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Accelerating Monte Carlo Bayesian Prediction via
Approximating Predictive Uncertainty over the Simplex

Yufei Cui, Wuguannan Yao, Qiao Li, Antoni B. Chan, Chun Jason Xue

Abstract—Estimating the predictive uncertainty of a Bayesian
learning model is critical in various decision-making problems,
e.g., reinforcement learning, detecting the adversarial attack, self-
driving car. As the model posterior is almost always intractable,
most efforts were made on finding an accurate approximation
to the true posterior. Even though a decent estimation of the
model posterior is obtained, another approximation is required
to compute the predictive distribution over the desired output.
A common accurate solution is to use Monte Carlo (MC)
integration. However, it needs to maintain a large number of
samples, evaluate the model repeatedly and average multiple
model outputs. In many real-world cases, this is computationally
prohibitive. In this work, assuming that the exact posterior
or a decent approximation is obtained, we propose a generic
framework to approximate the output probability distribution
induced by the model posterior with a parameterized model
and in an amortized fashion. The aim is to approximate the
predictive uncertainty of a specific Bayesian model, meanwhile
alleviating the heavy workload of MC integration at testing time.
The proposed method is universally applicable to Bayesian clas-
sification models that allow for posterior sampling. Theoretically,
we show that the idea of amortization incurs no additional costs
on approximation performance. Empirical results validate the
strong practical performance of our approach.

I. INTRODUCTION

Bayesian inference is a principled method to estimate
the uncertainty of probabilistic models. In most applications,
especially in deep learning, the likelihood model and model
prior are not conjugate hence marginalizing over model prior or
posterior cannot be performed analytically, which hinders the
practical applicability. For tractability, a simple point estimate
such as maximum a posteriori (MAP) estimate could be used
to approximate the full model posterior. The price paid is the
loss of model uncertainty due to incomplete characterization of
the model posterior. Approximate inference methods, such as
Markov chain Monte Carlo and variational inference, enhance
the approximate posterior by a better probability distribution
while keeping inference tractability. However, even though a
decent approximation of the posterior can be obtained, the
computation of predictive distribution is usually intractable due
to loss of conjugacy and is of high cost if tractable.

To introduce the problem, we consider a Bayesian classifi-
cation model trained on dataset D = {(yn,xn)}Nn=1, where
xn ∈ X and yn ∈ Y are the nth input and output, respectively.
Let the model posterior p(θ|D) be approximated by Monte
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Carlo (MC) estimate 1
S

∑S
s=1 δ(θ − θs), and the predictive

distribution (a categorical distribution parameterized by the
predicted class probabilities) is thus approximated by

p(y|x,D) =

∫
p(y|x,θ)p(θ|D) dθ ≈ 1

S

S∑
s=1

p(y|x,θs).

The predictive distribution can be accurately estimated as S →
∞. However, to perform the computation, we need to maintain
a large number of samples, repeatedly evaluate the model for
S times and finally average the model outputs. This problem is
impractical in many real-world cases. For example, an assisted-
driving car system requires an accurate measure of uncertainty
to avoid making mistakes with a high confidence [21, 32]. Due
to the limited computational resources and storage in such
systems, it is hard to maintain a large number of samples
and perform S times evaluation of the Bayes model for the
real-time image data.

In this work, aiming at boosting the prediction speed while
maintaining a rich characterization of the prediction, we
propose to approximate the distribution of class probabilities
over the simplex induced by the model posterior p(θ|D),
in an amortized fashion. This naturally diverts the heavy-
load MC integration process from the testing period to the
approximation period. Different from the previous work in
Bayesian knowledge distillation [3, 5], which only focuses
on the output categorical distribution (a point on simplex),
the induced distribution over the simplex provides: 1) rich
knowledge including prediction confidence for identifying out-
of-domain (OOD) data (see empirical examples in Fig. 3);
2) the possibility to use more expressive distributions as the
approximate model.

We term the Bayes classifier as “Bayes teacher” and the
approximate distribution as “student”, due to the analogy with
teacher-student learning. A Dirichlet distribution is used as
the student due to its expressiveness, conjugacy to categorical
distribution, and its efficient reparameterization for training. We
propose to explicitly disentangle the parameters of the student
into a prediction model (PM) and concentration model (CM),
which capture class probability and sharpness of Dirichlet
respectively. The CM output can directly be used as a measure
for detecting OOD data. We term our method as One-Pass
Uncertainty (OPU) as it simplifies real-world evaluation of
Bayesian models by computing the predictive distribution with
only one model evaluation. Note that, OPU allows choosing
various types of student models (e.g., compressed neural
network [23, 19, 13]) for further speedup on specific platforms
with no extra design efforts.

As the amortized approximation of induced distributions
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is unexplored in the literature, we consider and compare
several choices of probability distance measure: forward
Kullback–Leibler (KL) divergence, earth mover’s distance
(EMD), and maximum mean discrepancy (MMD). We theoret-
ically analyze the performance gap incurred by the amortized
approximation and show that, under MMD, besides model loss
due to the restriction of student distribution, the amortized
approximation does not introduce additional loss.

Empirical evaluations show a significant speedup (∼ 500×)
of Bayes models. The results on Bayes NN show that OPU per-
forms better in misclassification detection and OOD detection
than state-of-the-art works in Bayesian knowledge distillation.
It can also be observed that explicit disentangling of mean and
concentration helps improve performance. The comparisons of
different probability measures validate the theoretical analysis.
We also conduct empirical evaluations and comparisons on
Bayes logistic regression and Gaussian process, to show OPU
is universally applicable to all Bayesian classification models.

The remainder of this paper is organized as follows. In
Section II we review related work. ln Section III, we propose
our one-pass uncertainty framework. In Sections IV and V,
we present experiments applying OPU to traditional Bayesian
models and Bayesian neural networks, respectively. Finally,
Section VI concludes the paper.

II. RELATED WORK

In this section, we review related works on Bayesian
approximations using sampling and fast inference.

A. Approximation via sampling

In this section, we review approximate Bayesian inference
using sampling and MC integration. As a simple and effective
method for classification, logistic regression has been widely
used. However, due to the loss of conjugacy, inference
for the Bayesian version is intractable. Usually, a Laplace
approximation or variational methods are used to infer posterior
distribution [4]. Alternatively, Polson et al. [29] proposed
a closed-form Gibbs sampler based on Polya-Gamma (PG)
distributed augmenting variable. Finally, the Bayesian predictive
distribution is not available in closed-form and usually, MC
integration is employed for its approximation.

With the advance of deep neural networks in recent decades,
researchers have applied sampling methods to provide tractable
inference in Bayesian neural networks. Traditional Monte
Carlo methods are batch algorithms, which cannot scale
to large datasets. Welling et al. [35] proposed stochastic
gradient Langevin dynamics (SGLD), which draws samples
approximately from the posterior by adding noise to the
stochastic gradient. As the step size decays, SGLD comes
to dominate the SGD noise. Chandra et al. [7] improves
the convergence and scalability of the MCMC method by
introducing a parallel tempering MCMC sampling method.
Gal et al. [10] show that a neural network with a dropout
layer before a weight layer is mathematically equivalent to an
approximation to deep Gaussian process (MCDP). Chandra et
al. [6] develops an MCMC Bayesian learning framework to

address the uncertainty quantification problem for multi-source
data.

Gaussian process (GP) provides flexible modeling capabili-
ties and strong interpretability in machine learning. To seek for
a full Bayesian inference of GP, the MCMC method has been
applied to GP [9]. It requires computation and inversion of the
full covariance matrix at each iteration, which makes it not
suitable for large scale problems. Hensman et al. [16] proposed
a scalable MCMC method (SGPMC) based on variational
inducing points. By providing sufficient inducing points to the
model, SGPMC can well approximate full Bayesian inference
over GP values and the covariance parameters.

In recent years, there are some works from the variational
inference that also proposed to solve sampling for the expo-
nential family, such as [20, 24, 26, 27]. These methods are
particularly designed for variational inference, which is not
applicable to our problem formulation, and thus are not directly
comparable with our method.

B. Approximation for Fast Inference

In this section, related works are reviewed and compared
with OPU in terms of methodology. The most related field is
knowledge distillation, which aims to transfer the predictive
knowledge from a larger model to a small one to make the
evaluation faster with little or no degradation of the prediction
performance. In CompactApprox [31], a parametric model
composed of a small subset of “best samples” selected from the
original MC samples is used to approximate the full predictive
Categorical distribution. Extending the approximation to Bayes
NN, BDK [3] proposes to use NN to approximate the predictive
Categorical distribution of a Bayes NN trained by stochastic
gradient Langevin dynamics (SGLD). Specifically, the teacher
network generates samples via SGLD, and KL between the
two distributions is minimized in an online fashion. However,
the disadvantage is that data uncertainty, model uncertainty,
and distributional uncertainty are all entangled in the class
probabilities because categorical distributions are of limited
expressiveness.

Different from these previous works that only approximate
the class probabilities, our OPU approximates the induced
distribution of class probabilities, which contains richer in-
formation including both class probabilities and prediction
confidence (e.g., the three types of uncertainty observable via
the samples in Fig. 3). We choose a Dirichlet distribution as
the student model, and explicitly disentangle the mean and
concentration to fully capture the three types of uncertainty.
We also explore other probability distance measures (EMD
and MMD), showing that KL yields degenerate prediction
performance.

