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Angular-Driven Feedback Restoration Networks
for Imperfect Sketch Recognition

Jia Wan, Kaihao Zhang, Hongdong Li, and Antoni Chan

Abstract—Automatic hand-drawn sketch recognition is an important task in computer vision. However, the vast majority of prior works
focus on exploring the power of deep learning to achieve better accuracy on complete and clean sketch images, and thus fail to
achieve satisfactory performance when applied to incomplete or destroyed sketch images. To address this problem, we first develop
two datasets that contain different levels of scrawl and incomplete sketches. Then, we propose an angular-driven feedback restoration
network (ADFRNet), which first detects the imperfect parts of a sketch and then refines them into high quality images, to boost the
performance of sketch recognition. By introducing a novel “feedback restoration loop” to deliver information between the middle stages,
the proposed model can improve the quality of generated sketch images while avoiding the extra memory cost associated with popular
cascading generation schemes. In addition, we also employ a novel angular-based loss function to guide the refinement of sketch
images and learn a powerful discriminator in the angular space. Extensive experiments conducted on the proposed imperfect sketch
datasets demonstrate that the proposed model is able to efficiently improve the quality of sketch images and achieve superior
performance over the current state-of-the-arts.

Index Terms—Imperfect sketch recognition, angular-based loss function, feedback restoration loop, attention module.
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1 INTRODUCTION

Sketches are a convenient way to express user intent. Nat-
urally, the recognition of sketches becomes a popular topic
due to its applications, such as human-computer interaction.
In practice, most of the sketches are created by amateurs,
rather than professionals. However, the current methods
for sketch recognition are specialized for “perfect” sketches
that are typically created by professionals or paraprofession-
als. On the contrary, most amateur sketches from ordinary
people usually exhibit several types of “imperfection”. For
example, the scale is not correct, some part is not completed,
or some part is created with obliteration. Fig. 2 demonstrates
the comparison between imperfect and perfect sketches.
These imperfect sketches images lack important informa-
tion, which cause current popular sketch recognition meth-
ods to not perform well.

To this end, we propose to address the problem of recog-
nizing sketches with imperfection (we call them “imperfect
sketches” for simplicity) via an additional restoration pro-
cess. Directly recognizing imperfect sketches does not work
well as these sketches have different types of imperfection
artifacts, which are difficult to be modeled. We thus pro-
pose an end-to-end model to solve this problem by jointly
performing restoration and recognition.
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Specifically, given an imperfect sketch instance, we first
feed it to a network whose aim is to restore its perfect
counterpart that makes it easier to be recognized. The net-
work is armed with a feedback mechanism, which conducts
the comparison between the original imperfect sketch and
the restored counterpart in a recursive manner. The dif-
ference will drive the next step of restoration, yielding a
better restoration. Fig. 1 shows a comparison of different
restoration schemes. Using a feedback loop that shares
the network for each restoration iteration saves memory,
especially when the iteration number increases. We also
develop a new angular loss function that combines the
advantages of the angular loss and the softmax loss, as
imperfect sketch images are more difficult to be recognized
than normal sketch images. Traditional recognition methods
using softmax to learn features cause different margins for
different classes. Specifically, the distances between inter-
class features are large, while those of inter-class features
are small. For imperfect sketch images, some important
information may be missing. In order to extract more power-
ful discriminative features for these imperfect sketches, we
apply the angular loss function, which defines the decision
margin in the arc-cosine space. Additionally, we recognize
imperfect sketch images by first restoring them. In order
to reduce the distance between the restored sketch and real
perfect sketch images, we apply adversarial loss to make the
restored sketch images more realistic.

To verify the efficacy of our proposed method at rec-
ognizing imperfect sketches, we carry out extensive exper-
imental studies. As there is not a suitable dataset which
could be employed for our experiments, we thus develop
two new datasets, containing sketches that are derived using
SinGAN [1]. Marks or scratches are imposed on normal
sketches to generate imperfect sketches. Ablation studies
and comparisons with other methods are conducted based
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Fig. 1. Different Restoration schemes. (a). The direct restoration method. (b) The cascading architecture. (c) Our feedback restoration loop.

