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Abstract—We propose an integer programming method for
estimating the instantaneous count of pedestrians crossing a line
of interest in a video sequence. Through a line sampling process,
the video is first converted into a temporal slice image. Next,
the number of people is estimated in a set of overlapping sliding
windows on the temporal slice image, using a regression function
that maps from local features to a count. Given that the count
in a sliding window is the sum of the instantaneous counts
in the corresponding time interval, an integer programming
method is proposed to recover the number of pedestrians crossing
the line of interest in each frame. Integrating over a specific
time interval yields the cumulative count of pedestrian crossing
the line. Compared with current methods for line counting,
our proposed approach achieves state-of-the-art performance on
several challenging crowd video datasets.

Index Terms—Crowd counting, Local feature, Integer pro-
gramming.

I. INTRODUCTION

The goal of crowd counting is to estimate the number of
people in a region of interest (ROI counting), or passing
through a line of interest (LOI counting) in video. Crowd
counting has many potential real-world applications, including
surveillance (e.g., detecting abnormally large crowds, and
controlling the number of people in a region), resource man-
agement (counting the number of people entering and exiting),
and urban planning (identifying the flow rate of people around
an area). Beyond people, these counting methods can also be
applied to other objects, such as animals passing through a
particular boundary, blood cells flowing through a blood vessel
under a microscope, and the rate of car traffic. Therefore crowd
counting is a crucial topic in video surveillance and other
related fields. However, it is still a challenging task because
of several factors: 1) in crowded scenes, occlusion between
pedestrians is common, especially for large groups in confined
areas; 2) the perspective of the scene causes people to appear
larger and move faster when they are close to the camera.
These problems are especially prominent in oblique camera
views (where the camera looks down at an angle), which are
typical of outdoor surveillance cameras.

Most previous approaches [2–6] focus on solving the ROI
counting problem, and are based on the counting-by-regression
framework, where features extracted from the ROI are directly
regressed to the number of people. By bypassing intermediate
steps, such as people detection, which can be error-prone
on large crowds with severe occlusion, these counting-by-
regression methods achieve accurate counts even on sizable
crowds. In this paper, we focus on LOI counting, where the
goal is to count the number of people crossing a line (or visual
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Figure 1. Line counting example: a) crowd scene and line-of-interest; b)
temporal slice of the scene; c) Flow-mosaicking [1] result where a large blob
leads to a big jump in the cumulative count. In contrast, our method can
predict instantaneous counts better, yielding better cumulative predictions.

gate) in the video (see Figure 1a for example). In particular,
the aim is to estimate both the cumulative count, i.e., the total
count since the start of the video, and the instantaneous count,
i.e., the count at any particular time or short temporal window.
The instantaneous count is similar to detecting when a person
crosses the line. A naive approach to LOI counting is to apply
ROI counting on the regions on each side of the LOI, and take
the count difference. However, this LOI count will have errors
when people enter and exit the ROIs at the same time, since
the number of people in the regions remains the same.

Current LOI counting approaches, e.g. [1], are based on
extracting and counting crowd blobs from a temporal slice of
the video (e.g., the y-t slice of the video volume). However,
there are several drawbacks of these “blob-centric” methods:
1) because the blob is not counted until it has completely
crossed the line, large blobs (e.g., containing more than 10
people) yield big jumps in the cumulative count, which leads
to poor instantaneous count estimates (see Figure 1c); 2) the
counts in these large blobs are not accurate, due to severe
occlusion [1]; 3) evaluation methods for blob-based methods
are based on the ground-truth people in the blob, not the
actual people passing the line – hence, it is difficult to assess
errors due to segmentation failure of the blob. Moreover,
these methods typically require spatio-temporal normalization
to handle the differences in pedestrian size due to the camera
perspective and pedestrian velocity. Current perspective nor-
malization methods [2, 7] require marking a reference person
in different positions in the video. For arbitrary videos (e.g.,
from the internet), these normalization techniques cannot be
applied if no suitable reference exists.
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Figure 2. Results of instantaneous count estimation on: a) UCSD and b) LHI datasets. The image is a temporal-slice of the video on the LOI. The red and
green segments correspond to crowds moving in different directions, and the instantaneous count estimates appear above and below the image.

