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Abstract—Recent works on 3D single object tracking treat the
task as a target-specific 3D detection task, where an off-the-shelf
3D detector is commonly employed for the tracking. However,
it is non-trivial to perform accurate target-specific detection
since the point cloud of objects in raw LiDAR scans is usually
sparse and incomplete. In this paper, we address this issue by
explicitly leveraging temporal motion cues and propose DMT,
a Detector-free Motion-prediction-based 3D Tracking network
that completely removes the usage of complicated 3D detectors
and is lighter, faster, and more accurate than previous trackers.
Specifically, the motion prediction module is first introduced
to estimate a potential target center of the current frame in
a point-cloud-free manner. Then, an explicit voting module is
proposed to directly regress the 3D box from the estimated target
center. Extensive experiments on KITTI and NuScenes datasets
demonstrate that our DMT can still achieve better performance
(∼10% improvement over the NuScenes dataset) and a faster
tracking speed (i.e., 72 FPS) than state-of-the-art approaches
without applying any complicated 3D detectors. Our code will
be released publicly.

Index Terms—point clouds, detector-free, explicit voting, 3D
single object tracking.

I. INTRODUCTION

S INGLE object tracking (SOT) is a key task in the field of
computer vision, which has wide downstream applications

in outdoor and indoor scenarios, ranging from autonomous
driving [1], [2], robot vision [3]–[6], and intelligent trans-
portation systems [7]. For example, an autonomous pedestrian-
following robot should accurately track its master for efficient
crowd-following control. Another example is autonomous
landing by unmanned aerial vehicles, in which the drone must
track the target and know the exact distance and pose of the
target in order to land safely [8]. In indoor environments,
tracking methods [5], [6], [9] can provide the six-degrees-
of-freedom (6DoF) pose of an object for robust robotics
manipulation. Given an initial bounding box of a template
object in the first frame from images or LiDAR scans, the
aim of SOT is to estimate its location by identifying the
trajectory across all frames. In the past decade, a variety of
image-based trackers (e.g., Siamese neural networks [10]) have
shown promising performance in the 2D tracking community.
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However, the performance of image-based methods often
suffers in degraded situations, e.g., when facing drastic lighting
changes [11], [12]. As a possible remedy, 3D point clouds
collected from LiDAR provide detailed depth and geometric
information, which is inherently invariant to lighting changes
[13], making it more robust when tracking across frames taken
from different illumination environments.

The main challenges of learning-based approaches for 3D
SOT trackers are four-fold: 1) a point cloud is structurally
unordered compared with images, and thus the network must
be permutation-invariant [11]; 2) a point cloud is incomplete
because of occlusion or self-occlusion, and thus the network
must be insensitive to different resolutions of input point
clouds [14]; 3) the scanned point clouds of different objects
might have quite similar shapes [15], and thus the network
must be insensitive to shape ambiguities; 4) a point cloud has
an unstructured nature and thus applying the convolutional
operation is difficult [16].

In 3D SOT, the typical solutions follow a Siamese network-
based methodology, i.e., comparing the feature similarity be-
tween some search regions and the template object. SC3D
[17] is a pioneering 3D tracker, which first enriches geometric
features from sparse point clouds using a shape completion
network [18], and then executes template matching with target
proposals generated by Kalman filtering [19]. However, SC3D
is not an end-to-end network and also cannot meet the real-
time requirement. To address these concerns, P2B [12] first
calculates the point-based correlation between the template
and the search area, and then applies a Siamese region
proposal network (RPN) [20] to detect the final target proposal.
Following this, BAT [15] explores the free box information
to enhance the target-specific search feature. MLVSNet [21]
proposes performing voting on multi-level features to get more
vote centers. With breakthroughs in transformer-based vision
methods, the authors of PTT [11] introduce a transformer
module to further refine the target-specific search feature.
These methods all use historical information to decide the
search area, sample seeds in an implicit strategy, and then
apply the RPN module (VoteNet [22]) to detect the target in
the search space. Although this improves search results, the
usage of the RPN module is still complicated and burdensome
on the whole. Furthermore, the previous 3D trackers ignore
one key point: the coarse target center in the current frame
can be directly predicted in a point-cloud-free way by explicitly
exploring the historical information. The predicted center can
further serve as strong prior knowledge for the final 3D target
box prediction.

To fully utilize this prior knowledge, we propose a novel
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lightweight and detector-free 3D single object tracking net-
work named DMT (Detector-free Motion prediction-based 3D
Tracking). Specifically, we first develop a motion prediction
module to estimate the 3D coordinates of a potential target
center in the current frame using previous frames. Although
the estimated center is coarse, it can provide strong prior
information as guidance. Thus, we further design an explicit
voting layer only consisting of several multi-layer perceptron
(MLP) layers to refine the target center with the desired
position and rotation.

To summarize, the main contributions of our work are:
• To the best of our knowledge, we are the first to com-

pletely remove the usage of complicated 3D detectors
or proposal generation in 3D single object trackers. We
demonstrate that object motion is a useful cue in 3D SOT,
which permits less complex tracking models while still
achieving state-of-the-art performance. Our method can
serve as a simple yet strong baseline in the 3D SOT
community.

• We propose a new lightweight and detector-free 3D single
object tracking network based on motion prediction,
called DMT, and purely applies to point clouds. With the
guidance of center priors, an explicit voting module only
consisting of several MLP layers is designed to generate
accurate 3D positions and the rotation in the X-Y plane.

• We conduct experiments on the KITTI [23] and
NuScenes [24] benchmark datasets to demonstrate the
superiority of DMT over other state-of-the-art 3D SOT
methods. Notably, the performance on the NuScenes
datasets achieves a ∼10% improvement on average, while
running faster and lighter than the previous state-of-the-
art methods.