Incomplete sketchScrawl sketch Perfect sketch

Fig. 2. Examples of different imperfect sketches. The two left sketches
are scrawl sketches which are destroyed by unwanted slashes. The
middle sketches are incomplete in which part of the sketch is erased.
The right sketches are perfect sketches. Perfect sketches are much
easier to be recognized.

on the new datasets, and the qualitative and quantitative
results demonstrate the advantage of our method.

To summarize, our contributions are four-fold:

• From a practical perspective, we propose to address
the problem of imperfect sketch recognition.

• We develop a deep neural network with a feed-
back mechanism to restore and recognize imperfect
sketches at the same time. The restoration eases the
difficulty of the recognition task, and the recognition
task also benefits restoration via the use of semantic
knowledge.

• A novel loss function based on angular penalty is
derived to jointly recognize and restore imperfect
sketches.

• We provide two Imperfect Sketch datasets, which are
helpful to the community of sketch recognition.

2 RELATED WORKS

Our work is closely related to sketch recognition and image
restoration, which are briefly discussed in the following.

2.1 Sketch Recognition

Different from recognizing natural images of great diversity,
sketch recognition [2] is more difficult due to its abstract
nature, and lack of colors and texture patterns. In this study
we categorize sketch recognition methods based on whether
deep learning is used or not. Typically, hand-engineered fea-
tures are utilized as representations from which classifiers
are trained. For instance, local hand-crafted features with
BoW (bag-of-words) [3] is popular for sketch representation.
Fisher vectors are utilized as the feature representation in
[4]. Learning-based features are also used, e.g., multi-kernel
learning is adopted in [5] to learn powerful features for
free-hand sketch recognition from a pool of local features.
Similarly, Yanık and Sezgin [6] show the advantages of
active learning when applied to sketch recognition. Inspired
by the seminal shape context descriptor, a new feature
called Symmetric-aware Flip Invariant Sketch Histogram
(SYMFISH) is proposed in [7] for representing sketches. In
terms of classifiers, support vector machines (SVM) are a
popular practical choice, such as the one used in [8]. Other
options include nearest neighbour search, e.g., [9].

With the rise of deep learning, various approaches based
on deep learning have been proposed recently [10], [11],
[12]. The siamese network is popular for matching tasks.
Thus in [13], a variant of Siamese networks is developed
for matching natural images and sketch images. A triplet
ranking model is proposed with corresponding data aug-
mentation in [14]. The idea of hashing is extended from
natural images to sketch images in [15], and an architecture
is derived for encoding sketch images. Natural images are
employed in [16] and a coarse-to-fine scheme is used. Sim-
ilarly, Zhang et al. [17] develop a cousin network to guide
sketch recognition under the help of natural images.

All the above works focus on traditional perfect sketch
recognition. Imperfect sketch images are also common and
are more difficult to recognize than perfect sketch im-
ages, due to destruction by redundant slashes, or incom-
plete parts that lose some important structural information.
SketchGAN [18] uses a cascaded Encode-Decoder network
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to recognize incomplete sketch images. However, they ig-
nore the cases where sketch images are also destroyed by
redundant slashes. Meanwhile, the cascaded network also
causes heavy memory cost, increasing with the number of
cascade modules. Finally, SketchGAN can only recover in-
complete sketches but cannot classify sketches into semantic
classes.

In contrast to SketchGAN, we first extend the incomplete
sketches to imperfect sketches, which consists of incomplete
and scrawl sketches. Then, we propose a novel feedback
loop that avoids heavy memory consumption to recover the
imperfect sketches. Finally, we jointly recover the imperfect
sketches and classify them into semantic classes with a novel
angular-driven loss function.

