC 0.470(.10) 0.276(.04) 0(.00) 0(.00) 100(.00)

DIC 0.757(.02) 0.554(.05) 20(.42) 60(.52) 20(.42)
DIC/τ 0.197(.00) 0.200(.00) 00(.00) 0(.00) 100(.00)
CCFD 0.427(.30) 0.385(.24) 0(.00) 40(.52) 60(.52)

VBHEM (ours) 0.870(.03) 0.591(.07) 60(.52) 30(.50) 10(.32)

VHEM by itself cannot perform model selection, and always
uses the given number of components. VH+AIC and VH+BIC
always overestimate the number of clusters (see Fig. 2d),
which indicates that the penalties are too small compared with
the log-likelihood. Although they overestimate the number
of clusters, the Purity is 100%, indicating that each cluster
still consists of only one character. All the PPK-SC methods
underestimate the number of clusters, which leads to worse
Rand-index and Purity. Moreover, normalizing VHEM and
PPK-SC by the length of the sequences (VH/τ and SC/τ )
always underestimates the number of clusters, which implies
that the complexity penalties are too heavy. Finally, CCFD
performs slightly worse than our method in terms of Rand-
index and Purity. CCFD correctly estimates K in 40% of the
trials, and underestimates K otherwise. For example, Fig. 3c
plots the decision graph that successfully finds K = 10 cluster
centers in one trial.

E. Music Data Set

In this experiment, we evaluate VBHEM-H3M for cluster-
ing songs from different music genres. As H3Ms allow to ac-
count for timbre (i.e., through the Gaussian emission process)
as well as longer term temporal dynamics (i.e., through the
HMM hidden state process), when modeling musical signals.
Thus, clustering the represented H3Ms of songs is expected
to reveal the true genre group.

The music dataset from [53] contains 10 genres, each with
100 songs stored at 22,050 Hz, 16-bit. The acoustic content
of a song is represented as a time series of audio features,
by computing the first 13 Mel frequency cepstral coefficients
(MFCCs) [1] over half-overlapping windows of 46ms of audio
signal, and augmented with first and second instantaneous
derivatives. The song is then represented as a collection of
audio fragments, which are sequences of 125 audio features
(about 6 seconds of audio), using a dense sampling with 80%
overlap. Each song is represented by 6 HMMs.

In this experiment, we use 5 genres (hip-hop, classical, jazz,
metal and country), and randomly choose 10 songs (K(b) =
300) as the inputs in each run. We repeat each method 10
times with different inputs, and the average results are shown
in Table VIII. Our VBHEM-H3M outperforms other methods
in terms of Rand-index, Purity and Accuracy. VHEM by itself
always estimates the number of clusters to be the given number
of clusters. Regardless of the information criteria used, VH

always overestimates the number of clusters, and normalizing
by the sequence length (VH/τ+AIC and VH/τ+BIC) only
slightly increases the Rand-index. Although SC/τ+AIC selects
the true number of cluster K in one trial, the 70% probabilities
of underestimating K still leading to worse Rand-index and
Purity than SC+AIC. Moreover, as the penalty increase, from
SC+AIC to SC/τ+BIC, the performances get worse, which
implies that the penalty is not appropriate. DIC has slightly
lower Purity than our method and normalizing with the length
of sequence also does not help. CCFD could not find the true
number of genres K. In 4 trials, K was overestimated, e.g., the
decision graph of one trial where CCFD selected K = 32 is in
Fig. 3d. In the remaining 6 trials, CCFD failed to separate the
music HMMs and formed only one cluster. Fig. 2e shows the
model selection curve for VBHEM, VH+BIC, SC+BIC and
DIC. VBHEM and DIC have peaks at K = 5, while VH+BIC
and SC+BIC overestimate the number of clusters.

VI. CONCLUSIONS

We have derived the VBHEM algorithm for clustering
HMMs, which automatically determines the number of clusters
and the number of states. We show the efficacy of VBHEM
on both synthetic dataset and real-world datasets, including
motion capture, eye fixation sequences, character trajectories,
and music. For the synthetic datasets considered, our VBHEM
recovers the correct number of components/states in the H3M
model, and finds good posterior estimates of the component
HMMs. For the real datasets, we obtained results for clustering
and model selection that are better or comparable to other
methods. For future work, we now use the same value of S(r)

for all the reduced HMMs, and we can consider using different
values of S(r)

j for each component j, but this requires a more
efficient search process over K and S to make it scalable.
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