II. RELATED WORK

The goal of object tracking is to locate the object in suc-
cessive frames using raw data collected from various sensors,
which can be 2D images or 3D point clouds. Numerous
methods for tracking objects in 2D or 3D spaces have been
developed, which are divided into two categories based on the
different data.

A. 2D Single Object Tracking

2D SOT is a basic computer vision task with a long history
spanning decades. The representative deep tracking framework
is built on deep Siamese networks [25]. The pioneering work
is SiamFC [25], which treats visual tracking as a general
template-matching problem and performs favorably in terms of
both tracking performance and speed. Based on SiamFC, many
improvements have been proposed. SiamDW [26] adopts very
deep neural networks (e.g., ResNet [27]) as the backbone for
Siamese tracking. To handle large-scale appearance variations,
SiamRPN [28] and SiamRPN++ [29] employ region proposal
networks (RPNs) for scale regression. In addition, much effort
is being made to build a robust target appearance model,
including UpdateNet [30], MemTrack [31], and DSiam [32].
Kim et al. [33] presents a strong discriminative appearance
model via a novel pooling module. Recent progress on 3D

SOT (e.g., P2B [12] and BAT [15]) follows a bounding box
regression-based framework, which is mainly inspired by the
2D tracker SiamRPN. However, the data source in 3D tracking
is totally different from the images used in 2D tracking.
Directly regressing target bounding boxes is still limited when
the scanned point clouds are sparse. In this work, we alleviate
this problem by incorporating temporal and spatial tracking
information for bounding box regression.

Motion prediction has also been well explored in 2D object
tracking in videos. However, 2D motion prediction is gener-
ally unreliable due to the scale changes, perspective effects,
and inconsistent motion caused by viewing a 2D projection
of an object moving in a 3D scene. Indeed, most modern
deep trackers use a simple learning-free motion prior (e.g.,
cosine window in SiamFC), and rely on the more reliable
2D appearance features. There are a few 2D trackers that
use the motion module to assist with object detection, e.g.,
motion-conditioned detection [34]–[36] for associating objects
in consecutive frames and motion-guided multiple proposal
generation [37], [38]. Notably, these trackers still require an
object detector module (e.g., RPN) performing on a per-frame
basis. In contrast to 2D SOT, we show that motion cues in 3D
point cloud tracking are more reliable and can be exploited to
build lightweight trackers that do not use complex detectors,
while still achieving state-of-the-art performance.

B. 3D Single Object Tracking
Early 3D SOT methods [39]–[42] generally rely on the

RGB-D information and employ the 2D Siamese tracking
architecture. Though these methods are effective in certain
situations, they do not fully explore 3D geometric clues. SC3D
[17] is a pioneering work for point-cloud-based tracking,
which regularizes the latent spaces of the template point cloud
and search candidates using a shape completion network.
However, this method is time-consuming since it uses Kalman
filtering for the target proposal generation. Moreover, it ignores
the local geometric information of each target proposal. PSN
[43] leverages 3D Siamese network for single-person track-
ing. However, it cannot predict the orientation and size of
the target. F-Siamese tracker [44] explores RGB images to
produce 2D region proposals to reduce the 3D point cloud
searching space. However, its performance depends more on
the 2D tracker. 3DSiamRPN [45] combines a 3D Siamese
network and a 3D RPN to track a single object, but the one
stage RPN network limits its performance. P2B [12] fuses
the target object information into 3D search space and then
adopts a state-of-the-art object detection network (VoteNet) to
detect the target. Following this, BAT [15] proposes adding
the bounding box information provided in the first frame as
an additional cue. MLVSNet [21] performs Hough voting
on multi-level features to get more vote centers. PTT [11]
introduces the transformer architecture to enhance the target-
specific feature extracted in P2B. However, these methods all
use the RPN to regress the bounding box of the target, which
is inspired by their 2D SOT counterparts [26], [28], [29]. In
this paper, we show that complex detectors can be removed
from 3D SOT by better leveraging more reliable 3D motion
prediction, and still achieving state-of-the-art performance.
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III. PROBLEM STATEMENT

Let Binit = {x, y, z, h, w, l, θ} be a known 3D bounding
box of the object in the first frame, where (x, y, z) are the
center coordinates of the 3D bounding box, (h,w, l) are the
height, width, and length respectively, and θ is the orientation
of the bounding box. Further, let Q = {Qi}Mi=1 be a query
point cloud created by cropping and centering the object in the
first frame with Binit. Qi is a 3D point in the Q. We define
the single object tracking task as locating the same object in
the search point cloud P = {Pi}Ni=1 given the Binit frame
by frame. M and N are the number of points in the query
point cloud and search point cloud, respectively. Formally,
previous state-of-the-art 3D single object trackers [12], [15]
can be formulated as:

Tracker (Q,P,Binit)→ (x̂, ŷ, ẑ, θ̂), (1)

where Q ∈ RM×3, P ∈ RN×3, and Binit ∈ R7. Notably, we
only predict the center coordinates and orientation (x̂, ŷ, ẑ, θ̂)
of the target since the height, width, and length of the object
are assumed to be the same in other frames.

Previous trackers employ off-the-shelf detectors on scanned
point clouds for target detection. They may easily drift when
the point clouds are relatively sparse or incomplete. In this
paper, we propose predicting the potential target center in
a point-cloud-free way, that fully explicitly leverages motion
cues from previous target states Sprev = {S1, S2, · · · , St−1},
where the state St is the predicted center coordinates in the
t-th frame. The whole process is formulated as:

Tracker (Q,P,Binit,M(Sprev))→ (x̂, ŷ, ẑ, θ̂), (2)

where M(·) is a motion prediction function that estimates a
potential target center in the current frame based on previous
target states.