To address the above problems, we propose a novel line
counting algorithm that estimates instantaneous people counts
using local-level features and regression without perspective
normalization (see Figure 2 for examples). The contributions
of this paper are three-fold. First, to overcome the drawbacks
of “blob-centric” methods, we propose an integer program-
ming approach to estimate the instantaneous counts on the
LOI, from a set of ROI counts in the temporal slice image.
The cumulative counts of our method are smoother and more
accurate than “blob-centric” methods. Second, we introduce
a local histogram-of-oriented-gradients (local HOG) feature,
which is robust to the effects of perspective and velocity, and
yields accurate counts even without spatio-temporal normal-
ization. Third, we demonstrate experimentally that our method
can achieve state-of-the-art results for both cumulative and
instantaneous LOI counts on three challenging datasets.

The remainder of the paper is organized as follows. Section
II reviews related work in ROI and LOI counting. The line
counting framework based on integer programming is pro-
posed in Section III. Section IV presents experimental results
of our LOI counting framework on synthetic counting data,
while Section V validates our framework on three challenging
datasets. Finally, Section VI presents detailed experiments on
various components of the framework.

II. RELATED WORK

Counting-by-regression methods focus on either counting
people in a region-of-interest (ROI), or counting people pass-
ing through a line-of-interest (LOI). For ROI counting, features
are extracted from each crowd segment in an image, and a
regression function maps between the feature space and the
number of people in the segment. Typically low-level global
features are extracted from the crowd segment, internal edges,
and textures [1, 2, 4, 6]. The segment area is a prototypical
feature that can indicate the total number of pedestrians in
the segment. [2] shows that there is a near linear relationship
between the segment area and the number of pedestrian, as
long as the feature extraction process properly weights each
pixel according to the perspective of the scene. Low-level
features can also be extracted from each crowd blob, i.e.,
an individual connected-component in the segment, which
contains several pedestrians [5, 6]. Regression methods include

Gaussian process regression (GPR) [8] or Bayesian Poisson
regression (BPR) [4], which are both kernel methods that
can estimate non-linear functions. [9] introduces a cumulative
attribute space for learning a regression model on sparse
and imbalanced data. Under the assumption that the source
and target data share a similar manifold representation, [10]
demonstrates that the lack of labelled data in a new scene can
be helped by transferring knowledge from other scenes, thus
minimising the effort required for crowd counting in the new
scene. [11] proposes an alternative approach to ROI counting,
using pixel-wise density learning. The crowd density at each
pixel is regressed from the feature vector, and the number of
pedestrians in a ROI is obtained by integrating over a region.
Spatio-temporal group context has also been considered in [12]
to further improve the counting performance.

Line-of-interest (LOI) counting estimates the number of
people in a temporal-slice image (e.g., the y-t slice of the video
volume), the result of which represents the number of people
passing through the line within that time window. However,
with the basic temporal slice, people moving at fast speeds will
have fewer pixels than those moving slowly, thus confounding
the regression function. Flow-mosaicking [1] corrects for this
by changing the thickness of the line, based on the average
velocity of the pixels in the crowd blob, resulting in a “flow
mosaic”. The perspective normalization of [7] is used, and the
count in each blob is estimated from low-level features. The
blob count can only be estimated after the blob has passed the
line, and hence large jumps in the cumulative count can occur,
and instantaneous counts (indicating when each person passes
the line) are not possible. In contrast to flow-mosaicking [1],
our proposed approach performs ROI counting on windows
in the temporal slice image, and uses integer programming to
recover the instantaneous count on the line. In addition, flow-
mosaicking [1] performs temporal normalization by sampling
the LOI using a variable line-width. Because the same line-
width must be applied to the whole blob, blobs containing
both fast and slow people will not be normalized correctly. In
contrast, we use a fixed line-width and do per-pixel temporal
normalization, which can better handle large crowd blobs with
people moving at different speeds.

Finally, counting can also be performed using people detec-
tion methods [13–15], which are based on “individual-centric”
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Figure 3. The proposed line counting framework. A temporal slice image is formed by sampling on the line-of-interest in a video. Features are extracted
from a temporal sliding window, and the number of people in each temporal ROI is estimated using regression. The instantaneous counts on the line are
recovered from the temporal ROI counts using integer programming. Finally, the cumulative count is obtained by integrating the instantaneous counts.

features, i.e., features describing the whole person, such as
the HOG descriptor of a whole person [13]. The deformable
part-based model (DPM) [15] also builds a HOG descriptor
of a whole person, by using a more flexible layout model for
the spatial relationship between HOG parts at different scales.
While this results in a model that is better adapted to varying
poses of a single person, it can have problems in detecting
partially-occluded people in groups. In contrast, by removing
the layout model, our local HOG representation is better able
to handle occlusions.