2.2 Image restoration
Image restoration is a general concept of removing artifacts
caused by various factors. In general, it includes several
different tasks, like image deblurring [19], [20], deraining
[21] and inpainting [22]. Our task of sketch restoration is
mostly similar to the general task of image inpainting with
the following difference: 1) we focus on sketch, and 2) we
remove artifacts and try to complete the sketch. Thus we
primarily review related works on image completion. Most
of the existing works are about natural image completion
or contour completion. For natural image completion, great
success has been achieved in recent years. To handle each
spatial location differently, Yu et al. [23] propose a gated con-
volution network. Additionally, a loss function called SN-
PatchGAN based on GAN is proposed to stabilize the train-
ing process. Similarly, partial convolution is introduced in
[24] to conduct the convolution operation in only the valid
pixels (uncorrupted areas). The mask is also automatically
updated for the next layer. An attention module is employed
in [25] to better complete image samples with multiple
holes in arbitrary locations. The core idea is to borrow the
surrounding regions as reference to guide the completion, to
avoid inconsistent predictions regarding the neighbourhood
regions. With user input as free-form masks, sketches and
color, the SC-FEGAN [26] additionally employs a style loss
to force the generated large-area completion to be more
more realistic. To deal with the missing high-level context,
Yeh et al. [27] propose to utilize prior and context loss
terms to search for the nearest neighbour of the image to
be completed. The nearest neighbour then helps to better
infer the missing areas. In [28], patch synthesis is carried
out in multiple scales, respecting both the image contents
and textures, and with the aid of a classification network,
high-frequency details are predicted.

In terms of contour completion, the seminal work [29]
formulates contour grouping as a graph problem. A group-
ing criterion named untangling cycle is proposed to utilize
the topological structure. Ming et al. [30], [31] propose to use
a high-order CRF model to complete contours with better
closure. The derived high-order problem is solved efficiently
by transforming it into an integer linear program.

3 METHOD

In this section, we present the structure of our restore-
to-recognize network, which simultaneously restores and

TABLE 1
FCN layer settings for different modules of the proposed method.
ConvX-Y indicates convolution layer with filter size X with Y output

channels

Attention Net
Layer 1 Conv3-32 + ReLU()
Layer 2 Conv3-16 + ReLU()
Layer 3 Conv3-8 + ReLU()
Layer 4 Conv3-1 + ReLU()

Restoration Net
Layer 1 Conv3-32 + ReLU()
Layer 2 Conv3-8 + ReLU()
Layer 3 Conv3-8 + ReLU() + MaxPooling()
Layer 4 Conv3-8 + ReLU() + MaxPooling()
Layer 5 Deconv3-8 + ReLU()
Layer 6 Deconv3-8 + ReLU()
Layer 6 Conv3-1 + ReLU()

Classifier
Layer 1 Conv3-4 + ReLU()
Layer 2 Conv3-16 + ReLU()
Layer 3 Conv3-32 + ReLU()
Layer 4 Conv3-128 + ReLU()
Layer 5 Linear-class# + Softmax()

recognizes the corrupted sketch, as well as the associated
loss functions used to train the network.

3.1 Restore-to-recognize Network
In principle, it is very difficult to simultaneously solve
the problems of sketch restoration and sketch recognition
simultaneously. We thus adopt a coarse-to-fine scheme, and
solve them progressively. The principle of gradualism is
implemented by the recurrent mechanism. Note that, the
gradualism can also be implemented by cascading multiple
sub-modules, which is adopted in SketchGAN [18], but
this strategy results in heavy memory and resource cost.
Considering this, a recurrent mechanism is a better choice.

The structure of our restore-to-recognize network con-
sists of four components, i.e., attention module, restoration
module, recognition module and a discriminator, as illus-
trated in Fig. 3. The input of our network is the imper-
fect sketch. Throughout the restoration stages, the imper-
fect sketch is converted to its predicted “perfect” version
(ideally). This converted sketch is then forwarded to the
recognition module for the final recognition task.

Attention Module. Let the imperfect sketch be repre-
sented as Sin. The attention module aims to tell which
part/component of the concerned sketch is not perfect. The
attention module receives the imperfect sketch as the input
and predict the possible imperfect area. We can formulate
the module as,

a = Fatt(Sin), (1)

where Fatt represents the attention function and a is the
attention map. The detailed Attention Net structure is sum-
marized in Tab. 1.