IV. METHODOLOGY

The overall network architecture of our DMT is shown in
Fig. 1. Given the query and search point cloud with coordi-
nates denoted as Q and P , and an initial bounding box Binit,
we first use the backbone to extract target-specific features
following [15], as introduced in Section IV-A. Unlike previous
studies, we propose a motion prediction module to estimate a
potential target center in the current frame based on previous
target states Sprev , with details described in Section IV-B.
Afterward, an explicit voting module is adopted to modify
the coordinates of the coarse predicted center and predict the
orientation in Section IV-C. The loss function is presented in
Section IV-D. The training strategy and implementation details
are explained in Section IV-E. To highlight the simplicity of
our method, we also sketch the detailed flow in Algorithm 1.

A. Backbone

The aim of the backbone network is to generate an enhanced
target-specific search feature by fusing the template’s target
information into the search area points. We adopt the box-
aware feature fusion (BAFF) module in [15] as our backbone1,

1Our framework is not restricted to BAFF, and any suitable backbone could
be used.

Algorithm 1 The Workflow of DMT
Input: Points Q in query, points P in search area, an initial bounding

box Binit, previous target states Sprev , and target-specific search
feature f .

1: Potential target center generation. Given Sprev , predict a
coarse target center Ccoarse in the current frame using a motion
prediction module.

2: Explicit voting. Feed f and Ccoarse into an explicit voting
module to estimate the target-specific point feature f̂ of the target
center.

3: Final box regression. Regress the 3D bounding box of the target
based on f̂ using a prediction head.

Output: The 3D bounding box of the target.

as shown in Fig. 3. The template and search area are first
fed into PointNet++ [46] to obtain their features. Then the
BAFF module help augment the search area with target-
specific features, which includes BoxCloud [15] comparison
and feature aggregation sub-modules. A BoxCloud is defined
by the point-to-box relation between an object point cloud and
its 3D bounding box. For each point pi in this point cloud, nine
Euclidean distances from the pi to each of the eight corners
and the center of the bounding box are calculated. As shown in
Fig. 2, every point is represented by a 9D vector ci. Formally,
a BoxCloud Cbc can be formulated as follows:

Cbc =
{
ci ∈ R9 | cij = ‖pi − qj‖2 , ∀j ∈ [1, 9]

}N
i=1

, (3)

where qj(j 6=9) is the j-th corner and j9 is the center of the
bounding box.

BoxCloud comparison. Given the feature of a search area
Fs = {fsi }

M1
i=1 obtained by PointNet++, we predict the 9D

BoxCloud coordinates Cs
bc = {csi ∈ R9}M1

i=1 from each point
feature fsi via MLP, where M1 is the number of points in Cs

bc.
The prediction is supervised by a BoxCloud loss, presented in
Sec. IV-D. Then we compare the pairwise distance between
the predicted Cs

bc and the BoxCloud Ct
bc = {cti}

M2
i=1 of the

template, as shown in Fig. 3, where M2 is the number of
points in Ct

bc. Following [15], we adopt the simple l2 distance
as the distance metric. After obtaining the distance map, we
sort and select the top k most similar template points for each
point in the search area. The i-th column of the distance map
in Fig. 3 represents the indices of the k nearest neighbors of
the i-th search point psi .

Feature aggregation. After getting the top k template fea-
tures, we hope to fuse them into the search area. Considering
the feature of a template Ft extracted from PointNet++, the
corresponding spatial 3D coordinates Pt, and 9D BoxCloud
coordinate Ct

bc of the template points, we construct more in-
formative k tuples

{[
f tj , p

t
j , c

t
j , f

s
i

]
,∀j = 1, · · · , k

}
. Finally,

a mini-PointNet is used to obtain the aggregated feature of
the search point from these pairs, which can be formulated as
follows:

f̂si = G�
{
MLP (

[
f tj , p

t
j , c

t
j , f

s
i

)}k
j=1

), (4)

where G� is a max-pooling operation. Finally, we can get the
effective target-specific search feature F̂s = {f̂si }

M2
i=1.

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2023.3243470

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

PointNet++

Template

Search area

PointNet++

Target-specific
search feature !𝐹!

Motion
prediction
module

M
LP256

M
LP256

M
LP256

M
axpooling

Previous frames

Explicit voting module

Final 3D Box
3D

 B
box

regression
Concat

S S T S

T

𝐶"

ℎ"#$

𝑚"#$

ℎ"

𝑚"Forget gate
Input gate Output gate

LSTM cellPotential target center

Backbone

𝐹!

𝐹"

Fig. 1. Overview of DMT. The backbone network first extracts the target-specific features from the template and search area points following [15]. Then the
motion prediction module (MPM) estimates the 3D coordinates of a potential target center. Next, the explicit voting module refines the target-specific search
feature extracted by the backbone to the coarse predicted center. Finally, a 3D bounding box prediction head regresses the target location. One example of
the MPM is an LSTM (lower right corner).
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Fig. 3. The workflow of the box-aware feature fusion (BAFF) module. Cs
bc

is the 9D BoxCloud coordinates, predicted from each search point feature fs
i

via MLP. Ct
bc, Ft, Pt are the 9D BoxCloud coordinates, the features, and the

spatial 3D coordinates of a template, respectively. The module first generates
the distance map between the BoxCloud Cs

bc and Ct
bc to retrieve the top-k

nearest neighbors with respect to each point in the search area. Then, a mini-
PointNet is adopted to generate f̂s

i by aggregating the neighbors’ features.

B. Motion prediction module
The previous end-to-end 3D SOT methods [11], [12], [15]

heavily rely on point cloud features for target object detection.