Using a Dirichlet to estimate uncertainty has also been
explored by Deep Prior Network (DPN) [25], where a parame-
terized Dirichlet is used in a Bayesian model to characterize
the “distributional uncertainty”, i.e., to tell if the data is in the
training domain or not. However, DPN adds a stochastic layer
in the Bayes model, rather than approximating a well-trained
Bayes teacher. Due to the intractable inference, DPN uses a
MAP estimate of the model posterior which incurs a loss of
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uncertainty. To compensate for the lost characterization of
uncertainty, DPN uses a hand-crafted training goal that explic-
itly requires OOD examples (which are typically unavailable
in real-world applications). In contrast to DPN, our OPU is
able to: 1) extract predictive uncertainty from any Bayesian
classification model according to the practical requirements; 2)
choose various types for student model (e.g., quantized neural
network) to enable fast prediction; 3) use only in-domain data
in training to get a good uncertainty measure (see Sec. V).
Note that none of these properties can be achieved by DPN.

In recent years, several works aim to evaluate predictive
uncertainty both accurately and fast. Raghu et al. [30] proposes
to directly estimate an uncertainty score function for medical
opinions. Hendrycks et al. [15] improves the out-of-domain
(OOD) detection performance by training on an auxiliary
dataset of outliers. Liang et al. [22] proposes Out-of-Domain
Image Detection (ODIN) to improve the OOD detection
uncertainty by temperature scaling and input preprocessing. Hsu
et al. [18] extends ODIN by decomposing the confidence into
a dividend/divisor structure, where the “domain” of the data is
implicitly learned. While these works improve the performance
of uncertainty estimation without losing much inference speed,
they either require training on auxiliary data of outliers, which
is unrealistic in real applications or implicitly decompose the
uncertainty, which is difficult to interpret. Furthermore, these
works are only designed for deep neural networks. In contrast,
our work requires no additional outlier data during training, and
the out-of-domain uncertainty is decomposed in closed-form
from the Dirichlet distribution in an intuitive way. Our proposed
framework is widely applicable to classical Bayesian models
like Bayesian logistic regression, Bayesian neural networks,
and non-parametric models like Gaussian process. We compare
with some of the works in Sec. V.

III. ONE-PASS UNCERTAINTY FRAMEWORK

In this section, we present our one-pass uncertainty (OPU)
framework for a generic Bayesian parametric classifier. Our
framework is illustrated in Fig. 1. We assume that we have
a Bayesian classifier Tx = T (x;θ), parametrized by θ, with
posterior distribution p(θ|D). As the posterior is typically
intractable, we also assume there is a set of posterior samples
{θs}Ss=1 that represents the model uncertainty. Each posterior
sample produces a class probability vector πs, and the set
{πs} on the Simplex represents the prediction uncertainty
for the input x. Each particle requires evaluating a different
network instance, and thus using a set of particles at inference
time is slow. To improve efficiency, we learn an approximate
distribution q(π|x) of the class probabilities on the Simplex,
which is amortized over many inputs x. We parametrize the
approximation into a prediction and confidence term so that
the uncertainty is easily obtainable. Our framework requires
a single pass through the network to obtain the uncertainty
measure, and thus we denote it as one-pass uncertainty (OPU).

A. Bayesian classification framework

We first introduce a generic Bayesian classification frame-
work, e.g. as in Bayesian logistic regression (BLR) or Bayesian

neural networks (NN). Let the classifier be specified with
categorical likelihood and a parametric function,

p(y|x,θ) = Cat(y|T (x;θ)) (1)

where T : X × Θ → SK−1 is a parametric function from
input space to class-probability simplex, and K is the number
of classes. For example, T could be a neural network with
a softmax output layer. The Bayesian formulation assumes a
prior distribution p(θ) over the parameter space θ.

Given a training dataset D = {(xi,yi)Ni=1}, the classifier is
learned by calculating posterior distribution of the parameters,

p(θ|D) =
p(y|x,θ)p(θ)

p(y|x)
, (2)

where the denominator is the marginal likelihood p(y|x) =∫
p(y|x,θ)p(θ)dθ. At inference time, given a novel input point

x∗, the class prediction is obtained by marginalizing over the
probable model parameters θ according to the posterior,

p(y|x∗,D) =

∫
Θ

p(y|x,θ)p(θ|D) dθ (3)

=

∫
Θ

Cat(y|T (x∗;θ))p(θ|D) dθ. (4)

In this paper, we assume the posterior p(θ|D) is obtained
and focus on the computation of the predictive distribution in
Eq. 4. In what follows, let p(θ|D) be approximate or exact
(if available) model posterior, from which samples could be
obtained.

B. Induced Distribution over Simplex

Consider the predictive distribution in Eq. 4 for a fixed x∗.
Since the data point x∗ is fixed, we denote its transformation as
Tx∗(θ) = T (x∗;θ), which is a function of θ. We next define
the random variable π = Tx∗(θ), which is the distribution of
class probabilities given an input x∗ and under the posterior
p(θ|D). We can then rewrite the predictive distribution as an
integral over π rather than θ (a change of variable),

p(y|x∗,D) =

∫
SK−1

p(y|π)p(π|x∗,D) dπ (5)

=

∫
SK−1

Cat(y|π)p(π|x∗,D) dπ. (6)

We denote the conditional distribution px∗(π) = p(π|x∗,D)
as an “induced distribution”, since its distribution is induced
by passing the posterior p(θ|D) through the transformation
Tx∗(θ).1 The induced distribution isolates the dependence
between input and output (see Fig. 2 (b)), and simplifies the
computation of the predictive distribution.

Our key insight is that px contains all information we
need for prediction and uncertainty measurement. Hence π
is sufficient in the sense that, given π, y is independent
of both θ and x. The isolation combines the complexities
in both the likelihood and posterior into a single object px
and keeps a simple dependence structure between y and π.
Also, the isolation renders the last probabilistic layer y|π

1In measure theory, this is a well-defined push-forward measure Tx#p(θ|D)
over the simplex.
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Simplex

Fig. 1: An intuitive example of the proposed framework. Only one
input x is consider in this example. “Margin.” indicates marginalization
over π.
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Fig. 2: Graphical representation of probabilistic structure of the Bayes
teacher (left and middle) and the student (right). Dashed edges denote
deterministic dependence, box nodes are deterministic and circle nodes
are stochastic. The left and middle graphs correspond to Eq. 4 and
Eq. 6, respectively.

(a) (b)

(c) (d)
Fig. 3: An empirical example of MC estimate of the induced
distribution over simplex. The classifier (MCDP) is trained on real-
world digits images of {0, 1, 2} (corresponding to left, right, top
corners of simplex). The 1st and 3rd rows indicate the input while the
2nd and 4th rows indicate the MC estimate of π over a 2-simplex.

nuisance, which can thus be peeled off for prediction. To
validate the idea, one can show that the predictive distribution
is simply p(y|x,D) = Cat(y|Epxπ). The difference between
probabilistic structures of the original Bayesian model and the
isolated version is shown in Fig. 2 (a) and (b).

The π represents the distribution of class probabilities, and
thus it can be used to measure the uncertainty of the prediction
from input x. However, its density function px(π) is sometimes
intractable to compute, especially for complicated Tx (like NN),
and thus we empirically observe its distribution based on a
set of particles (samples) {πs}Ss=1. The samples are obtained
through the generative process: sampling the posterior, i.e.
θs ∼ p(θ|D), and “push-forward” the samples by Tx, i.e.
πs = Tx(θs). Fig. 3 shows an example of the distribution of
π samples for different types of input x. In Fig. 3 (a), the
inputs are similar to the training data, and thus the particles
gather around a corner of the simplex, indicating a confident
prediction. In Fig. 3 (b), the inputs are digit images but are
relatively hard to predict. Therefore, the particles gather around
the center, indicating the model is certain that the input is on
the decision boundary. In Fig. 3 (c), the inputs are images
outside the domain of training data, and the particles spread
over the simplex, which means the model has a high uncertainty
about input, indicating out-of-domain (OOD). In Fig. 3 (d), the
particles spread along a line between two corners, indicating
the model is confident that the result is not at the other corner.

Although the particles are effective at measuring uncertainty,
their use for inference is time-consuming as each particle
requires one evaluation of the model (e.g., 100× slow-down
for using 100 Monte-Carlo samples [21]). This motivates us to
approximate px with a tractable conditional distribution q(π|x),
thus requiring only a single pass to obtain the uncertainty.

C. Amortized Approximation

The view of px enables flexible choices of q(π|x), as any
distribution defined on RK can be transformed to SK−1 via
logistic transformation [1]. However, modeling q(π|x) locally
for every input is not practical, as the design efforts and the
number of parameters grows linearly with the number of data
points. Therefore, we propose to approximate px in two aspects:
1) use a single family of distribution q; 2) for generalizing to
unseen examples, let the parameter of q, αx = α(x;φ), be a
function depending on x and parameterized by a set of global
adaptive parameters φ, and thus qx = q(π|x) = q(π|αx). The
computational cost is amortized by casting the problem of
learning a series of conditional distributions to a regression
problem.