Visual tracking can also be used for LOI counting. In [16],
KLT tracker is used to estimate the tracklets of pedestrians for
further crowd behavior analysis. However, the tracking trajec-
tories become noisy and disconnected when the occlusion is
high as in crowded scenes (e.g., Grand Central station).

A preliminary version of our work was first presented
in [17]. This paper contains additional improvements in the
LOI counting framework and significantly more experimental
results: 1) new L1-norm objective function for LOI counting,
which improves the processing speed at the cost of a small
drop in accuracy for high-density crowds; 2) instead of using
one fixed-size ROI temporal window, a new scheme to use
multiple window sizes that can improve counting accuracy; 3)
new experiments on a synthetic dataset, which shows how LOI
counting accuracy is affected by crowd density and noisy ROI
counts; 4) new large experiment on the Grand Central dataset
(8000 video frames; 8 counting lines); 5) comparisons to
other methods of counting, such as DPM pedestrian detection
and KLT tracking; 6) in-depth experiments testing different
configurations of each component of the framework.

III. LINE COUNTING FRAMEWORK

In this section, we introduce our line counting framework,
which is illustrated in Figure 3. Given an input video sequence,
the video is first segmented into crowds of interest, e.g.,
corresponding to people moving in different directions. A
temporal slice image and temporal slice segmentation are
formed by sampling the LOI over time. Next, a sliding window
is placed over the temporal slice, forming a set of temporal
ROIs (TROIs). Features are extracted from each TROI, and
the number of people in each TROI is estimated using a
regression function. Finally, an integer programming approach
is used to recover the instantaneous count from the set of TROI
counts. The cumulative counts are obtained by summing the
instantaneous count over time.

A. Crowd segmentation

Motion segmentation is first applied to the video to focus
the counting algorithm on different crowds of interest (e.g.,
moving in opposite directions). We use a mixture of dynamic
textures motion model [18] to extract the regions with different
crowd flows. The video is divided into a set of spatio-
temporal video cubes, from which a mixture of dynamic
textures is learned using the EM algorithm [18]. The motion
segmentation is then formed by assigning video patches to
the most likely dynamic texture component. Static or very
slow moving pedestrians will not be included in the motion
segmentation, which is desirable, since the counting algorithm
should ignore people who have stopped on the line, in order
to avoid double counting.

B. Line sampling and temporal ROI

We use line sampling with a fixed line-width to obtain the
temporal slice image. As shown in Figure 3, the input video
image and its corresponding segmentation are sampled at the
LOI in each frame. Formally, let It be the video frame at time
t, and It(x,y) be the pixel value at location (x,y). The LOI
is defined by the y-coordinates of its lower and upper extent
{ylo,yhi} and its x-coordinate xL. The sampled image slice at
time t is the vector

St = [It(xL,ylo), It(xL,ylo +1), · · · , It(xL,yhi)]
T . (1)

The sampled image slices are collected to form the temporal
slice image, where each column in the slice image corresponds
to the LOI at a given time, S = [S1,S2, . . . ,ST ], where T is the
number of frames. Similarly, the corresponding frames in the
segmentation are sampled on the LOI to form the temporal
slice segmentation. To obtain the TROIs, a sliding window of
length L is moved horizontally across the slice image, using
a stepsize of one pixel.

T ROIi = [Si,Si+1, . . . ,Si+L−1], 1≤ i≤ T −L+1. (2)

For non-vertical LOIs, we first rotate the input image so that
the LOI will be vertical and then perform the line sampling.
This removes artifacts in the temporal slice images that are
caused when sampling along a pixelated diagonal line.

C. Feature extraction

Features are extracted from each crowd segment in each
TROI. We consider both low-level global and local features.
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Figure 4. Example LHOG: a) temporal-slice image; b) image patches; c)
LHOG features; d) one bin of the bag-of-words histogram versus crowd size.