Feedback Restoration Module. The restoration module
plays an important role in our network. Better restoration
quality leads to less difficulties in recognizing the sketch. At
the same time, a better recognizer yields better restoration
quality. The attention map from the preceding recurrent
attention module will guide the learning process of the
restoration.

The learned attention map a will be concatenated with
the imperfect sketch Sin and served as input to the restora-
tion module. The output of this module is the predicted
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Fig. 3. The architecture of the proposed method. First, an attention module is used to discover the imperfect pixels. Then, a feedback restoration
loop is used to restore perfect sketch based on the imperfect sketch and the attention. The discriminator is used for generating more realistic
sketches. After the perfect sketch is generated, a angular-driven loss function is utilized to train the classifier on the restored sketches.

“perfect” sketch. The first restoration step can be formulated
as,

S0
rest, f

0 = Frest(Sin, a, f
init), (2)

where S0
rest is the initial restored sketch and Frest is the

function of the restoration step, which is implemented as a
neural network (Restoration Net) shown in Tab. 1. f0 refers
to the feedback information, which guides the subsequent
restoration step. The initial feedback information f init is
zero. Then, the i−th feedback step can be calculate by:

Sirest, f
i = Frest(S

i−1
rest, a, f

i−1), (3)

where Sirest is the restored sketch from the i-th restoration
step. The structure of the Restoration Net is shown in Fig. 4.

In addition to forwarding the predicted sketch Srest to
the following recognition module, Srest is also sent to a
discriminator D to distinguish it as real or fake imperfect
sketch for adversarial training. The structure of the discrim-
inator D is the same as the classifier in Tab. 1.

Recognition Module. The recognition module accom-
plishes our ultimate goal of sketch recognition. The structure
of the classifier is shown in Tab. 1. However, due to the
fact that sketches usually exhibit high-level abstraction and
are absent from vivid colors and patterns, we force the
recognition module to carry out two sub-tasks. One is the
traditional multi-class classification, and the other one is to
enforce both great inter-class difference and small intra-class
difference. The latter one is learned by maximizing the addi-
tive angular margin, which drives the recognition module to
learn more powerful features discriminating sketches with
evident separability.

Accordingly, with the predicted perfect sketch Srest from
the restoration module as the input, there are two branches
in the recognition module. The first one is a ordinary
multi-class classifier, and the other one is also a multi-class
classifier, but derived by the additive angular margin loss
mentioned above.

Incomplete sketchScrawl sketch Perfect sketch
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Fig. 4. The architecture of the Feedback Restoration Loop. The blue
dotted line is the feedback flow.

3.2 Loss Function

In our restoration-to-recognize network, we employ the
following loss function terms for training.

Attention Loss. The attention loss is used to supervise
the learning of the attention module. The goal of the atten-
tion module is to discover the imperfection of the concerned
sketch, therefore we expect the predicted attention is close
to the ground truth locations of imperfection. Specifically,
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the attention loss is defined as

Latt = ||a− aGT ||2, (4)

where we omit the superscript step index t to reduce
clutter, and the ground truth of GT is defined based on
the difference between clean/perfect sketch image SGT and
imperfect sketch Sin,

aGT = thr(SGT − Sin), (5)

where thr(·) means the element-wise threshold function.
Reconstruction Loss. With the attention and the cor-

rupted sketch, we predicted a perfect version of the sketch.
To enforce the restoration module to generate the expected
sketch, we use the L2 norm of the difference between the
ground truth sketch and the generated sketch as a loss,

Lrec = ||Srest − SGT ||2 (6)

Adversarial Loss. The above reconstruction loss function
only forces the generated sketch to be close to the ground
truth in the pixel space. However, the generated sketch is
also required to be realistic in terms of human perception,
which involves high-level abstraction, this task will be ac-
complished by the discriminator D mentioned above. To
ensure the realistic property, we take the restoration module
as a generator G, and employ an adversarial loss in the
training, which is defined as,

Ladv(G,D) = ES∼pdata
[log(D(S))]

+ EŜ∼pG [log(1−D(G(Ŝ)))], (7)

where S represents an instance from real-world sketch
sample set, and Ŝ indicates corrupted sketch. G is trained
to fool the discriminator D, and as training proceeds, an
equilibrium will be achieved.