We term px as “teacher distribution” and qx as “student”. In
our method, as seen in the graphical representation in Fig. 2, by
proper approximation, the stochasticity, and knowledge in node
θ of the teacher is transferred into node π of the student model,
such that the full predictive uncertainty is maintained. In terms
of computation, the approximation requires sampling only in
the training stage. While in the testing stage, to obtain the
predictive distribution, only one evaluation is required. Thus,
we denote the framework as the One-Pass Uncertainty (OPU)
model.
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The above benefits do not introduce any concession on
generalizability. Since OPU is based on approximating the
distribution of the output class probabilities which is common
for all classifiers, the amortized approximation can be applied to
any Bayesian classifier. Note that the approximation framework
can be extended to a non-parametric model like the Gaussian
process, where the computational cost of inference is high.

In this work, we choose the student model q to be a
Dirichlet distribution, q(π|αx) = Dir(π|αx), where αx is a
function mapping input x to a Dirichlet parameter. The reasons
for choosing Dirichlet is the tractability: the Dirichlet is the
conjugate prior to the Categorical, and thus enables tractable
integration of (6) given the parameters. To better disentangle the
uncertainty measures, we use the design αx = hx · egx , where
hx = h(x;φ1) and gx = g(x;φ2) are two neural networks,
and the vector output h sums to 1. Vector output h determines
the mean of the Dirichlet (i.e., the predicted class probabilities),
and g determines the concentration of the Dirichlet (i.e., the
prediction confidence). To see this, the posterior of the class
labels is the Dirichlet mean, p(y` = 1|x,φ) =

∫
Cat(y` =

1|π)Dir(π|αx) dπ =
αx,`∑
c αx,c

= hx,` where y` and αx,`

are the `-th coordinate of y and αx respectively. Therefore,
we call hx as the “prediction model” (PM). Similarly, the
precision parameter α0 (determines sharpness) of the Dirichlet
solely depends on gx, α0 =

∑
c αx,c =

∑
c hx,ce

gx = egx .
Therefore, we term gx as the “concentration model” (CM).
Based on this property, whether the Dirichlet is flat or not,
can be fully characterized by CM. It can be expected that
when approximating particles in Fig. 3 (a) and (b), the output
value of CM is high, as the samples are concentrated, which
means high confidence. CM outputs a low value for particles
in Fig. 3 (c), yielding a flat distribution and low confidence.

D. Learning
Our objective is to approximate the predictive distribution

p(π|x,D) (the teacher) using q(π|x) (the student). To measure
the difference between the teacher and student, we use a
probability distance (e.g., forward KL) ρ(·, ·), giving a point-
wise loss of

L(x,α) = ρ(px, qx). (7)

where α are the parameters of qx. To generalize to unseen
examples, as in any empirical risk minimization, the point-wise
losses are aggregated to get an overall goal for optimization,
which is a similar treatment adopted in BDK [3] and others [36,
11]. The final objective is then to minimize the loss aggregated
over the distribution of x (the training data), and thus

min
α∈F

Ex∼p(x)L(x,α), (8)

where F is some hypothesis space and p(x) is some dis-
tribution over X . In practice, we take p(x) = pD′(x) with
D′ = {xm}Mm=1 a dataset containing features only. As the
amortized approximation of induced distributions in Bayesian
classifiers is unexplored in the literature, we consider and
compare several choices of ρ including KL divergence, earth
mover’s distance (EMD), and maximum mean discrepancy
(MMD). The corresponding derivation of the training objectives
and training algorithms are in the appendix.

Critic
 (·; w,x)
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Fig. 4: A brief example of the critic in EMD.

1) Forward KL divergence: We first consider the forward
KL divergence, Epx ln px

qx
. Since the term Epx ln px is irrelevant

when optimizing w.r.t. α, it is equivalent to using cross-entropy
as a local loss, i.e. L(x,α) = −Epx ln qx. By plugging in a
particle estimation p̂x = 1

S

∑S
s=1 δ(π − Tx(θs)), the training

objective becomes minα−EpD′ (x)
1
S

∑
s ln qx(Tx(θs)), which

is equivalent to an “amortized” maximum likelihood estimation
(MLE) problem with particles providing the estimation of suffi-
cient statistics of qx. Due to the zero-avoiding nature, forward
KL tends to over-estimate the support of px. This leads to under-
confidence approximation (“flat” approximate distribution) and
hence might deteriorate the quality of uncertainty measurements.
This is expected to be more serious when px is multi-modal.

Finally, we note that using reverse KL divergence Epx ln qx
px

as the probability distance ρ, as in the variational Bayes
framework, cannot be used in our problem setting because
we do not have an explicit form of the predictive log-density
ln px. Furthermore, the “trick” of rewriting the reverse KL
divergence to obtain a lower-bound to the marginal likelihood
will not lead to a tractable solution because of the complex
dependence between D and π through θ. In particular,
computing the lower-bound would require the joint likelihood
of the hidden and observation variables (π and D in our
scenario), p(D,π|x) =

∫
p(π|x,θ)p(D|θ)p(θ)dθ, which is

still intractable. Thus reverse KL divergence, i.e. variational
Bayes framework, is not applicable to our problem.

2) EMD: It is known that EMD provides much weaker
topology than other probability distance measures [28]. In
the application where data is supported on strictly lower-
dimensional manifolds, EMD provides more stable gradient
than KL divergence [2, 33]. An example of particles on a
low-dimensional manifold is shown in Fig. 3 (d).

Specifically, the Kantorovich-Rubinstein (KR) dual rep-
resentation of EMD [34] is defined as W1(p, q) =
sup‖ψ‖L≤1 Ep(z)[ψ(z)]− Ep(z)[ψ(z)]. The function ψ, called
a critic function, is an indication of how the two distributions
p and q differ. Intuitively, in the context of adversarial training,
the critic function is analogous to the discriminator that
classifies fake and real data in a GAN. In a region where
p(z) has more mass comparing with q(z), ψ(z) tends to be
larger. Optimizing q(z) to better match ψ(z) decreases EMD.
In our problem, we replace p(z) with p(π|x,D) and q(z)
with q(π|x) then the EMD is transformed to W1(px, qx) =
sup‖ψ‖L≤1 Eθ∼p(θ|D)[ψ(Tx(θ))]−Eπ∼qx [ψ(π)], where ‖ · ‖L
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denotes the Lipschitz semi-norm and ψ is the critic (or the
discriminator [2]). As the induced distribution is conditioned
on x, a local critic ψx should be defined for each x.

Following [2], intractable supremum is solved by parameter-
izing ψx = ψ(·;wx). Optimizing each local implicit parameter
wx yields an approximate calculation of W1(px, qx). To avoid
training |D′| local critics, we propose to let w be the global
weight, and let ψ depends on x, i.e., ψx = ψ(π;w,x) (see
Fig. 4). We assume the supremum is attained for some w ∈ W
for a compact W , then the representation of EMD becomes
maxw Ep(θ|D)[ψ(Tx(θ);w,x)] − Eqx [ψ(π;w,x)]. The final
aggregated training objective under EMD is,

min
α

max
w

EpD′ (x)[Ep(θ|D)[ψ(Tx(θ);w,x)]

−Eqx [ψ(π;w,x)]] + λR(w), (9)

where w is the introduced global parameter for ψ, R(w)
is the imposed gradient penalty [12] over w to enforce the
Lipschitz constraint. Solving the minimax problem requires
the supremum to be attained for each x under the Lipschitz
constraint. Specifically, in every optimization step, ψ is trained
to generate a critic for each x that matches the exact EMD.
Practically, this needs a high-capacity critic, and the required
capacity increases with the number of classes K.

3) MMD: Let Hk be a reproducing kernel Hilbert space
(RKHS) defined by a positive-definite kernel k, the MMD
between px and qx can be written as

MMDk(p, q) = sup
ψ∈Hk,‖ψ‖H≤1

Ep(θ|D)[ψ(Tx(θ))]−Eqx [ψ(π)]

(10)
Compared with EMD, the advantage of MMD is that there is no
need to train an NN as the critic that maximizes Eq. 10. With
kernel trick, MMD can be readily estimated in closed-form
with its empirical version under finite sample (Sec. B).

Compared with KL divergence, MMD is a valid statistical
metric. Due to the symmetry property, the approximation is
expected to be neither mean-seeking nor mode-seeking. Thus,
MMD is not expected to have an under-confidence issue.

4) Reparameterization: Note that optimization under both
EMD and MMD requires gradient of the expectation of
critic via sampling from q, which contains parameters. To
obtain an efficient gradient estimator and reduce variance,
we reparameterize the Dirichlet by an equivalent product
of K independent Gamma (ProdGamma) distributions. If
π̃ ∼ ProdGamma(π̃|α) =

∏K
k=1 Gam(π̃k|αk), then π =

(
∑
k π̃k)

−1
π̃ ∼ Dir(π|α). By Thm. 3 in [2], in each L(φ|x),

the supremum is attained at ψ∗x ∈ L1 and the gradient is
∇φL(φ|x) = −∇φEq(π|x,φ)[ψ

∗
x(π)]. Then as noted by [8],

the gradient ∇φL(φ|x) can be implicitly computed with-
out knowing the inverse of standardization function (e.g.,
CDF). Specifically, by Eq. 5 in [8], ∇φEq(π|x;φ)[ψ

∗
x(π)] =

EPG(π̃|x;φ)[∇π̃ψ
∗
x(π)∇φπ̃], where the first term ∇π̃ψ

∗
x(π)

is computed via the chain rule and the second term ∇φπ̃ is
obtained by solving a local diagonal linear system.