However, erroneous detection may occur when the point cloud
of the target is incomplete [17]. To alleviate this, we propose
explicitly leveraging spatio-temporal information for 3D SOT.
Specifically, we introduce a motion prediction module (MPM)
M based on previous target states (i.e., predicted 3D target
center coordinates in the previous frames) to predict a coarse
target center in the current frame. Suppose that we have a
tracklet {(xi, yi, zi)}ti=1 in the previous t frames; the predic-
tion of the target center location in the next (t+ 1)-th frame
is formulated as:

(x̂t+1, ŷt+1, ẑt+1) =M({(xi, yi, zi)}ti=1). (5)

In our general design, common regression or prediction models
can be employed as our MPMs for effective target center
prediction. Here we introduce several simple yet effective
MPMs.

Constant velocity model. The constant velocity model
assumes that the target acceleration in the current frame is
0, and the velocity of the target in the current frame should
be equal to the velocity in the last frame. Given the target
locations in the (t−1) and t-th frames {(xi, yi, zi)}ti=t−1, the
predicted target center coordinates in the (t+ 1)-th frame are
calculated as (2xt−xt−1, 2yt−yt−1, 2zt−zt−1). Despite the
simplicity of this model, we find it also works very well in
our DMT.

Sequence-to-sequence prediction model. The goal of our
MPM is to predict 3D coordinates based on previously esti-
mated t target coordinates, which is actually a sequence-to-
sequence prediction task. A long short-term memory (LSTM)
network [47] is a typical sequence-to-sequence prediction
model that has been widely used in various sequence predic-
tion tasks. In this paper, we choose a multi-layer LSTM since
this naive LSTM model can better validate the effectiveness of
our proposed tracking method. The conventional LSTM cell is
shown in Fig. 1 (bottom right). More details can be found in
[47]. In the implementation, we select the center coordinates of
the 10 consecutive frames from the times t−10 to t to predict
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Fig. 4. The overall pipeline of the explicit voting module (EVM). Our EVM first calculates the coordinate offsets between each search point and the coarse
predicted target center. Then the offsets are jointly concatenated with the search features for feature modeling via an MLP. Finally, a permutation-invariant
max pooling layer is applied to obtain the target-specific feature of the predicted target center point for the final 3D box prediction.

potential target center coordinates in the (t+1)-th frame. In the
training stage, we prepare multiple training tracklets generated
from the KITTI and NuScenes datasets to train the LSTM.
In online tracking, we directly use the offline trained LSTM
network for motion prediction without further updating.

Regression model. Traditional learning-based regression
models can also be employed as MPMs. In this paper, we try
several basic regression models, including linear regression,
ridge regression, Gaussian processor regression, and RANSAC
regression. The training for the above models is similar to the
LSTM-based MPM, i.e., using the generated tracklet training
data for training in an offline manner.

The above basic MPMs can roughly predict the potential
target center coordinates based on the previous states. The
prediction is not always reliable since the previous target
states may be noisy (i.e., the predicted target center does
not match the ground truth), or the target changes position
in an unexpected way. To alleviate this problem, we propose a
lightweight explicit voting module to further refine the MPM
prediction.

C. Explicit voting module

Before going into the details of our proposed explicit voting
module (EVM), we give a short review of the RPN module
(VoteNet) used by previous trackers [11], [12], [15], [21]. The
architecture of VoteNet includes two aspects: 1) Hough voting
to convert the search area seeds into possible target centers;
and 2) clustering neighboring potential target centers to obtain
the final target center. To generate the potential target centers,
VoteNet estimates the coordinate offsets between each search
seed and ground-truth target center, which aims to push the
predicted possible target centers and ground-truth target center
to be as close as possible. In our DMT, the above two steps
can be removed since the coarse target center location in the
current frame is provided by our MPM, which makes our
method simpler and lighter.

The overall pipeline of our proposed explicit voting module
is shown in Fig. 4. As can be seen, after obtaining the coarse
target center coordinates (x̂t+1, ŷt+1, ẑt+1) estimated by the
MPM and the target-specific search feature, the goal of our
EVM is to estimate effective features at (x̂t+1, ŷt+1, ẑt+1). In
the design of the EVM, we use coordinate offsets as explicit
voting signals to estimate the target center feature. Specifically,

we first calculate the coordinate offset between the estimated
target center and each search point. We then concatenate the
coordinate offset with the search point feature to obtain a
candidate voting feature f ∈ RC+3, where C denotes the
feature dimension. Suppose there are N search points with N
corresponding candidate voting features {fi}Ni=1. The explicit
target coordinate voting is formulated as:

f̄i = MLP(fi), f̂ = MaxPool({f̄i}Ni=1), (6)

where f̄i ∈ RC , and f̂ ∈ RC are the final estimated
target-specific feature at the estimated target center, which is
obtained by applying the max pooling operation on the channel
dimension of each feature vector in {f̄i}Ni=1. The estimated
feature f̂ is finally fed into a prediction head (i.e., MLP) to
regress the bounding box of the target.

In the training stage, given a ground-truth target center
location in a frame, we randomly sample diverse points around
the ground-truth center. For stable training, the maximum
distance between the sampled points and the ground-truth
center should not be too large, and here we set it to 0.75
meters. During training, our EVM learns to estimate target-
specific features of the sampled points that are effective
for predicting the final bounding box. Note that the diverse
sampled points can effectively mimic the noisy predictions of
MPM, which makes our DMT less sensitive to noise in the
predicted target track.

D. Loss function

Following [15], our training loss includes three components:
classification loss, box-cloud loss, and regression box loss. The
first two losses enhance the target-specific feature extracted
by the backbone, while the latter supervises the estimated 3D
bounding box. In addition, we add a motion prediction loss to
train the MPM (except for the constant velocity model).

Point-wise classification loss. Following [12], we note that
only search points located on the surface of a ground-truth
target are useful in the EVM, and thus labeled as positives,
while all others are negatives. Therefore, a standard binary
cross entropy loss Lcla is adopted to classify the search points.

BoxCloud loss. The BoxCloud features [15] in the search
area are unknown in the inference stage, so we need to predict
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the 9D BoxCloud coordinate Cbc in the search area, which is
supervised by a smooth-L1 regression loss.