Table I
SPATIO-TEMPORAL NORMALIZATION FOR LOW LEVEL FEATURES.

Group Features Dim. Weighting strategy
area 1 wpwv

segment perimeter 1 √wpwv
features perimeter-area ratio 1 √wpwv

(10) perimeter edge orientation 6
√

w2
p cos2 θ +w2

v sin2
θ

number of blobs 1 N/A

edge edge length 1 √wpwv

features edge orientation 6
√

w2
p cos2 θ +w2

v sin2
θ

(8) edge Minkowski 1 √wpwv

texture texture homogeneity 4 √wpwv
features texture energy 4 √wpwv
(12) texture entropy 4 √wpwv

1) Global features: We use the 30 global features from [3],
which achieved good performance for ROI counting. These
features measure various properties of the segment, and its
internal edges and texture (see Table I). [3] demonstrated that
there is an almost linear relationship between the number of
people and the features like the area of the crowd segment and
the length of its internal edges, assuming proper normalization.
Local non-linearities can be modeled with texture features.

2) Local HOG features: Figure 4a shows an example of a
temporal-slice image with a crowd walking in two directions.
Due to the camera tilt angle, which is nearly 45 degrees,
the occlusion of pedestrians is heavy, with torsos or legs not
visible in many cases. Rather than use the standard histogram-
of-oriented-gradients (HOG) [13], which is a descriptor of a
whole person, we consider a smaller “local HOG” (LHOG)
descriptor that can represent parts of the person independently.
As a result, in crowded scenes, meaningful descriptors can still
be extracted from partially-occluded people.

A LHOG descriptor is calculated from a gray-level square
image patch, and consists of one “block” of the standard
HOG feature composed of 4 “spatial cells”1. In each spatial
cell, the orientation of the gradient is evenly divided into 9
bins over 0-180 degrees (with unsigned gradient), and the
gradient magnitudes are then accumulated into their respective
orientation bins, resulting in a 36 dimensional feature (4 cells

1We also considered rectangular image patches (e.g., 8×16), and found that
the 8×8 image patches yield the best performance in the experiments

Velocity
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Figure 5. Temporal slices of pedestrians with different velocities. a) Slow
people (left side) have a wide appearance, while fast people (right side) have
a thin appearance. b) tangent velocity of crowd moving though the LOI. Cold
colors represent slow people, while warm colors indicate fast people.
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Figure 6. a) temporal-slice image; b) temporal and c) spatial weighting maps.

× 9 bins)2. Figure 4c presents examples of the local HOG
features representing the head-shoulders, side, or legs and feet
of people in a crowd (patches in Figure 4b).

For each TROI and crowd segment, a set of LHOGs is
densely extracted and then summarized into a single fea-
ture vector using the bag-of-words (BoW) model. The BoW
codewords are the cluster centers resulting from K-means
clustering of the LHOGs extracted from the training set. For
a given crowd segment, LHOGs are assigned to the closest
codewords according to Euclidean distance, and the feature
vector is a histogram where each bin represents the number
of times a LHOG codeword appears in the crowd segment.

As an example, Figure 4d plots the value of one bin of the
histogram versus the number of people in the crowd segment.
The bin value varies linearly with the number of people, which
suggests that the bag-of-words of LHOG can be a suitable
feature for crowd counting. Finally, we do not apply histogram
normalization methods (e.g., TF, TF-IDF). Normalization will
obfuscate the absolute number of codewords in the segment,
making histograms from large crowds similar to those from
small crowds, which confounds the regression function.

D. Spatio-temporal normalization

Because the temporal slice image is generated using a fixed-
width line, the width of a person will change with its velocity.
In particular, people moving slowly across the LOI will appear
wider than those moving fast (see Figure 5a.) Hence, temporal

2We considered weighting the gradient magnitudes using a spatial Gaussian
kernel (similar to SIFT [19]), but this did not improve the counting accuracy.
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normalization is required during feature extraction to adjust for
the speed of the person. A temporal weight map wv(x,y) is
formed from the tangent velocity of each LOI pixel, estimated
with optical flow3 [20] (see Figure 6b). Faster moving people
have higher weights, since their features will be present for less
time. In addition to the temporal normalization, the features
must also be normalized to adjust for perspective effects of
the angled camera. We follow [2] to generate the spatial
perspective weight map wp(x,y) (see Figure 6c).