E. Amortization Gap

To better understand the nature of the proposed approxi-
mation, we consider the “un-amortized” version of the ap-

proximation as an intermediate stage, which involves fitting
separate approximations to each px. To demonstrate the idea,
we leverage MMD due to its nice property. For fixed px, the
optimal point-wise approximation within family Q is defined
as

q̄∗x = argmin
q∈Q

MMDk(q, px). (11)

Then we have the following lemma:

Lemma 1. Let P(SK−1) be the space of probability measures
over the simplex, equipped with MMD metric defined by a
universal kernel. If T satisfies Assumption 1, then the map
x 7→ px is continuous. Further, if Q ⊆ P(SK−1) is a closed
convex model space, the projection q̄∗x is unique and the map
x 7→ q̄∗x is also continuous.

Further, if we assume the model space is parameterized and
identifiable in terms of MMD, i.e. Q = {q(π|α) : α ∈ A} and
MMDk(q(π|α), q(π|α′)) = 0 if and only if ‖α − α′‖ = 0,
we may obtain continuity in parameter space. The continuity of
optimal parameters implies there exists a continuous function
α∗ : x ∈ X 7→ α∗(x) ∈ A, which serves as the essential
target of our amortized goal.

To analyze how amortization affects the approximation, we
define the local amortization gap as

∆(x) = MMDk(qx, px)−MMDk(q̄∗x, px). (12)

Then it obviously holds that

0 ≤ ∆(x) ≤ MMDk(qx, q̄
∗
x) (13)

where the lower bound is because q̄∗x is the projection and
the upper bound is due to triangle inequality. Then our
goal, minimizing aggregated MMD loss Ep(x)MMDk(qx, px),
is essentially equivalent to minimizing aggregated amortiza-
tion gap Ep(x)∆(x), up to an irrelevant additive constant
MMDk(q̄∗x, px), which does not contain student model pa-
rameters φ.

One can see that α∗ is the global minimizer of aggregated
amortization gap and hence the global minimizer of the
aggregated MMD loss. Intuitively, if F is of enough capacity
to approximate α∗, then the infimum (over F) of aggregated
amortization gap could be close to 0, which means no additional
cost is incurred by amortizing the approximation. In other
words, model loss due to using restrictive Q and measured by
MMDk(q̄∗x, px) will dominate. Further, if the global optimum
is reached, OPU approximation must agree with the point-
wise minimizer q̄∗x, i.e. MMDk(qx, q̄

∗
x) = 0, due to uniqueness

of projection. Empirically, we observe the magnitude of the
constant MMDk(qx, q̄

∗
x) = 0 is acceptably small, as evinced

by the averaged amortization error (AvgAmtErr) in Tab. VI in
the experiments in Sec. VI.

IV. EXPERIMENTS WITH TRADITIONAL BAYESIAN MODELS

In this section, we present experiments applying OPU
to traditional Bayesian models, including Bayesian Logistic
Regression (BLR) and Gaussian Process (GP) classification.
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TABLE I: Uncertainty measure with traditional Bayesian models.
H(·) represents discrete entropy and S(·) is the softmax function.
πs, hx and gx are defined in Sections III-B and III-C. The process
of sampling µ∗

s from GP is described in the Appendix C-D.

Model Uncertainty measures

PG
CA-PG

Entropy (E) H( 1
S

∑S
s=1 πs)

Max. Prob. (P) maxc(
1
S

∑S
s=1 πs)

SGPMC
SVGP

Entropy (E) H( 1
S

∑S
s=1 S(µ

∗
s))

Max. Prob. (P) maxc(
1
S

∑S
s=1 S(µ

∗
s))

µ∗
s ∼ P (µ)

OPU
Entropy (E) H(hx)

Max. Prob. (P) maxc(hx)
Concentration (C) egx

A. Experimental Setup

1) Models and Tasks: We consider two models, BLR and GP
classification. For each model, we choose a Bayesian method
as the Bayes teachers and approximate them with our OPU.
We also compare with state-of-the-art approximations that are
proposed for the specific types of methods. For BLR, we
use Polya Gamma (PG) [29] as the teacher, and CompactAp-
prox [31] for comparisons. For GP, we use SGPMC [16] as
the teacher, and SVGP [17] for comparison. For each type of
model, in-domain misclassification (MisC) detection, out-of-
domain (OOD) input detection, prediction performance, and
prediction time are presented.

2) Data: For a fair comparison with other works, we let
D′ = D when learning the approximation of OPU. The in-
domain dataset is split into training data and testing data, i.e.,
Din = D′ = {Dtr,Dte}, which is used for training models,
evaluating prediction and MisC detection. The OOD dataset
Dood and Dte are used for OOD detection. To reduce the time
consumption in sampling from the Bayes teacher, we generate
and store the set of MC samples beforehand and use the same
set during approximation.

3) Uncertainty Measures and Evaluation Metrics: We show
the measures of uncertainty for different models in Tab. I,
which are Entropy (E), Max probability (P), and Concentration
(C). For OOD detection, given two inputs x1 and x2, if qx1

has higher E (or lower P or lower C) than qx2
, then qx1

is
more likely to be an OOD data. The value of E, P, and C are
computed for all testing data points (both in-domain data and
out-of-domain data), which rank the data points based on their
uncertainty values.

To assess the performance, we use accuracy, time, Area under
the ROC (AUROC) and PR (AUPR), following the baseline in
[14]. The ROC curve is plotted by setting a threshold on each
uncertainty value and computing the True Positive Rate and
False Positive Rate at each threshold. Similarly, the PR curve
is plotted by computing the Precision and Recall. Then the
area under two curves (AUROC and AUPR) can be obtained.
For misclassification detection, a similar calculation process is
applied. To save space, we only present the best performing
uncertainty measure (E, P, or C) for each task and method.

Time is evaluated on the whole Dte. We use the MXNet

Prediction ConcentrationTeacher

BLR

GP

Fig. 5: Toy example of the uncertainty of (left) Bayes teacher;
(middle) prediction model, i.e. class probabilities; (right) concentration
model. Samples are generated by the BLR model with Polya
Gamma, and Gaussian process classification. The uncertainty of the
teacher and prediction model is measured by entropy, while that of
the concentration model is given by its scalar output. Blue areas
correspond to high uncertainty while red areas correspond to high
confidence. (Better viewed in color.)

implementation of BDK and GPflow implementation of GP,
and the remaining models are implemented in Pytorch. All
experiments run on a desktop with an i7-8700 CPU and an
RTX-2080 Ti GPU.

B. Toy Example

We first present a toy example to illustrate our OPU. In
the toy example, we generate two clusters each with 10 data
points using two Gaussian distributions centered at (2.5, 2.5)
and (−2.5,−2.5) respectively. The covariance matrices are
both identity matrices.

1) Bayesian logistic regression: For the first example, we use
Bayesian logistic regression (BLR) with Polya Gamma as the
Bayes teacher px and generate 100 samples for the parameters.
The prediction model hx and concentration model gx in the
student are both MLPs with a 2-10-2 architecture, where the
activation function is ReLU. To train the student model, we
use forward KL as ρ(·, ·) and train the student model with an
SGD optimizer at a learning rate of 0.01 for 100 epochs. To
visualize the results, we randomly select 1000 data points in a
2-D square, calculate the measures of uncertainty for each data
point, and perform the interpolation. The uncertainty measures
include: the entropy of mean of particle collected from the
Bayes teacher, the entropy of output of prediction model hx,
and output of concentration model gx.

The results are shown in Fig. 5 (top). The entropy map of
the prediction model is similar to that of the teacher, with
highly uncertain areas appearing around the decision boundary
and the contours are almost parallel with the decision boundary.
For the concentration model, the area between the two clusters
are lighter showing lower uncertainty, while the CM is more
uncertain on the Out-of-Domain (OOD) area. By comparison,
BDK [3] and other knowledge distillation works [36, 11] only
capture the uncertainty of the prediction model (middle figure),
while they cannot tell whether a data point is out-of-domain
or not.
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TABLE II: Results on Bayesian logistic regression and Gaussian process classification models.

Bayes teacher Data Model MisC detection OOD detection Acc. Time
AUROC AUPR AUROC AUPR (%) (sec.)