Lbc =
1∑
iEi

N∑
i=1

∥∥∥Ci
bc − Ĉi

bc

∥∥∥ · Ei, (7)

where Ĉbc are ground-truth BoxCloud coordinates pre-
calculated before training. Ei is a binary mask, which indicates
whether the i-th point is inside an object BBox or not.

3D box regression loss. The final result of our network is to
predict the 3D box parameters Cbbox = {x̂, ŷ, ẑ, θ̂}. Following
previous work, we adopt Huber (smooth-L1 loss) to supervise
the regression.

Lbbox =
∥∥∥Cbbox − Ĉbbox

∥∥∥ , (8)

where Ĉbbox is the ground-truth bounding box of the target.
Motion prediction loss. When training an MPM, we hope

the distance between the predicted center coordinates of the
target and the ground truth is as small as possible. In this
paper, we use the mean squared error loss Lv for supervision:

Lv =
∥∥Ct+1

cen − Ĉt+1
cen

∥∥
2
, (9)

where Ct+1
cen = (x̂t+1, ŷt+1, ẑt+1) (see Eq. (5)) is the predicted

target center coordinates at the (t+ 1)-th frame, and Ĉt+1
cen is

the corresponding ground-truth coordinates.
Note that we first train the MPM with Lv , and then we use

the following combined loss to train the backbone network,
EVM, and the prediction head:

L = αLcla + βLbc + γLbbox, (10)

where α, β, and γ are hyperparameters to balance their
relationship. Here we set α = 0.2, β = 1.0, γ = 0.2.

E. Implementation details

We follow previous 3D trackers [12], [15] to generate
templates and search point clouds in both the training and
testing stages. To fairly compare with recent trackers equipped
with online detectors, we use the same target-specific search
feature generation method in BAT [15], which makes the
predictions of BAT and our DMT both based on the same
augmented search features.

Search area generation. In practice, the object movement
between two consecutive frames is relatively small, so search-
ing the entire frame for the target is unnecessary. Following
[15], we look for the target near the previous object location
to generate search areas for training and testing. During
both training and testing, templates and their BBoxes are
transformed to the object coordinate system before being sent
to the model.

Network architecture. In the proposed MPM, we use one
LSTM layer with 50 hidden units as the motion predictor. The
input tracklet length is set to 10, meaning that we use target
states in the previous 10 frames for prediction. The model
size of this LSTM model is about 50K, which is extremely
light. The EVM is implemented as a three-layer MLP with
256 hidden units, where the first two layers are followed by
a 1D batch normalization layer and a ReLU activation layer.

We use the same backbone and box prediction head as P2B
[12] and BAT [15].

Training. In the training stage, we first generate tracklet
training data (i.e., each tracklet contains the target center
coordinates in every 10 frames and the corresponding ground-
truth target center coordinates in the next frame) to train the
LSTM network. The batch size is set to the overall dataset size,
and the learning rate and training epochs are respectively set to
1e-3 and 8,000. The whole training takes only 28 seconds for
the car category of the KITTI dataset, which is efficient. After
training the LSTM network in the offline manner, we use it
for online testing without further modifications. The proposed
DMT is trained for 60 epochs using the Adam optimizer with
a batch size of 100. The learning rate is initialized as 1e-3 and
decayed by 0.5 in every 5 epochs.

Testing. During testing, we apply the trained DMT to infer
the 3D bounding boxes of a given target within tracklets frame
by frame. For the current frame, the template is updated by
fusing the point clouds in the first given BBox and in the
previously estimated BBox. To obtain the search area, we
enlarge the previously estimated BBox by 2 meters in the
current frame and collect the points within the enlarged BBox.

V. EXPERIMENTS

In this section, we first describe the experimental settings.
Next, we present experiments on the KITTI and NuScenes
datasets to demonstrate the efficacy of our lightweight 3D SOT
tracker, DMT.

A. Dataset

The KITTI dataset [23] includes raw point clouds scanned
by the Velodyne HDL-64E rotating 3D laser scanner and
annotations for object instances in the form of 3D bounding
boxes. The tailored dataset contains 21 outdoor scenes and
8 categories of targets. Following [12], we generate tracklets
for target instances within all videos and split the KITTI
training set into three parts: scenes 00-16, scenes 17-18,
and scenes 19-20 for the training, validation, and test sets,
respectively, since the annotations of the test set in KITTI are
inaccessible. Furthermore, we also conduct experiments on
the more challenging dataset NuScenes [24]. The NuScenes
dataset includes 1000 outdoor scenes and 23 categories of
objects with annotated 3D bounding boxes. Specifically, the
NuScenes dataset contains 32,302 frames in the car category,
which is five times larger than the KITTI dataset. Following
[15], the training set of NuScenes is used for training, and the
validation set is used for testing.

Sparsity of point clouds. Although there are (on average)
∼120k points in each frame of raw LiDAR data, the points on
the target object might be quite sparse due to occlusion and
LiDAR defects [12]. Thus we count the number of points in
the pedestrian category of the KITTI benchmark, as shown
in Fig. 5. About 36% of pedestrians have fewer than 100
points, and this sparsity introduces great challenges to 3D
single object tracking based on point clouds.
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Fig. 5. Long-tailed distribution of the frame-wise number of points in KITTI-
Pedestrian, which shows the sparsity of target points.

B. Evaluation metric

Following [12], [15], we apply One Pass Evaluation (OPE)
[48] to measure the Success and Precision of different ap-
proaches. For a predicted bounding box and a ground-truth
bounding box, “Success” is defined as the intersection over
union (IOU) between them. “Precision” is defined as the
AUC for the distance error curve from 0 to 2m, which is
measured between the centers of the two boxes. The success
and precision metrics, respectively, measure the box overlap
and center distance error between the predicted bounding box
and the ground-truth bounding box.