Both weighting maps are applied when extracting low-
level features from the image, yielding a spatio-temporal (ST)
normalization, summarized in Table I. Specifically, for the area
feature, each pixel is weighted by wpwv, and for edge and
texture features, the weighting of √wpwv is applied on each
pixel. The edge and perimeter orientation features are sensitive
to a particular edge angle θ ∈ {0◦,30◦,60◦,90◦,120◦,150◦},
and hence a weight of

√
w2

p cos2 θ +w2
v sin2

θ is used to
readjust the contributions between wv and wp. For example, for
a horizontal edge (90◦), only the temporal weight is applied,
since there is no component of the edge in the spatial direction.

To normalize LHOG, at each location in the image, we
change the size of the image patch by scaling the height
and width by wp and wv. The extracted image patches are
then rescaled to a common reference size (8 × 8). However,
normalization of LHOG is not necessary; our experimental
results show similar performance between LHOG with and
without ST normalization, which indicates the robustness of
the descriptor to perspective and velocity variations.

E. Temporal ROI Count regression

For each TROI, the count in each crowd segment is pre-
dicted using a regression function that directly maps between
the feature vector (input) and the number of people in the
crowd segment (output). Since pedestrian counts are discrete
non-negative integer values, we use Bayesian Poisson regres-
sion (BPR) [3], which is an extension of Gaussian process
regression (GPR) [8] that directly learns a regression function
with non-negative integer outputs. BPR models the noisy
output of a counting function with a Poisson distribution
where the log-mean parameter is a linear function of the input
vector. A Gaussian prior is placed on the weights of the linear
function, and the model can be kernelized similar to GPR to
obtain non-linear log-mean functions. We use the combination
of RBF and linear kernels, which yielded the best performance,
compared to the single RBF kernel, linear, Bhattacharyya,
histogram intersection, and Chi-squared-RBF kernels. Figure
7a shows an example of the predicted counts for the TROIs,
along with the ground-truth.

F. Instantaneous LOI count estimation

In the final stage, the instantaneous counts on the LOI are
recovered from the TROI counts using an integer programming
formulation. The i-th TROI spans time i through i+ L− 1,
where L is the width of the TROI. Let n̂i be the estimated
count in the i-th TROI, and s j be the instantaneous count on

3The optical flow on the LOI is computed from two adjacent video frames.
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Figure 7. a) temporal ROI counts over time, and b) the recovered instanta-
neous count estimates using integer programming.
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Figure 8. The relationship between the TROI count ni and instantaneous
count s j . The width of the temporal ROI is L, and there are N temporal ROIs.

the LOI at time j. According to the instantaneous counts, the
TROI count ni is the sum of the instantaneous counts s j, within
the temporal window (see Figure 8),

ni = si + si+1 + · · ·+ si+L−1 =
L−1

∑
k=0

si+k. (3)

Defining the vector of TROI counts n = [n1, . . . ,nN ]
T and s =

[s1, . . . ,sM]T , where N is the number of TROIs and M is the
number of video frames, we have

n = As, (4)

where A ∈ {0,1}N×M is an association matrix with entries

ai j =

{
1, j ≤ i < j+L
0, otherwise.

(5)

Both the count estimates n̂ = [n̂1, · · · , n̂N ]
T and A are known,

and hence finding s is a signal reconstruction problem, with
non-negative integer constraints on the counts s j. We next
consider this reconstruction problem using two error functions.

1) Least-squares reconstruction error: We consider recov-
ering the instantaneous counts s using an integer programming
problem with a sum-squared reconstruction error (L2 norm)

s∗ =argmin
s
‖As− n̂‖2 s.t. s j ∈ Z+, ∀ j, (6)
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Figure 9. Example of using multiple window lengths: (a) large crowd where
one person crosses the line in each frame, and the TROI counts for window
lengths 3 and 4; The instantaneous counts estimated from windows of length
4 (b) or length 3 (c) have errors, while using both windows together (d) yields
the correct result.

where Z+ is the set of non-negative integers. We solve
(6) using the CPLEX optimization toolbox [21]. Figure 7b
presents an example of the instantaneous counts recovered
from the TROI counts in Figure 7a with integer programming.
The predicted instantaneous counts are close to the ground-
truth people crossing the line.