BLR

Pima
PG 60.2±0.7 (E) 24.2±1.5 (P) 87.0±3.0 (E) 76.7±0.8 (E) 64.4±0.5 1.010±0.001

CA-PG 58.2±1.4 (E) 24.2±1.3 (E) 80.1±2.1 (E) 74.5±0.4 (E) 62.3±0.2 0.182±0.001

OPU-PG 59.7±0.6 (P) 25.6±1.1 (E) 100.0±0.0 (C) 100.0±0.0 (C) 64.4±0.5 0.011±0.002

Spam
PG 83.9±0.1 (P) 24.7±1.4 (E) 55.5±2.2 (E) 53.5±1.8 (E) 92.4±0.8 5.938±0.001

CA-PG 64.1±1.2 (P) 23.9±0.9 (E) 71.5±2.4 (E) 67.5±3.1 (E) 85.4±1.7 0.362±0.001

OPU-PG 83.9±0.1 (E) 23.8±0.8 (E) 99.7±0.0 (C) 99.3±0.0 (C) 92.4±0.9 0.011±0.002

GP

Pima
SGPMC 65.3±1.3 (E) 46.4±0.8 (E) 96.7±0.3 (E) 94.9±0.1 (E) 79.3±0.1 0.003±0.002

SVGP 64.3±0.7 (E) 43.2±1.2 (E) 96.0±0.5 (E) 91.1±1.1 (E) 77.1±0.0 0.004±0.001

OPU-SGPMC 65.7±0.2 (E) 44.6±1.6 (E) 100.0±0.0 (C) 100.0±0.0 (C) 79.2±0.1 0.010±0.002

Spam
SGPMC 86.7±0.3 (E) 37.8±1.3 (E) 98.6±0.2 (E) 97.6±0.1 (E) 92.4±0.2 0.056±0.002

SVGP 86.2±0.2 (E) 33.3±1.0 (E) 99.2±0.1 (E) 98.5±0.2 (E) 92.1±0.1 0.032±0.001

OPU-SGPMC 86.5±0.2 (E) 39.5±0.8 (E) 100.0±0.0 (C) 100.0±0.0 (C) 92.0±0.1 0.011±0.002

2) Gaussian process classification: For the second example,
we use a Gaussian process classification model SGPMC with
RBF kernel as the Bayes teacher px, following the same
sampling schedule and experimental setup as BLR. The results
are visualized in Fig. 5 (bottom). Similar to BLR, the entropy
of particle mean and the entropy of the prediction output of GP
only express the uncertainty of classification (left and middle).
In contrast, the concentration model (right) fully captures the
out-of-domain uncertainty, as the in-domain area is circled
by the entropy contours. The area between the two clusters
has high prediction uncertainty and high concentration (high
confidence), showing that the model knows that this area is
in-domain but does not know the class because it is on the
decision boundary. This corresponds to the “known-unknown”
case as mentioned in Fig. 3 (c).

C. BLR and GP on Real-World Datasets

We next present results on real-world datasets.
1) Datasets: This experiment uses Pima and Spambase

datasets as Din. Pima is a medical dataset with 769 data points
and 9 dimensions. Spambase is a text dataset with 4601 data
points and 57 dimensions for identifying spam email. We
generate the same number of data points from a zero-mean
multivariate Gaussian distribution for Dood. For each dataset,
10% of data points are uniformly selected into the testing set
Dte. We normalize the data by features with L2 norm.

2) Models: For BLR, we test three models: Polya Gamma
(PG), CompactApprox approximating PG (CA-PG), and OPU
approximating PG (OPU-PG). We draw 500 posterior samples
from PG (methods to draw samples are shown in Appendix
C-A) and train OPU with the following hyperparameters:
number of epochs 100, learning rate for student. CA-PG is
trained by first drawing 5000 samples from PG then evaluating
the model with 50 randomly selected samples from them (same
setup as CompactApprox). The random selection is repeated
for 105 times and we pick the best group of samples.

For GP, we use SGPMC [16] as the teacher, and SVGP [17]
for comparison. There are 3 models tested: SGPMC, OPU
approximating SGPMC (OPU-SGPMC) and SVGP. SGPMC
and SVGP are trained with 1

10 |Din| data points randomly
selected from Din as inducing points. Then 500 samples over
functions of Din are generated from SGPMC (methods to draw
samples are in Appendix C-D).

3) Experiment Results: The results are shown in Tab. II. As
the results for the three metrics are similar, we only show the
results trained with forward KL divergence.

Looking at the BLR results, OPU-PG maintains a similar
performance with the original PG on prediction accuracy and
MisC detection. Meanwhile, OPU outperforms CA-PG on
prediction accuracy, MisC, and OOD detection. For OPU, CM
outperforms other uncertainty measures at OOD detection,
which indicates it captures the distributional uncertainty well.
OPU performs better than the PG Bayes teacher. The reason
might be that a parametric model is learned to approximate
the ensemble of discrete samples, which could produce a
smoother output distribution (regularization), leading to better
performance. OPU also achieves a ∼100-600x speedup from
the original PG.

For the GP results, on MisC detection and prediction
accuracy, OPU has a similar performance to SGPMC, which
indicates the effectiveness of approximating prediction results
with an ensemble of samples in the nonparametric family. With
the same number of inducing points, SVGP performs slightly
worse than SGPMC, because it incurs a two-fold approximation.
Measuring uncertainty with CM in OPU outperforms other
measures and models, which indicates the sharpness of the
logistic-normal distribution can be captured via the CM in our
designed Dirichlet.

SGPMC and SVGP are faster than OPU on Pima, but are
slower than OPU on the larger Spambase. This is due to the
static latency for setting up the GPU for OPU, which becomes
the main time cost when the dataset is small (as in Pima). For
the two GP methods, the computation time depends on the
number of inducing points and the number of dimensions.
Therefore, as the dataset becomes larger (Spambase), the
computation time increases.

V. EXPERIMENTS WITH BAYESIAN NEURAL NETWORKS

In this section, we present experimental results using OPU
on Bayesian neural networks.

A. Experimental Setup

1) Models and Tasks: We use MCDP [10] and SGLD [35]
as the Bayes teacher. Given MCDP as the teacher models,
MCDP-KL represents the performance of MCDP together with
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the locally fitted q∗x under forward KL. Similarly, we present
the results of MCDP-EMD, MCDP-MMD, SGLD-KL, SGLD-
EMD, SGLD-MMD.

We approximate the predictive distribution using OPU and
compare with BDK [3] and DPN [25]. We denote these as
OPU-MCDP (OPU approximating MCDP), OPU-SGLD, BDK-
SGLD, BDK-Dir-SGLD, and DPN. For BDK-Dir-SGLD, we
replace the Categorical distribution in BDK by a Dirichlet
without disentangling the mean and concentration, then train it
with the same MC ensemble as OPU-SGLD. This is to show
the benefits of explicit disentanglement

The MisC and OOD detection, prediction performance, and
prediction time are presented.

2) Datasets: For datasets, we use MNIST, balanced EM-
NIST datasets and Cifar10 as Din, and use Omniglot, SE-
MEION and LSUN dataset as Dood, as in [25]. MNIST is an
image dataset of 28× 28-dimensional handwritten digits from
0 to 9, which contains 60,000 training data points and 10,000
testing data points. Balanced EMNIST is an image dataset
that contains 131,600 characters and 47 balanced classes. The
CIFAR-10 dataset consists of 60000 32x32 color images in
10 classes, with 6000 images per class. Omniglot is an image
dataset that contains 1,623 different handwritten characters
from 50 different alphabets. SEMEION is an image dataset
that contains 1,593 handwritten digits. LSUN contains around
one million labeled images for each of 10 scene categories
and 20 object categories.

TABLE III: Uncertainty measure with Bayesian neural networks. H(·)
represents discrete entropy, DH(·) represents differential entropy and
S(·) is the softmax function.

Model Uncertainty measures

MCDP
SGLD
DPN

Entropy (E) H( 1
S

∑S
s=1 πs)

Max. Prob. (P) maxc(
1
S

∑S
s=1 πs)

Differential Entropy (D) DH(q∗x)

BDK Entropy (E) H(y)
Max. Prob. (P) maxc(y)

OPU
Entropy (E) H(hx)

Max. Prob. (P) maxc(hx)
Concentration (C) egx

3) Uncertainty Measures and Evaluation Metrics: As shown
in Tab. III, the uncertainty measures are the discrete entropy
(E) and maximum probability (P) for the teacher, and E,
P, and concentration (C) for the student, similar to Section
IV-A3. Furthermore, to show the amortization gap, we use
the differential entropy (D) of a locally fitted Dirichlet q∗x, as
presented in Sec. III-E, The D of q∗x is expected to be the
best uncertainty measure that OPU can approach theoretically
(when the amortization loss is zero). For fairness, the same
set of posterior particles is used for training D. The evaluation
metrics used are the same as in Sec. IV-A3.

B. Results on MNIST

We next present the results on MNIST, which appear in
Tables IV to IX.

1) NN implementation: The NN architecture used by these
models is an MLP with size 784-400-400-10, ReLU activations,
and softmax outputs, following Balan et al. [3]. For the
concentration model, we use an MLP with size 784-400-400-1.
MCDP is trained by SGD with hyper-parameters: dropout-
rate of 0.5, learning rate 5 × 10−4, mini-batch size of 256,
number of iterations 103. For MMD, we use a summation of
RBF kernel and polynomial kernel. OPU-MCDP is trained
by Adam with hyper-parameters: number of iterations 100,
learning rate for student 10−3. The training of SGLD and
BDK follows Balan et al. [3]. Then OPU-SGLD is trained
with the same hyperparameters as OPU-MCDP. Results of
DPN are from Malinin and Gales [25].