C. Comparison with State-of-the-arts

We compare our network with the state-of-the-art methods:
SC3D [18], its follow-up SC3D-RPN [49], FSiamese [44],
3DSiamRPN [45], P2B [12], MLVSNet [21], PTT [11], and
BAT [15]. For a fair comparison, we use the same evaluation
metrics. In this paper, the default setting of the MPM is an
LSTM prediction model. Fig. 6 and Table I show the success
and precision of each network on the KITTI and NuScenes
datasets. The success and precision values for other methods
are those reported in their published papers [11], [12], [15],
[18], [21], [44], [45], [49]. We first quantitatively evaluate
our network on KITTI, and then extend the comparisons to
NuScenes.

Comparisons on KITTI. Following [12], [15], we generate
the search area centered on the previous result in the inference
stage to meet the requirement of real scenarios. The results in
Table I show that the proposed DMT outperforms other 3D
trackers significantly. Specifically, when we mix all categories
together to test the average performance following previous
trackers, our average performance is 55.1, outperforming
BAT by ∼4% on Success, indicating the effectiveness of
the proposed DMT. When compared with PTT for the rigid
object (e.g., Van) tracking, DMT has a significant advantage
(∼10% ) over PTT in the less-frequent van category in terms
of the success metric. However, DMT does not achieve the

highest performance in the more-frequent Car category. The
transformer-based tracker PTT can learn better features of
rigid objects since it has complex network architectures and
more parameters but relies on more data to train the networks.
Qualitative results are given in Section V-E.

To demonstrate its generalizability for non-rigid object
tracking, we compare it with other trackers on Pedestrian and
Cyclist. For Pedestrian, we observe that DMT outperforms
BAT and PTT by ∼8% and ∼6% on Precision respectively, in-
dicating the effectiveness of our tracking pipeline. Amazingly,
DMT outperforms BAT and PTT by a large margin for the
cyclist category, achieving about ∼47%/∼45% improvement
for Precision. This phenomenon can be explained as follows:
1) The amount of training and testing samples is extremely
small; 2) Our method DMT is less sensitive to interference
with non-rigid objects in the search area; 3) DMT is simple yet
effective, thus relying on less data to train better networks. The
visualized results are shown in Fig. 7. This also demonstrates
that our method can achieve better performance, especially
when having less data compared with BAT.

Comparisons on NuScenes. For the Car category,
DMT achieves the best performance of 43.8/48.3 for Suc-
cess/Precision, exceeding the performance of the current state-
of-the-art method BAT [15] by ∼7%/∼9%, respectively. No-
tably, for the Truck and Trailer categories, DMT achieves
∼23% and ∼20% improvements over BAT for Precision,
which demonstrates that our motion-guided pipeline is more
effective, especially on the more challenging dataset. More-
over, for the Bus category, which has the fewest training
samples, our DMT still outperforms BAT by a large margin of
8% in terms of the Success metric. Compared with the baseline
method BAT, the performance of our DMT shows significant
improvements (∼10% on average) in terms of all categories.
Note that PTT/MLVSNet did not present results on NuScenes
in their papers.

D. Computational cost analysis

In this section, we analyze the required computational
resources of different 3D trackers in terms of the number of
parameters, floating point operations (FLOPs), and running
speed. For a fair comparison, here we test our method on all
KITTI-Car frames with a single NVIDIA RTX3090 GPU. As
shown in Table II and Fig. 6 (Left), our method uses less time
per frame with fewer FLOPs compared with other trackers.
Notably, despite the fact that our network includes an LSTM
model, the number of parameters in our model are the same as
P2B, while our model is significantly faster (57% improvement
in FPS) and simpler (36% improvement in FLOPs) using
the same RTX3090 GPU. In addition, the running speed of
MLVSNet is close to ours. However, our DMT is lighter (i.e.,
with fewer model parameters) and can achieve much better
performance on the KITTI dataset (see Table I), demonstrating
that our method is simple yet effective.

E. Results visualization

According to the different categories and difficulties of the
targets, we select and visualize some advantageous cases of

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2023.3243470

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Success rate v.s. Speed on the KITTI dataset

SC3D

PTT
3DSiamRPN

P2B

BAT

Ours

MLVSNet

Precision rate on the KITTI and NuScenes datasets
KITTI-Car KITTI-Ped KITTI-mean NuScenes-mean

3D Single Object Trackers

Fig. 6. (Left) Tracking accuracy vs. speed for the Car category of the KITTI benchmark. Our DMT outperforms state-of-the-art 3D single-object trackers in
terms of both tracking accuracy and speed. (Right) Precision comparison for KITTI-Car, KITTI-Pedestrian, KITTI-mean, and NuScenes-mean.

TABLE I
RESULTS OF THE SUCCESS AND PRECISION OF DIFFERENT 3D TRACKERS WITH DIFFERENT CATEGORIES ON THE KITTI AND NUSCENES DATASET.

‘PED’ REPRESENTS ‘PEDESTRIAN.’