Additive Angular Margin loss. The input into the clas-
sifier is a generated sketch, and the output is the predicted
class. Define the features of the penultimate layer as xi.
Traditional methods use Softmax Loss:

Lcls = −
1

N

N∑
i=1

log
ew

T
yi
xi+byi∑k

j=1 e
wT

j xi+bj
, (8)

where N and k are the number of samples and number of
classes, (xi, yi) are the features and ground-truth class, and
wi and bi are weights and bias terms of the classifier.

In practice, we also want to minimize the distance
between a class center and its within-class samples, and
maximize the distance between a class center and samples
not in the class. To achieve this, an angular penalty is
used for regularization. First, the cosine distance θji between
sample i and class center j is calculated as:

cos θji =
cTj xi

‖cj‖‖xi‖
, (9)

where cj is the center of j−th class, which is learned during
optimization. Then, we define an angular loss based on θji
as:

Lang = −
1

N

N∑
i=1

log
ecos θ

yi
i∑k

j=1 e
cos θji

. (10)

The angular loss can be interpreted as the Softmax Loss
taking only the angle between the feature and the center into
consideration. To decrease intra-class distance and increase
inter-class distance, we add a marginm to the angle between
the sample and its class center. The angular margin loss Lam
is written as:

Lam = − 1

N

N∑
i=1

log
ecos(θ

yi
i +m)∑k

j=1 e
cos θji

, (11)

where m is the margin that can better separate different
classes compared to traditional Softmax Loss as shown in
Fig. 3.

Final Loss. The defined loss functions above play differ-
ent roles for the final generation results. Specifically, the at-
tention loss aims to focus on the imperfect part of the sketch,
the reconstruction loss and the adversarial loss improve
the quality of the generated sketch, and the Softmax and
the additive angular margin loss ensure learning powerful
features for recognition. We utilized them in a weighted
fashion to obtain the final loss function,

Lfinal = Lrec + αLatt + βLadv + γLcls + λLam, (12)

where α, β, γ, and λ are hyper-parameters for weighting
different loss functions.

4 EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed method, we
conduct extensive experiments on scrawl and incomplete
sketch recognition problems. We denote our method as
ADFRNet, angular-driven feedback restoration networks.

4.1 Dataset and Evaluation Metrics
Dataset: Traditional methods mainly focus on perfect
(noise-free) sketch recognition, while some sketches in real-
world are imperfect (e.g., contain scrawl or incomplete
lines). Therefore, we construct imperfect sketch datasets
to enable research on imperfect sketches recognition. We
use SinGAN [32] and data augmentation to improve the
diversity of the generated imperfect sketches. The dataset
can also be used to evaluate the robustness of algorithms
since the imperfect sketches can be seen as noisy versions of
the original sketches.

We generate corrupted and incomplete datasets based on
a large-scale Sketch Database [33]. The database is consist
of 75,471 sketch images with 125 classes. To generate the
scrawl sketches, we first create 16 slashes by hand and
then train 16 SinGAN [32] models with them. Each trained
SinGAN model can generate similar slashes automatically.
In our experiments, we generate 50 images for each trained
SinGAN model, which results in 800 different slashes in
total. Finally, we generate the scrawl sketches by randomly
selecting one slash and adding it to the original sketch. To
increase the diversity, we also use data augmentation on
slashes using random rotation and resizing. For incomplete
images, we remove the corresponding pixels in the original
images. Typical corrupted and incomplete images can be
seen in Fig. 2. To better evaluate the robustness of the
proposed method, we further generate imperfect sketches
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Fig. 5. Comparison of restored sketches from different models. From left to right, columns are scrawl sketches and restored sketches generated
by different models. The last column is the ground truth sketches.

with different scrawl or incomplete levels by repeating the
generation process for multiple times. Different scrawl and
incomplete level sketches can be seen in Figs. 6 and 7.