2) Computation time: The main results of OPU are shown in
Tab. IV. For comparison, we also show the detailed results of us-
ing the original samples from the Bayes teacher MCDP/SGLD
in Tab. V, whose values might be covered by differential
entropy of locally fitted Dirichlet (D) in Tab. IV. OPU offers
a ∼500x speedup compared to the original MCDP/SGLD, as
OPU only evaluates the model twice (PM and CM in the
student network) while MCDP/SGLD evaluates for S times.
This confirms our idea of accelerating Bayesian prediction
by diverting the sampling process from the test period to the
approximation period. Note that the time cost of MCDP/SGLD
increases with more posterior samples involved. BDK is slightly
faster than OPU because it runs one network while OPU runs
both PM and CM.

3) Comparisons with BDK: As seen in Tab. IV, in some
tasks especially OOD detection, the concentration measure
(CM) outperforms the BDK baseline. This shows the explicit
disentanglement of mean and concentration helps “targeted”
knowledge distillation, as shown in Sec. III-C. By comparing
OPU-SGLD-KL and BDK (trained by forward KL), we observe
that OPU-SGLD-KL is significantly better in OOD detection
tasks and MisC detection measured by AUROC. BDK shows
a slight advantage in the MisC detection task when measured
by AUPR. The reason is knowledge distillation only happens
between two categorical variables in BDK, which only captures
prediction information. In contrast, OPU first extracts all
information in a BNN with the induced distribution, then
transfers the knowledge to a more expressive distribution
with a guaranteed small loss (Sec. III-E). Adding a Dirichlet
distribution to BDK (BDK-DIR-SGLD) helps to improve the
performance of OOD detection. However, on SEMEION, which
is expected to be harder as it is more similar to MNIST, there
is a large performance difference from OPU. This further
validates the necessity of explicit disentanglement of the mean
and concentration.

4) Comparisons with DPN: OPU (without OOD data in
training) has comparable performance to DPN (which uses a
hand-crafted goal and OOD data in training). Another reason
that DPN performs slightly better is that DPN uses VGG-6 (4
Convolutional layer and 1 FC layer), which is a much stronger
model than the 2-layer MLP model that other models use.

5) Comparing KL, EMD, MMD: We next compare the
probability distances ρ used to train the approximations (the
amortized OPU and the locally-fit Dirichlet). As shown in
Tab. IV, MCDP-MMD and OPU-MCDP-MMD have the best
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TABLE IV: Results on MNIST for Bayesian Neural networks. The double quote means “same as above”.

Model MisC detection OOD det. (Omniglot) OOD det. (SEMEION) Acc. Test
AUROC AUPR AUROC AUPR AUROC AUPR (%) time(s)

MCDP-KL 97.3±0.5 (E) 43.0±0.1 (E) 99.4±0.2 (D) 99.7±0.1 (D) 86.4±2.2 (E) 53.9±1.7 (P) 97.9±0.5 210.6±0.5

MCDP-EMD 97.3±0.5 (E) 43.0±0.1 (E) 99.6±0.1 (D) 99.9±0.0 (D) 86.4±2.2 (E) 53.9±1.7 (P) 97.9±0.5 "
MCDP-MMD 97.3±0.5 (E) 43.0±0.1 (E) 99.7±0.2 (D) 99.9±0.0 (D) 90.1±0.7 (D) 71.2±2.5 (D) 97.9±0.5 "

OPU-MCDP-KL 94.2±0.8 (E) 37.7±1.3 (E) 100±0.0 (C) 77.1±0.1 (C) 91.4±0.0 (C) 67.3±0.2 (C) 96.2±0.2 0.441±0.002

OPU-MCDP-EMD 95.3±0.3 (P) 43.8±0.9 (P) 100±0.0 (C) 100±0.0 (C) 93.3±0.2 (C) 82.5±0.5 (C) 96.1±0.2 "
OPU-MCDP-MMD 97.2±0.2 (P) 41.1±0.6 (P) 100±0.0 (C) 100±0.0 (C) 99.8±0.0 (C) 98.6±0.1 (C) 97.9±0.1 "

SGLD-KL 97.9±0.3 (P) 46.2±0.2 (E) 99.2±0.1 (E) 99.6±0.1 (E) 89.6±0.9 (E) 47.0±1.4 (E) 98.4±0.3 233.5±0.1

SGLD-EMD 97.9±0.3 (E) 46.2±0.2 (E) 99.4±0.1 (D) 99.7±0.0 (D) 89.9±0.2 (D) 47.1±0.7 (D) 98.4±0.3 "
SGLD-MMD 97.9±0.3 (E) 46.2±0.2 (E) 99.2±0.1 (E) 99.6±0.1 (E) 89.6±0.9 (E) 47.0±1.4 (E) 98.4±0.3 "

OPU-SGLD-KL 94.2±1.5 (E) 46.7±0.9 (E) 100±0.0 (C) 100±0.0 (C) 99.5±0.1 (C) 98.4±0.0 (C) 98.2±0.2 0.443±0.002

OPU-SGLD-EMD 93.7±1.7 (P) 44.4±0.6 (E) 100±0.0 (C) 100±0.0 (C) 98.9±0.3 (C) 96.2±0.3 (C) 98.0±0.1 "
OPU-SGLD-MMD 97.2±0.7 (P) 44.6±0.5 (E) 100±0.0 (C) 100±0.0 (C) 99.1±0.1 (C) 98.0±0.0 (C) 98.1±0.1 "

BDK-SGLD 85.9±1.3 (E) 46.6±2.7 (E) 46.1±0.8 (E) 41.7±2.3 (E) 35.3±3.1 (P) 46.5±1.4 (P) 92.1±0.5 0.441±0.002

BDK-MCDP 86.9±1.9 (E) 41.1±1.5 (E) 47.5±1.1 (P) 44.1±2.6 (P) 43.3±1.9 (P) 47.2±1.0 (P) 92.4±0.3 "
BDK-DIR-SGLD 89.9±0.7 (E) 40.0±1.1 (E) 95.4±0.6 (E) 96.4±0.3 (E) 74.7±0.9 (E) 38.3±1.2 (E) 94.1±0.1 "

DPN 99.0 (E) 43.6 (E) 100 (E) 100 (E) 99.7 (E) 98.6 (E) 99.4 /

TABLE V: Results of using the original samples
from the Bayes teacher on MNIST.

Model MisC detection OOD (Omniglot) OOD (SEMEION) Acc.
AUROC AUPR AUROC AUPR AUROC AUPR (%)

MCDP 97.3±0.5 (E) 43.0±0.1 (E) 99.2±0.3 (E) 98.8±0.2 (P) 86.4±2.2 (E) 53.9±1.7 (P) 97.9±0.5

SGLD 97.9±0.3 (E) 46.2±0.2 (E) 99.2±0.1 (E) 99.6±0.1 (E) 89.6±0.9 (E) 47.0±1.4 (E) 98.4±0.3

TABLE VI: Results on
error/gap on EMNIST.

AvgApproxErr 0.0650
AvgModelErr 0.0601
AvgAmtGap 0.0049
AvgAmtErr 0.0053

TABLE VII: Results on EMNIST
for Bayesian NN

Model MisC detection OOD (Omniglot) Acc.
AUROC AUPR AUROC AUPR (%)

MCDP-KL 89.7±0.1 (P) 46.8±0.2 (P) 99.7±0.0 (E) 99.7±0.0 (E) 88.8±0.3

MCDP-MMD 89.7±0.1 (P) 46.8±0.2 (P) 99.9±0.0 (D) 99.9±0.0 (D) 88.8±0.3

OPU-
MCDP-KL 84.9±0.5 (P) 40.7±0.6 (P) 96.2±0.4 (E)

/67.5±0.2 (C)
96.5±0.3 (E)
/63.7±0.1 (C) 87.9±0.1

OPU-
MCDP-MMD 89.8±0.2 (P) 49.6±0.3 (P) 100.0±0.0 (C) 100±0.0 (C) 88.4±0.1

TABLE VIII: Results on MNIST for MCDP/SGLD
(Bayes teacher) with half samples. The number in
parentheses is the performance degradation compared
to using all samples.

Model MisC Omn. SEM. Acc. Time
AUROC AUROC AUROC (%) (s)

MCDP 96.1(-1.2) 98.5(-0.9) 82.7(-4.1) 96.9(-1.0) 132.1

SGLD 97.1(-0.9) 91.2(-8.0) 82.5(-6.8) 98.0(-0.4) 141.9

TABLE IX: Results for Bayesian NN on Cifar10. (“M” denotes
“MCDP”. “O” denotes “OPU-MCDP”. “MSP” denotes the Max.P
results, “M-GAN” denotes the Max.P results with GAN-generated
samples and “OE” is with outlier exposure from Hendrycks et al. [15].
“ODIN” is the results from Liang et al. [22].)