Dataset
Category

Frame Number

KITTI NuScenes
Car Ped Van Cyclist Mean Car Truck Trailer Bus Mean

6424 6088 1248 308 14068 32302 8646 2297 2215 45460

Su
cc

es
s

(%
)

SC3D [17] 41.3 18.2 40.4 41.5 31.2 30.6 23.5 27.4 23.6 28.7
SC3D-RPN [49] 36.3 17.9 - 43.2 - - - - - -
FSiamese [44] 37.1 16.2 - 47.0 - - - - - -

3DSiamRPN [45] 58.2 35.2 45.6 36.1 46.6 - - - - -
P2B [12] 56.2 28.7 40.8 32.1 42.4 34.6 25.2 30.0 28.4 32.3

MLVSNet [21] 56.0 34.1 52.0 34.3 45.7 - - - - -
PTT [11] 67.8 44.9 43.6 37.2 55.1 - - - - -
BAT [15] 60.5 42.1 52.4 33.7 51.2 36.8 28.6 31.8 30.2 34.7

DMT (Ours) 66.4 48.1 53.3 70.4 55.1 43.8 51.3 46.8 38.2 44.0

Pr
ec

is
io

n
(%

)

SC3D [17] 57.9 37.8 47.0 70.4 48.5 35.9 24.8 24.8 21.8 32.5
SC3D-RPN [49] 51.0 47.8 - 81.2 - - - - - -
FSiamese [44] 50.6 32.2 - 77.2 - - - - - -

3DSiamRPN [45] 76.2 56.2 52.8 49.0 64.9 - - - -
P2B [12] 72.8 49.6 48.4 44.7 60.0 37.6 25.2 26.7 27.6 34.2

MLVSNet [21] 74.0 61.1 61.4 44.5 66.6 - - - - -
PTT [11] 81.8 72.0 52.5 47.3 74.2 - - - - -
BAT [15] 77.7 70.1 67.0 45.4 72.8 39.5 28.4 30.5 29.5 36.4

DMT (Ours) 79.4 77.9 65.6 92.6 75.8 48.3 51.1 40.3 31.9 47.3

TABLE II
COMPUTATIONAL COST REQUIREMENTS OF DIFFERENT 3D SINGLE

OBJECT TRACKERS ON KITTI-CAR. * INDICATES THE FPS IS TAKEN
FROM THE CORRESPONDING PAPER.

Method Modality Params FLOPs FPS Platform
SC3D [17] LiDAR - - 1.8* 1080Ti

FSiamese [44] LiDAR+RGB - - 4.9* 1080Ti
3DSiamRPN [45] LiDAR - - 20.8* 1080Ti

P2B [12] LiDAR 5.4M 4.65G 45.5 3090
MLVSNet [21] LiDAR 7.6M - 70.0* 1080Ti

PTT [11] LiDAR - - 45 3090
BAT [15] LiDAR 5.9M 3.05G 68.0 3090

DMT (Ours) LiDAR 5.4M 2.98G 71.5 3090

our DMT in Fig. 7. Four frames sorted by time from a full
sequence are selected from the Cyclist and Car categories,

respectively. For the cyclist target, the point clouds of the target
and the tracked results are shown in the top of Fig. 7. In
this example, BAT tracks the cyclist wrongly when there are
two similar cyclists in the surrounding area. Our method can
track the target accurately and tightly, indicating our method
is more robust in complex scenarios. Furthermore, we display
the tracked results in the Car category, which is shown in
the bottom of Fig. 7. Here, BAT fails in the extremely sparse
scenes (fewer than 10 points), but our DMT works well, which
shows that our proposed method can indeed cope with point
sparsity.
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Timeline (frame)

BAT (Baseline)
DMT (Ours)
Ground truth

Fig. 7. Visualizations of the example results of DMT compared with BAT. The point clouds of tracked objects are shown in blue. (Top) shows the results
for test instances from the Cyclist category. There are two cyclists nearby, and our DMT can maintain the correct track while BAT drifts to the wrong object.
(BOTTOM) shows the results for test instances from the Car category. Although the point clouds are extremely sparse (< 10 points), our DMT still tracks
the object.

VI. DISCUSSIONS

In this section, we analyze the effectiveness of the important
modules in our DMT, including both the motion prediction
module (MPM) and the explicit voting module (EVM). We
also discuss the choices of MPM, template generation strate-
gies, sampling distances for training the EVM, the number of
sampled training points, and the robustness to object motion
patterns.

A. Ablation studies of DMT components

TABLE III
ABLATION STUDIES OF MOTION PREDICTION MODULE (MPM) AND

EXPLICIT VOTING MODULE (EVM) ON KITTI-CAR.

Method MPM EVM Success Precision
BAT [15] 60.5 77.7
DMT MP X - 37.0
DMT EV X 54.0 64.1

DMT X X 66.4 79.4

We first conduct an ablation study on the necessity of the
EVM and MPM. All studies are conducted on KITTI-Car. We
remove the EVM and the MPM in our network one by one,
which is denoted as DMT MP and DMT EV. Both variations
have the same structure as DMT except for the removed
module. The baseline model is BAT.

The results are shown in Table III. We obtain four con-
clusions from these results. (1) The potential target center
estimated by the MPM is extremely inaccurate, only achieving
37% for Precision. Note that the MPM in our network cannot
regress the orientation of the target, and thus we cannot
compute the Success value. (2) The precision without the

Precision Success

Fig. 8. Comparison of using various regression or prediction models as our
motion prediction module on KITTI-Car.

EVM is 37% (DMT MP), and with EVM is 79.4% (DMT),
which demonstrates that EVM can estimate an effective target-
specific point feature to further refine the prediction of the
MPM. (3) Comparing DMT EV with BAT, the performance
of DMT EV degrades about 6% and 13% in terms of Success
and Precision, respectively. This is consistent with our expec-
tation that we use a simpler explicit voting module, removing
the complicated RPN module. (4) Our full pipeline achieves
the best performance, which demonstrates the two modules
are mutually beneficial and necessary. In addition, even if the
MPM provides inaccurate results, DMT achieves satisfactory
performance due to the explicit voting module.

B. The choice of motion prediction module

In Fig. 8, we compare various types of motion prediction
models on KITTI-Car. The compared models include constant
velocity (CV), linear regression (LR), ridge regression (RR),
Gaussian process regression (GPR), RANSAC with ridge
regression, and LSTM models. The LR, RR, GPR, and RSRR
models are trained in the same way as the LSTM model, i.e.,
using the same sampled tracklets from the training data in
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KITTI-Car for offline training. These models are then applied
to motion prediction during online testing without further
updating. In Fig. 8, the differences between the various models
are not significant, which implies that our DMT is not sensitive
to the MPM selection. This is because our EVM is trained to
predict GT bounding boxes from diverse sampled locations
in the training stage, which makes it less sensitive to noisy
predicted target center locations. The sequence-to-sequence
prediction LSTM model achieves the best Precision (79.4%)
and Success (66.4%) due to its better sequence modeling
ability.