Evaluation Metrics: To evaluate the quality of the recovered
sketches, we use peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) to test the similarity at the pixel
level. Higher PSNR and SSIM mean that the recovered
sketches are closer to the original perfect versions. In some
cases, it is not necessary that restored images with high
reconstruction values are more easily recognized. There-
fore, we use classification accuracy as the metric to further
evaluate the recognition performance. If the accuracies of
recovered sketches are higher than those of the imperfect
versions, it means that the proposed ADFRNet both im-
proves the qualitative performance of sketches and also

benefits recognition of these imperfect sketches.

4.2 Ablation study
To evaluate the effectiveness of different components in
the proposed method, we compare the performance of six
baseline networks via removing one of the components.

• No attention. This network is a version of ADFRNet
without the attention module. The attention module
is able to guide the ADFRNet to focus on the im-
perfect parts of sketches, and thus help recover the
perfect version.

• No classifier. This network is a version of ADFRNet
without the classifier. The label of sketches may be
changed during the recovering process. In order to
generate a high-quality sketches and avoid changing
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Fig. 6. Typical scrawl sketches with different scrawl levels, the corresponding restored sketches and the ground truth perfect sketches.

TABLE 2
Ablation study on scrawl sketch recognition task. Direct recognition is

classification without restoration.

Accuracy PSNR SSIM
no attention 73.43% 27.77 0.9494
no classifier 72.98% 37.35 0.9968
no feedback 75.79% 31.83 0.9747
no angular-driven 73.73% 37.88 0.9969
direct recognition 69.53% - -
ours 77.17% 39.31 0.9978

their labels, the classifier is applied in the ADFRNet
to provide the necessary supervision.

• No feedback. This network is a version of ADFRNet
without the feedback restoration loop. A one-stage
restoration network is difficult to recover a high-
quality sketch, thus some methods develop multi-
stage networks, which improve the performance of
restoration but increase the parameters of networks.
We develop a feedback restoration loop to modify
the recovered sketches without stacking more sub-
networks.

• No angular-driven. This network is a version of
ADFRNet without the angular loss function. This
loss function is able to improve the ability of classifier
in the proposed ADFRNet.

• Direct recognition. This network is a simple classi-
fier without the process of restoration. In this way,
the imperfect sketches are directly fed into the classi-
fier for the prediction.

• The whole ADFRNet. This network is our whole
ADFRNet. It takes an imperfect sketch as input to
firstly detect the imperfect parts via an attention
model. Then the feedback restoration loop is able
to recover the sketch with multiple stages. The re-
covered images are finally fed into a classifier for
recognition and a discriminator to make them more
realistic.

The experimental results are shown in Tab. 2. First, direct
recognition based on scrawl images does not work because
of the low-quality of the input images. Without attention
or feedback, the PNSR and SSIM are decreased, which
shows that the two components are essential to restore high-
quality sketch images. The classification accuracy drops

TABLE 3
Comparison of sketch recognition with different scrawl level.

Accuracy PSNR SSIM
level 1 77.14% 39.31 0.9978
level 2 76.04% 33.29 0.9837
level 3 75.00% 31.24 0.9877

TABLE 4
Comparison of sketch recognition with different incomplete level.

Accuracy PSNR SSIM
level 1 76.51% 28.78 0.9898
level 2 75.93% 26.62 0.9847
level 3 74.88% 25.27 0.9790

dramatically without angular penalty, which confirms its
effectiveness. Our full model achieves the best classification
performance and the quality of the restored images is also
the best.

To better understand the quality of restored images of
different models, we visualize a few examples in Fig. 5.
Without attention or feedback restoration loop, the visual
quality is decreased, which further confirms the effective-
ness of those components. For the model without classi-
fier or angular penalty, the quality of the restored images
are similar to the full models which means that those
two components have less impact on the restored quality.
Nonetheless, there still exist small “smudging” artifacts in
the “w/o angular” results compared to the full model,
which is reflected in its lower PNSR/SSIM in Table 2.