Model MisC detection OOD (LSUN) Acc.
AUROC AUPR AUROC AUPR (%)

M-KL 92.2±0.4(P) 47.0±0.2(P) 90.5±0.4(E) 88.7±0.2(E) 92.4
M-EMD 92.2±0.4(P) 47.0±0.2(P) 91.4±0.1(D) 89.1±0.1(D)92.4
M-MMD 92.2±0.4(P) 47.0±0.2(P) 91.0±0.2(D) 89.3±0.1(D)92.4
O-KL 87.2±0.6(P) 45.9±0.3(P) 86.1±0.7(E) 85.5±1.2(E) 89.9
O-EMD 91.8±0.3(E) 46.9±0.1(P) 93.5±0.1(C) 92.0±0.3(C)91.8
O-MMD 91.3±0.2(E) 46.6±0.1(P) 92.9±0.2(C) 91.7±0.2(C) 91.8
MSP / / 88.1 / /
M-GAN / / 89.6 / /
OE / / 97.8 / /
ODIN / / 91.3 / /

performance, using differential entropy (D) and concentration
measure (CM), respectively. This is because the samples of
MCDP are relatively spread out over the simplex and might
be multi-modal. The probability distance is fully captured by
MMD under such case. EMD is expected to perform well as
there are a lot of samples πs residing on a low-dimensional
manifold. However, the performance seems to be degenerated
due to the limited capacity of the hyper-network and the

difficulty to train the minimax problem. KL has the worst
performance as expected because it is likely to be under
confident with samples of MCDP. For SGLD, the performance
using KL is the best except for AUROC of MisC detection.
This is because the samples πs of SGLD over the simplex are
much denser and are typically unimodal.

6) Teacher with fewer samples: We also show the perfor-
mance of the original MCDP/SGLD with fewer samples in
Tab. VIII, to illustrate the necessity of a careful and accurate
approximation of predictive distribution. Using fewer particles
negatively affects the performance of the Bayesian classifier,
especially the performance on OOD detection. In real-world
cases like an automatic driving car where the robustness is
critical, it is not worth to trade safety for speed. Therefore,
OPU solves this issue by providing an accurate estimation of
predictive uncertainty with a short evaluation time. Besides the
speedup, OPU approximation provides a full distribution to
characterize the predictive distribution, which is not available
with particle approximations. This allows for better uncertainty
measures such as differential entropy.
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C. Results on EMNIST
The experiments are conducted on EMNIST whose number

of classes is large, to study the performance on OPU fitted on a
larger simplex and validate the theoretical analysis. We choose
Omniglot as the OOD detection dataset as it also contains
handwritten characters, which are harder than SEMEION for
a model trained on EMNIST.

1) NN implementation: A CNN with a structure similar
to LeNet is used for MCDP and OPU (20 and 50 output
channels in two convolutional layers). The baseline approach
achieves a classification accuracy of 88.8%. The samples of
MCDP Bayes NN are expected to be even more dispersive and
multi-modal than MCDP trained with MNIST. OPU trained
with EMD failed to converge, possibly because the capacity
of the hypernetwork was not enough. Therefore, we do not
recommend to use EMD for the amortized approximation of
predictive uncertainty, unless a more scalable estimator of EMD
can be provided.

2) Results: As shown in Tab. VII, the performance gap
between OPU-MCDP-KL and the baseline is larger because
the multi-modality is severe – the entropy of sample mean is
a better measure for OOD detection than the concentration.
This further validates that OPU trained by KL suffers from an
under-confidence issue. Specifically, KL forces OPU to cover
the support of all samples, making the student distribution more
dispersive. This inaccurate estimate of concentration affects
the estimation of prediction results (mean) in turn, thus the
accuracy is lower and MisC detection performance suffers. In
contrast, MMD consistently provides an approximation that
has similar performance with the teacher, which echoes the
analysis in Sec. III-E.

3) Approximation Error: To validate the theoretical study,
we use the four types of error/gap under MMD defined in
Sec. III-E to show the effectiveness of amortized approximation
and the suitability of using the Dirichlet family. Specifically,
the following measures are used:
• Averaged total approximation error (AvgApproxErr):

The averaged MMD between teacher’s particles (for
each x) and the predicted Dirichlet by OPU, i.e.,
1
N

∑N
i=1 MMD(qxi , pxi).

• Averaged total model error (AvgModelErr): The averaged
MMD between teacher’s particles (for each x) and locally
fitted Dirichlet, i.e., 1

N

∑N
i=1 MMD(pxi

, q̄∗xi
).

• Averaged local amortization gap (AvgAmtGap): The
difference between AvgApproxErr and AvgModelErr, i.e.,
∆(x), defined in Eq. 12.

• Averaged local amortization error (AvgAmtErr): We
define this type of error to be the averaged MMD between
locally fitted Dirichlet (for each x) and the predicted
Dirichlet by OPU, i.e., 1

N

∑N
i=1 MMD(qxi

, q̄∗xi
). The

relation between AvgAmtGap and AvgAmtErr is given
by Eq.13.

We show the numerical results on EMNIST dataset in Tab. VI.
It can be observed that the AvgAmtErr of 0.0053 is low
and it bounds the AvgAmtGap, ∆(x) = AvgApproxErr −
AvgModelErr = 0.0049, which is consistent with Eq. 13. The
approximation error (AvgApproxErr) is mainly determined
by the model error (AvgModelErr), which turns out to be

acceptably small. This is consistent with the analysis and also
shows the effectiveness and suitability of using the Dirichlet
family.

D. Results on Cifar10

1) NN implementation: The NN model for teacher and
student is standard VGG19 with the output dimension of the
concentration model to be 1. The MCDP teacher model is
trained with an SGD optimizer and a cyclical learning rate
policy. The base learning rate is initialized to be 0.01 and
linearly increased to 10x of the learning rate, then decreases
back to the base learning rate. The base learning rate is then
scaled by half. The number of MCDP particles is 700. The
OPU students are trained with KL/EMD/MMD using the
corresponding algorithm for 200 epochs.

2) Results: We show the experimental results of OPU
approximating Bayesian NN on the Cifar10 dataset in Tab. IX.
As the task is harder than MNIST, particles tend to be more
spread over the corners, leading to more multi-modal predictive
distributions. Under such case, it can be observed that the
performance of EMD and MMD is much better than that of
KL.

We compare with recent works on predictive uncertainty
evaluation. OPU outperforms Max. P results trained with
regular data (MSP) and with GAN-generated samples (M-
GAN). The model with outlier exposure (OE) performs the
best, but requires explicitly training on OOD data, which is
unrealistic for real-world applications. OPU also performs
ODIN, which is based on temperature scaling and input
preprocessing, on out-of-domain detection.

VI. CONCLUSIONS

In this paper, we propose a generic framework that efficiently
approximates the predictive distribution induced by a model
posterior in an amortized fashion. The proposed framework is
universally applicable to Bayesian methods that generate pos-
terior samples, including both parametric and non-parametric
models. Compared with traditional Monte Carlo Bayesian
methods, our framework obtains the predictive distribution
with a single pass of a neural network. By using a more
expressive predictive distribution, our framework outperforms
CompactApprox, BDK, and SVGP. We also explore different
probability distances (i.e., forward KL, EMD, and MMD) for
learning, and analyze the amortization gap theoretically and
empirically. The experimental results show an acceptably low
amortization gap.

The choice of student distribution for OPU is flexible.
Although we verify that Dirichlet is suitable for the tested
classification tasks, it is still possible that Dirichlet might
incur large model errors. Note that, in our framework, using
a Dirichlet for the student is a modeling choice, similar to
assuming Gaussian posteriors for variational approximations.
The OPU framework is general and any student distribution can
be adopted, e.g., generalized Dirichlet, a mixture of Dirichlets.
To do this requires: 1) a suitable parametrization of the
model that can capture uncertainty; 2) deriving/computing the
approximation loss (KL, MMD, EMD); 3) reparameterization
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trick of expectations for efficient gradient estimation. The
algorithms of KL, EMD, and MMD as well as the analysis
still apply.

The idea of “transferring” the randomness from model
posterior to a simple-structure distribution at the output can be
generalized to other problems where a real-time evaluation of
uncertainty is critical, e.g., object segmentation. This allows
interesting designs of structured output distributions.

Regarding future work, there are two areas to explore. First,
we may consider better metrics for student learning that are
more robust, e.g., by designing a more accurate and efficient
estimator for EMD or exploring different kernels for better
estimation of MMD. Second, we will consider applying OPU
to other computer vision tasks, such as image segmentation
and object detection.
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APPENDIX A
PROOF

Assumption 1. Let T : X ×Θ→ Y be a map between finite
dimensional vector spaces. We say T satisfies Assumption 1 for
distribution p if T (·;θ) is Lipschitz and the Lipschitz constant
Lθ satisfies Eθ∼pLθ < +∞.

Proof. We simply show both maps are Lipschitz continuous
with MMD metric on P(SK−1). Let x,x′ ∈ X and ψ ∈
Hk such that ‖ψ‖Hk

≤ 1. For x 7→ px, the “push-forward”

definition of px leads to

MMDk(px, px′) = sup
‖ψ‖≤1

Ep(θ|D)ψ(Tx(θ))− Ep(θ|D)ψ(Tx′(θ))

≤ sup
‖ψ‖≤1

Ep(θ|D)|ψ(Tx(θ))− ψ(Tx′(θ))|

≤ sup
‖ψ‖≤1

‖ψ‖Ep(θ|D)dk(Tx(θ), Tx′(θ))

≤ CEp(θ|D)‖Tx(θ)− Tx′(θ)‖
≤ CEp(θ|D)Lθ‖x− x′‖,

where dk = is a kernel-based distance. The constant C emits
when bounding dk with Euclidean norm and the existence
of such a constant is due to topology equivalence in finite-
dimensional space. For x → q̄∗x, we notice that q̄∗x is the
projection of px onto Q (effectively the projection of kernel
mean embeddings in Hk). By projection theorem in Hilbert
space, the projection map px 7→ q̄∗x is non-expansive, i.e.