2) L1-norm reconstruction error: The L2 norm used in the
least-squares reconstruction error is known to be prone to large
estimation error if there are outliers. In the presence of outliers
(e.g., very noisy TROI count estimates), the L1 norm can lead
to a more robust estimator,

s∗ =argmin
s
‖As− n̂‖1 = argmin

s

N

∑
i=1
|ais− n̂i| s.t. s j ∈ Z+, ∀ j,

(7)

where ai is the i-th row of A. The L1 formulation in (7) can
be turned into a standard linear integer programming problem
(see Supplemental), which can be solved with CPLEX [21].

G. Multiple temporal window lengths

The LOI counting framework can be extended to han-
dle TROIs generated with multiple window lengths. Using
multiple window lengths can improve the accuracy for line
counting, by providing more count measurements over varying
window sizes at the same location, which helps to better
localize people in large crowds (see example in Figure 9).

Let L = {L1, · · · ,LK} be a set of window lengths. For each
window length Lk, TROIs are extracted from the temporal
slice image. The number of people in each TROI is predicted
using count regression, resulting in the count vector n̂(k). The
association matrix A(k) for length Lk is then formed using
(5). To incorporate the multiple windows together, the count
vectors and association matrices are concatenated together,

A =

A(1)

...
A(K)

 , n̂ =

 n̂(1)
...

n̂(K)

 , (8)

and then the instantaneous counts s are obtained by solving
the L2 or L1 optimization problems in (6) or (7).

IV. EXPERIMENTS ON SYNTHETIC DATA

In this section, we test the ability of our integer program-
ming framework to recover the instantaneous and cumulative
counts through experiments on synthetic data.

A. Experiment setup

The procedure for generating synthetic line counts and
TROI counts is seen in Figure 10. We first generate a synthetic
time-series of instantaneous line counts. We set the length of
the time-series to 1200 frames, and 40 random frames are
selected to place the instantaneous counts (1 person)4.

From the ground-truth instantaneous counts, we then gen-
erate the ground-truth TROI counts ni, by summing the
instantaneous counts over a temporal sliding window of length
L = 238. Next, a noisy TROI count n̂i is produced by adding
rounded Wiener noise to each ground-truth TROI count,
n̂i = ni +Round(vi). The random variable vi is a zero-mean
Wiener process, which is simulated as vi = vi−1+

ρ√
N

δi, where
ρ is the scale factor and δi ∼N (0,1). In the following ex-
periments, we randomly select the scale factor ρ ∼N (1.5,1),
and generate a random noise sequence {vi}N

i=1 such that
|EROI− 1

N ∑
N
i=1 |Round(vi)|| ≤ 0.1, where parameter EROI is the

target TROI noise level. The resulting noisy TROI count will
have absolute error within 0.1 of EROI . The synthetic TROI
counts produced using the rounded Wiener noise tend to be
higher or lower than the ground-truth for extended periods of
time, which is similar to the errors produced by the actual
TROI count prediction (e.g., see Figure 7a).

From the noisy TROI counts, the integer programming
method in Section III-F is used to recover an estimate of
the instantaneous line counts. The cumulative line count is
then the sum of the estimated instantaneous line count over
time. Let ĉa,b denote the estimated cumulative count between
frames a and b, i.e., ĉa,b = ∑

b
t=a ŝt , where ŝt is the estimated

instantaneous count at time t.
The counting results are evaluated in three ways. First, the

cumulative counts from the start of the video are evaluated
with the absolute error between the estimated counts and the
ground truth count, averaged over all frames,

AE =
1
N

N

∑
i=1
|c1,i− ĉ1,i| (9)

where ĉ1,i and c1,i are the estimated and true cumulative counts
between frame 1 and i, and N is the number of frames. Since
AE is based on the overall cumulative counts starting from the
beginning of the video, it may give more penalty to errors that
occur in the beginning of the sequence, than at the end. To
mitigate this effect, we also consider the “windowed” absolute
error (WAE), which is the cumulative counting error within a
window of length T 5, averaged over all windows,

WAE =
1

N−T +1

N−T+1

∑
i=1
|ci,i+T−1− ĉi,i+T−1|, (10)

4This setting is similar to the UCSD dataset [2], where there are 47 and
40 pedestrians in test set for the right and left directions, respectively. For the
LHI dataset [22], there are 44 pedestrians in the test set for the right direction.