To evaluate the robustness of the proposed scrawl sketch
recognition method, we first generate 3 different scrawl
levels by adding 1, 2, or 3 random slashes to the original
sketches. Then, we use our full model to perform the ex-
periment and the results are shown in Tab. 3 and Fig. 6.
With the increase of scrawl level, both restored quality and
classification accuracy are decreased. However, as shown
in Fig. 6, the proposed model can successfully restore the
sketch even when the sketch is severely obfuscated, which
confirms the proposed method is robust to different scrawl
level.
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Fig. 7. Visualization of incomplete sketch restoration with different incomplete levels.

TABLE 5
Comparison with state-of-the-art models for scrawl sketch recognition task.

Accuracy PSNR SSIM

Sketch-a-net [10] Imperfect images 69.53% - -
Imperfect + perfect images 74.78% - -

Sketch-object-recognition [34] Imperfect images 71.23% - -
Imperfect + perfect images 75.81% - -

Generative [25] Imperfect + perfect images 75.71% 27.75 0.9844
SketchGAN [18] Imperfect + perfect images 75.83% 29.44 0.9617
Ours Imperfect + perfect images 77.14% 39.31 0.9978

Scrawl sketch Generative ours GT

196-5

10932-2

1079-4

3298-6

30393-8

38790-7

Scrawl sketch Generative ours GTSketchGAN SketchGAN

Fig. 8. Comparison with state-of-the-art models on scrawl sketch recognition tasks.

359-3

5181-1

10474-6

2752-1

18829-2

8541-5

Incomplete sketch Generative ours GTSketchGAN Incomplete sketch Generative ours GTSketchGAN

Fig. 9. Comparison with state-of-the-art models on scrawl sketch recognition tasks.

4.3 Comparison with state-of-the-art methods

We next compare the proposed method with differ-
ent state-of-the-art models for reconstruction and recog-
nition of scrawl sketches, incomplete sketches, mixed
scrawl/incomplete sketches, and real incomplete sketches.

4.3.1 Scrawl sketch recognition

We first compare on scrawl sketch recongition. The first
two comparison methods are two popular sketch classifiers
Sketch-a-net [10] and Sketch-object-recognition [34]. For
each classifier, we also use perfect images as training ex-
amples since the proposed method use them as the ground-
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TABLE 6
Comparison with state-of-the-art models for incomplete sketch recognition task.

Accuracy PSNR SSIM

Sketch-a-net [10] Imperfect images 73.52% - -
Imperfect + perfect images 74.85% - -

Sketch-object-recognition [34] Imperfect images 74.83% - -
Imperfect + perfect images 75.77% - -

Generative [25] Imperfect images 70.29% 23.15 0.9611
SketchGAN [18] Imperfect images 67.26% 27.44 0.9865
Ours Imperfect images 76.51% 28.78 0.9898

truth during training. In addition, we compare two comple-
tion and recognition models: Generative image inpainting
(Generative) [25] and SketchGAN [18]. Those comparison
methods are summarized as follows:

• Sketch-a-net classifier [10]: Only trained on imperfect
images.

• Sketch-a-net classifier [10]: Trained on both imperfect
images and perfect images

• Sketch-object-recognition [34]: Only trained on im-
perfect images

• Sketch-object-recognition [34]: Trained on both im-
perfect images and perfect images

• completion+recognition: Generative image inpaint-
ing (Generative) [25], which is trained on both im-
perfect images and perfect images

• completion+recognition: SketchGAN [18], which is
trained on both imperfect images and perfect images

Tab. 5 shows the quantitative performance of differ-
ent models. Because the methods of Sketch-a-net [10] and
Sketch-object-recognition [34] directly recognize the imper-
fect images without the restoration process, PSNR/SSIM
cannot be computed and only the classification accuracy is
provided. Training models on both imperfect and perfect
images can improve the robustness of these models and
thus achieve better performance on imperfect sketch recog-
nition. Generative image inpainting [25] and SketchGAN
[18] firstly recover the imperfect sketches and then make the
prediction. Although the training samples are the same as
[10] and [34], the group of completion+recognition achieve
a better accuracy on sketch recognition. The proposed AD-
FRNet outperforms the current state-of-the-art methods in
terms of accuracy, PSNR and SSIM, which demonstrates its
effectiveness. Compared to direct classification approaches,
the restoration process is useful for imperfect sketch recog-
nition since noise contained in sketches will hurt the per-
formance. Compare to “Generative” and “SketchGAN”, the
proposed method achieves better PSNR and SSIM as shown
in Tabs. 5 and 6. With better sketches restored by a feedback
loop, the overall classification performance of the proposed
method is improved.