MMDk(q̄∗x, q̄
∗
x′) ≤ MMDk(px, px′),

which leads to Lipschitz property of x 7→ q̄∗x.

APPENDIX B
ALGORITHMS.

For presenting the algorithms, we slightly change the
notation. We let α(x) = α(x,φ), h(x) = h(x,φ1), g(x) =
g(x,φ2), where φ = {φ1,φ2}, φ1 and φ2 are the parameters
of prediction model h and concentration model g, respectively.

KL. With the training objective

min
φ

−EpD′ (x)
1

S

∑
s

ln q(T (x;θs)|x,α), (14)

The student model is updated by doing φt+1
1 := φt1 −

γt(− 1
S

∑
θs
∇φ1

ln q(T (x∗;θs)|α(x∗;φ1))) and φt+1
2 :=

φt2 − γt(− 1
S

∑
θs
∇φ2

ln q(T (x∗;θs)|α(x∗;φ2))) alternately,
where γt is the learning rate at iteration t and x∗ is the input
at this iteration.

EMD. With the following training objective,

min
φ

max
w

EpD′ (x)[Ep(θ|D)[ψ(Tx(θ);w,x)]

−Eqx [ψ(π;w,x)]] + λR(w) (15)

MMD. The kernel mean embedding of px and qx are given
by µp = Epx [k(π, ·)] and µq = Eqx [k(π, ·)]. The training
objective is then,

min
φ
‖µp − µq‖Hk

, (16)

APPENDIX C
SAMPLING

In this section, we illustrate the details for extracting samples
from Bayesian logistic regression, Bayesian neural network,
and Gaussian process. Under some contexts, we use X and Y
to collectively denote the inputs and outputs respectively for
previous D.
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Algorithm 1: OPU Training Algorithm with EMD

Input: Posterior samples: {θs}Ss=1; OPU training data D′;
Gradient penalty coefficient λ; Number of training
iterations: Tstu and Twit.

while φ not converge do
Sample x(i) ∼ pD′(x)
/* Update Approximation */
for iter in 1 . . . Tstu do

Sample {πs′}S
′

s′=1 ∼ q(π|x(i),φ)

L(i)(φ1) = −∑S′

s′=1 ψ(πs′ ;w,x
(i))

φ1 ← Adam(∇φ1
L(i))

Sample {πs′}S
′

s′=1 ∼ q(π|x(i),φ)

L(i)(φ2) = −∑S′

s′=1 ψ(πs′ ;w,x
(i))

φ2 ← Adam(∇φ2
L(i))

end
/* Update Critic */
for iter in 1 . . . Twit do

Sample {πS′s′=1} ∼ q(π|x(i),φ)
Compute R(v)
L(i)(v) =

∑S
s=1 ψ(T (x;θs);w,x

(i))−∑S′

s′=1 ψ(πs′ ;w,x
(i)) + λR(w)

v ← Adam(∇vL(i))
end

end

Algorithm 2: OPU Training Algorithm with MMD

Input: Posterior samples: {θs}Ss=1; OPU training data D′;
Gradient penalty coefficient λ.

while φ not converge do
Sample x(i) ∼ pD′(x)
Sample {πq,s′}S

′

s′=1 ∼ q(π|x(i),φ), get
{πp,s′}S

′

s′=1 = {T (x|θs′)}S
′

s′=1

L(i)(φ1) = 1
S′(S′−1)

∑S′

m6=n k(πq,m,πq,m) +
1

S′(S′−1)

∑S′

m 6=n k(πp,m,πp,m)−
2

S′(S′−1)

∑S′,S′

m,n=1 k(πq,m,πp,n)

φ1 ← Adam(∇φ1
L(i))

Sample {πs′}S
′

s′=1 ∼ q(π|x(i),φ)

L(i)(φ1) = 1
S′(S′−1)

∑S′

m6=n k(πq,m,πq,m) +
1

S′(S′−1)

∑S′

m 6=n k(πp,m,πp,m)−
2

S′(S′−1)

∑S′,S′

m,n=1 k(πq,m,πp,n)

φ← Adam(∇φ2
L(i))

end

A. Bayesian Logistic Regression

The Polya-Gamma (PG) scheme [29] is a data augmentation
strategy that allows for a closed-form Gibbs sampler. In
binary classification, i.e., yn ∈ Y = {1, 0}, let θ be the
regression coefficients with a Gaussian conditional conjugate
prior p(θ) ∼ N (0,Λ−1). The PG Gibbs sampler is composed
of the following two conditionals,

ωn|θ,xn ∼ PG(1,xT
nθ) (17)

θ|ω,D ∼ N (mω,Vω), (18)

where ωn is the augmenting data corresponding to the nth data
point. The posterior conditional variance and mean are given
by Vω = (XTΩX + Λ−1)−1 and mω = V−1

ω (XT(y − 1
2 )),

respectively.
Given this formulation, we will be able to collect samples

from the posterior after a burn-in period. The posterior samples
{θ}Ss=1, together with dataset D′, are used to train our
approximation with goal defined in Eq. 9.

As an MCMC method, the PG augmentation scheme offers
accurate samples. Other alternative methods such as local
variational approximation can be employed, which are much
faster but sacrifice accuracy.

B. Monte Carlo Dropout

A neural network with dropout applied before every weight
layer was shown to be an approximation to probabilistic deep
Gaussian process (GP) [10]. Let q(θ) to be the approximate
distribution to the GP posterior. Here, θ = {Θi}Li=1 and Θi

is a parameter matrix of dimensions Ki ×Ki=1 for NN layer
i. In this approximation, q(θ) can be defined through direct
modification:

Θi = Midiag([zi,j ]
Ki
i=1), (19)

where zi,j ∼ Bern(pi) for i ∈ [L] and j ∈ [Ki−1], given some
prior dropout probabilities pi and matrices Θi are treated as
variational parameters. The binary variable zi,j = 0 indicates
that unit j in layer i − 1 being dropped out as an input to
layer i. The predictive mean of this approximation is given by
E[y|x] ≈ 1

S

∑S
s=1 f(x, ẑ1,s, . . . , ẑL,s), which hence referred

to as MC dropout (MCDP).
We use OPU to approximate the uncertainty induced by q(θ).

A sample in the MC ensemble is given by θs = {Θi,s}Li=1 =
Midiag([zi,j ]

Ki
i=1). We set φ1 = {Φi}Li=1Z to the mean of θs,

i.e., Φi = 1
S

∑S
s=1 Θi,s = Mi

1
S

∑S
s=1 diag([zi,j,s]

Ki
i=1).

MCDP provides a simple way of approximating Bayesian
inference through dropout sampling. However, it still introduces
a variational approximation to the exact Bayesian posterior.
Therefore, we further include a more accurate way to generate
MC ensemble - stochastic gradient Langevin dynamics (SGLD).

C. Vanilla SGLD

SGLD enables mini-batch MC sampling from the posterior
by adding a noise step to SGD [35]. We choose the “vanilla”
version of SGLD in our approximation. Specifically, we start
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training of fθ(·) from θ(0). In each epoch with mini-batch size
B,

θ(t+1) = θ(t) + εt∇ log p(θ(t)|D) + ηt (20)

= θ(t) + εt∇(log p(θ(t)) +

B∑
b=1

log p(yb|xb,θ(t))) + ηt,

(21)

where B is the size of a mini-batch and ηt ∼ N (0, 2εtI).
After SGLD converges at step T , the samples θs = θ(T+s)

is collected by running the training process for another S
iterations. We use averaged samples as parameter of h, i.e.,
φ1 = 1

S

∑S
s=1 θs and train OPU by Eq. 9 with this ensemble.

D. Monte Carlo Gaussian Process

We apply the OPU framework to the GP framework, which
demonstrates its use on a non-parametric classifier. Let data D
be split into as input matrix X and output matrix Y. We con-
sider GP prior over the space of functions, i.e., µ ∼ GP(0,K).
where K is a positive definite kernel controlling the prior belief
on smoothness. Existing techniques allow us to compute q(µ)
which approximates p(µ|D) and is comparable to previous q(θ)
under a parametric model. In a classification task, the posterior
p(µ|D) can be sampled via MCMC [16] or approximated, e.g.,
via variational approximation [17]. Let µ∗ be a shorthand for
µx and π is then defined as S(µ∗). If Gaussian variational
approximation is used, the marginal posterior p(µ∗|x,D) at
x induces a logistic-normal distribution for p(π|x,D). In our
approximation, we obtain samples {µ∗s}Ss=1 from p(µ∗|x,D).
The optimization goal is the same as that in the NN case with
a different target distribution defined as

p̂(π|x,D) =
1

S

S∑
s=1

δ(π − S(µ∗s)). (22)
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