C. Template generation strategy

We next explore the performance of our DMT with four
template generation strategies following [15], including “the
first ground truth,” “the previous result,” “the first ground-
truth and previous result,” and “all previous results.” “The
first ground truth” generates a template using the target in
the first frame (the ground truth). “The previous result” uses
the result in the last frame predicted by the network, while
“all previous results” concatenates the points in all previous
results. To update the template efficiently, the default setting is
“the first ground truth and previous result”, which concatenates
the target in the first frame with the prediction result in the
last frame.

Table IV shows the Success/Precision results with different
settings for different trackers on KITTI-Car. Note that P2B,
BAT, and DMT use the same PointNet++ backbone. The
specific design in our DMT enables it to achieve better
tracking performance than the other trackers under different
template generation settings. Specifically, DMT achieves the
best performance when using the “all previous” strategy,
outperforming BAT and P2B by large margins (∼8% and
∼12%, respectively). Another finding is that P2B, BAT and
our DMT all report degraded results under the “all previous”
setting since these trackers did not train the networks using all
previous results for efficiency, while SC3D did. Despite this,
the superior overall performance of DMT in Table IV sug-
gests that DMT better utilizes motion cues from all previous
predictions compared with BAT.

TABLE IV
DIFFERENT STRATEGIES FOR TEMPLATE GENERATION. 3D TRACKERS ARE

EVALUATED ON KITTI-CAR.

Method The First
GT

Previous
Result

First &
Previous

All
Previous

Su
cc

es
s

SC3D [17] 31.6 25.7 34.9 41.3
P2B [12] 46.7 53.1 56.2 51.4
BAT [15] 51.8 59.2 60.5 55.8

DMT (Ours) 54.3 63.8 66.4 63.5

Pr
ec

is
io

n SC3D [17] 44.4 35.1 49.8 57.9
P2B [12] 59.7 68.9 72.8 66.8
BAT [15] 65.5 75.6 77.7 71.4

DMT (Ours) 67.2 76.7 79.4 75.9

D. Sampling distance for training EVM

In this section, we explore the network performance with
different sampling distances (i.e., the distances between the
sampled points and the ground-truth center) in the training of

the EVM. As mentioned in Section IV-C, the distance should
not be too large to maintain stable training. We conduct an ab-
lation experiment on KITTI-Car, choosing the distance values
from 0.65 to 0.95. As shown in Table V, the performance of
DMT reaches its peak with a distance value of 0.75. When the
distance expands to 0.95, the performance steadily degrades.
This implies the distances between the sampled points and
the ground-truth center are still a little large so some outliers
are picked. On the other hand, the network performance drops
when the distance is set to 0.65. Thus, in this paper, we fix
the values to 0.75 for the best performance.

TABLE V
SAMPLING DISTANCE ANALYSIS FOR DMT. WE EVALUATE DMT ON

KITTI-CAR.

Distance(m) Success(%) Precision(%)
0.65 64.0 77.0
0.75 66.4 79.4
0.85 63.0 77.5
0.95 63.0 76.8

E. Number of sampled training points

In the practical implementation, we sample various points
around the ground-truth target center to mimic motion pre-
dictions during the online tracking process. In this section,
we study how the number of sampled points affects the final
tracking performance. Specifically, we vary the number of
sampled points and report the corresponding performance on
KITTI-Car in Table VI. We find that sampling dense points
(i.e., 64) leads to better performance because dense sampling
provides more comprehensive cases for training a more robust
EVM. We also notice that the performance is not saturated,
implying that better performance can be obtained by sampling
a larger number of points.

TABLE VI
SAMPLING POINT NUMBER ANALYSIS FOR DMT. WE EVALUATE DMT ON

KITTI-CAR.

Number Success(%) Precision(%)
8 61.1 75.0

16 62.2 75.7
32 64.5 78.0
64 66.4 79.4

F. Robustness test for object motion patterns

To better demonstrate the effectiveness of DMT on complex
motion patterns, Fig. 9(a) shows the comparison of our DMT
and BAT on tracklets with different motion complexities.
Here, motion complexity is defined as the average error of
a simple constant velocity model. Our method still performs
better than the RPN-based 3D tracker BAT when the motion
complexity increases, which demonstrates the robustness of
our method to complicated motion patterns. The reason is that
we randomly sample diverse points when training the EVM,
which makes our method more effectively handle various
motion patterns. To further demonstrate the superiority clearly,
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we also visualize one tracklet of a pedestrian having a complex
trajectory in Fig. 9(b). DMT can track the target accurately
despite the complicated motion pattern.

DMT (Ours)GTTrajectory

Our tracked result
(b)(a)

Fig. 9. (a) Comparison of BAT and our DMT under various motion
complexity on KITTI-Pedestrian. (b) Example results of DMT for complex
motion patterns.

VII. CONCLUSION

In this paper, we propose DMT, a novel lightweight and
detector-free network for 3D single object tracking. We design
a motion prediction module for predicting a potential target
center, explicitly leveraging spatial-temporal correlations from
previous frames to explore prior knowledge. In addition, we
propose a simplified voting module to accurately regress the
3D box with the guidance of the potential target center.
Experiments show that our DMT method is lighter, faster,
and simpler and improves the tracking performance over state-
of-the-art methods significantly. According to discussions on
experimental results, the explicit voting module based on a
potential target center is an advantage of our method. We hope
that our work will inspire more investigation into lightweight,
detector-free 3D single-object trackers.
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