In order to qualitatively compare the ADFRNet with
current methods, we show the restored images of different
SOTA models in Fig. 8. The restored images generated by
our proposed method are better than the other two models,
which confirms the effectiveness of the proposed attention
module and restored feedback loop.

TABLE 7
Comparison of different approaches with mixed imperfect sketches.

Accuracy PSNR SSIM
Sketch-a-net [10] 68.84% - -
Sketch-object-recognition [34] 73.71% - -
Generative [25] 75.52% 26.23 0.9621
SketchGAN [18] 76.66% 26.99 0.9664
Ours 76.96% 27.63 0.9744

4.3.2 Incomplete sketch recognition
Next, we evaluate the proposed model on incomplete sketch
recognition task. We conduct experiments on an incomplete
sketch dataset. Similar to scrawl sketch recognition, we use
two classifiers and two completion and recognition models
for comparison. As shown in Tab. 6, the proposed model
achieves the best performance, which shows our method is
also effective for incomplete sketch recognition task. Note
that, the PSNR and SSIM of the proposed method is better
than other completion methods and the generated images
are more clear than comparison methods as shown in Fig. 6.
This confirms the proposed method is effective at restoring
sketch from incomplete images.

Similar to scrawl sketch recognition, an experiment with
different incomplete levels is conducted to confirm the
robustness of the proposed method. As shown in Tab. 4,
the performance decreases as the level of incompleteness
increases. Nonetheless, the proposed method is robust and
completes the missing pixels as shown in Fig. 7.

4.3.3 Mixed sketch recognition
To evaluate the performance of general imperfect sketch
recognition, we compare the performance of different ap-
proaches on a mixed dataset containing both scrawl and in-
complete sketches. As shown in Tab. 7, our method achieves
the best performance compared to other approaches, which
confirms that the proposed method can be extended to
a more general case. In addition, the restoration process
generally improves the accuracy compared to direct clas-
sification methods.

4.3.4 Real imperfect sketches
To evaluate the generalization ability of the proposed
method, we conduct an experiment on a real-world dataset
that is constructed by slashes drawn by hand instead of
SinGAN. The models are trained with the synthetic dataset
and evaluated on the real-world dataset. The performance
is shown in Tab. 8. Different from the previous results, the
classification method “Sketch-object-recognition” achieves
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better performance than “Generative” and “SketchGAN”,
which demonstrates that the restoration process can overfit.
The proposed method still achieves better performance than
“Sketch-object-recognition”, which shows that the feedback
loop generalize well to the real-world data compared to the
other restoration approaches.

TABLE 8
Comparison of different approaches on real imperfect sketches.

Accuracy PSNR SSIM
Sketch-a-net 70.21% - -
Sketch-object-recognition 77.00% - -
Generative 70.76% 23.07 0.9478
SketchGAN 75.61% 29.14 0.9750
Ours 77.53% 36.28 0.9915

5 CONCLUSIONS

In this paper, we propose the problem of imperfect sketch
recognition, which aims to solve two tasks: scrawl sketch
recognition and incomplete sketch recognition. We gener-
ate two datasets with different scrawl and incompleteness
levels. Finally, we propose a unified framework for those
two tasks. The imperfect sketch is first restored by the
proposed attention-based feedback restoration loop, and
then sent to a classifier, which is trained using an angular-
driven classification loss function. Extensive experiments
confirm the effectiveness of the components of the proposed
ADFRNet, and demonstrate that it achieves the state-of-the-
art performance on imperfect sketch recognition tasks.
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