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TABLE VIII
AVERAGE TRACKING ERROR (MM) FOR SINGLE VIEW AND DOUBLE VIEW TRACKING METHODS ON HUMANEVA-I S1 WALKING. ECPBL (TRANSLATED)
SHOWS THE RESULT AFTER TRANSLATING THE BODY ROOT TO THE GROUND-TRUTH POSITION WITHOUT CHANGING LIMB ANGLES. ECPBL (VISIBLE)
SHOWS THE RESULTS FOR ONLY THE VISIBLE JOINTS OF THE ECPBL (TRANSLATED) RESULT. ALL METHODS USE THE ’C1’ OR ’C1’ AND ’C2’ VIEW.

Single view Double view
ECPBL ECPBL (translated) ECPBL (visible) OA [45] TGP [7] CRBM [4] ECPBL Root Uncertainty [46]

95.7(42.6) 62.5(14.9) 56.7(15.9) 99.6(42.6) 38.1(21.4) 47.3(5.0) 54.6(11.3) 89.3(12.8)

TABLE IX
AVERAGE TRACKING ERROR (MM) ON 7 EPISODES OF THE TUM KITCHEN DATASET.

0-2 0-4 0-6 0-8 0-10 0-11 1-6 Overall
AP [5] 47.8(18.1) 60.6(20.7) 69.1(29.3) 46.9(18.9) 60.2(18.4) 74.0(33.5) 80.2(35.7) 62.7(24.9)
ECPBL 56.8(11.2) 75.0(14.0) 78.8(23.1) 57.6(11.1) 68.2(22.5) 79.3(19.0) 73.1(19.4) 69.8(17.2)

ECPBL (joint corr.) 42.8(11.8) 61.9(13.2) 66.5(23.3) 44.5(11.6) 61.2(13.6) 77.0(17.8) 74.9(17.7) 61.3(15.6)

the code provided with [54], LinKDE was trained using the
training sequences for the subjects/actions, and tested on the
validation sequences. The four views were treated as distinct
samples for training and testing. The results are presented in
Table X.4 The overall performance of LinKDE is better than
two baseline algorithms, but worse than the ECPBL. Although
LinKDE is a supervised method and has better accuracy than
the two multi-view baseline methods (BiS/BiSE), it sometimes
has difficulty when tracking occluded limbs, due to only using
a single view, or when a test pose is not similar to any pose
in the training set.

VII. CONCLUSION AND DISCUSSION

In this paper, we have proposed a robust part-based likeli-
hood function, which is based on the exponential Chamfer dis-
tance between visible projected parts and silhouette segments,
and between visible part edges and edges in the silhouette
segment. The exponential transformation of the Chamfer dis-
tance better aligns the limbs, making the likelihood function
smoother and easier to optimize using APF. Our part-based
model helps to localize occluded parts by matching them only
to the segmented visible parts. Our method benefits when a
part can be segmented well, but is not greatly affected by
poorly-segmented parts, since these will be matched to the
original silhouettes.

Using the ECD and part-based model together, we obtain
very robust tracking results on the HumanEva dataset. Our
unsupervised part-based likelihood function performs signif-
icantly better than other unsupervised tracking methods on
HumanEva-I. After correcting for the bias of the mocap
joint system, the part-based likelihood function performs
comparably to the current state-of-the-art supervised method,
TGPKNN. Especially considering the standard deviation of
the error, our robust likelihood function outperforms other
methods in terms of stability. We hope that our work can renew
interest in unsupervised methods, and serve as a new baseline
for unsupervised methods.

Learning the color model for each part depends on the
quality of the initial mocap pose. Automatically estimating

4Since LinKDE predicts poses from cropped human images, the reported
error is for the relative joint positions (i.e., relative to the root joint).

an initial pose from the first frame, e.g., [21, 23], is a topic
of future work. Meanwhile, quick motions like boxing, are
difficult to track using the Gaussian diffusion motion model.
How to handle the sample propagation between frames of
quick motion is also an interesting future work. Finally, the
current MATLAB implementation of ECPBL runs at 40s
per frame. Optimizing the framework using GPU is another
direction of future work.
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