5T is distinct from the TROI window length L used in Sec. III-F.
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Figure 10. Generating synthetic counts: a) ground-truth instantaneous line counts; b) ground-truth TROI counts; c) synthetic TROI counts with noise
(EROI = 0.7).

where the cumulative counts are now over the temporal
window spanning frames i to i+T −1. When the size of the
window is the same as the count sequence length, T = N, then
WAE is the error of the cumulative count in the last frame.

The performance of the instantaneous count prediction is
measured using an F-distance curve. The ground-truth instan-
taneous counts and the predictions are matched pairwise using
the Hungarian algorithm to find pairs with minimal temporal
distances. An F-distance curve is formed by sweeping a
threshold temporal distance d, and recording the F-score for
the retrieval of pairwise matches with distance less than d. In
particular, the precision P is the fraction of predictions that are
paired within distance d, the recall R is the fraction of ground-
truth instantaneous counts that are paired within distance d,
and F = 2PR/(P+R). The curve represents the accuracy (F-
score) of detecting a person crossing the line within distance d
of the ground-truth crossing. Average errors are reported from
100 random synthetic count sequences.

B. Experiment results

Figure 11 plots the absolute error (AE) and the windowed
absolute error (T = 100; denoted as WAE@100) versus the
ROI noise level EROI . This curve describes the relationship
between the TROI noise level and the LOI cumulative counting
error. For example, when the error in TROI counts (EROI) is
2.1 people, then the AE for the LOI cumulative count is 3.26
people, while the count error is 1.18 people over windows
of length 100 (WAE@100). Empirically, the AE and WAE
vary linearly with the TROI noise level, and the L1 and L2
formulations have similar errors. Also note that the cumulative
count can be recovered perfectly when no noise is present.

Figure 12 shows the F-distance curves, which measure
the instantaneous counting accuracy, for different TROI noise
levels EROI . When the TROI noise level is EROI = 0.5, the F-
distance curve shows that our method has an F-score of 0.86
for correctly identifying pedestrians crossing the line within
d = 20 frames (around 2 seconds for a frame rate of 10 fps).
The results suggest that integer programming is a possible way
to recover LOI counts from TROI counts even from very noisy
input TROI counts.

In another experiment, we fix the TROI noise level and
vary the crowd density by changing the total number of
ground-truth people in a synthetic sequence of length 1200.
We set the TROI noise level to EROI = 0.7. For a given
crowd density, 100 synthetic sequences are generated and
the L1-norm and L2-norm reconstruction errors are used to
recover the instantaneous and cumulative counts. The AE and

WAE@100 for different crowd densities are plotted in Figure
13. In general, as the crowd density increases, the counting
error using integer programming also increases. When the
crowd density is relatively lower (less than 17 people per 100
frames) the AE of L2 norm is smaller than L1, while WAE is
comparable. However, in crowded scenes (more than 25 people
per 100 frames), L1 norm achieves better AE and WAE than
L2 norm. This is mainly due to overfitting behavior of the L2-
norm when there are outliers. The overfitting tends to happen
more often when the crowd size is large, since there are more
instantaneous counts that can be moved around to reduce the
larger residuals between neighboring TROIs.

(a) (b)

Figure 11. (a) Absolute error (AE) and (b) windowed absolute error
(WAE@100) versus the TROI noise level (EROI ) for L1 and L2 formulations
on synthetic dataset. The solid lines show the means along with one standard
deviation (shaded).
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Figure 12. The average F-distance curve for the instantaneous counting results
for different levels of TROI noise (EROI )

V. EXPERIMENTS ON CROWD COUNTING

In this section, we present experiments using the proposed
LOI counting algorithm on three crowd datasets.

A. Experiment on UCSD and LHI datasets

We first present experiments on two crowd video datasets,
the UCSD people counting dataset [2] and the LHI pedestrian
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(a) (b)

Figure 13. Comparison of (a) AE and (b) WAE@100 vs. crowd density for
L1 and L2 formulations on synthetic dataset. The TROI noise level is set to
EROI = 0.5.
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Figure 14. Examples of input video with line-of-interest for a) UCSD dataset,
and b) video 3-3 of LHI dataset.

dataset [22]. An example frame from the UCSD dataset is
shown in Figure 14a. The video is captured by a stationary
digital camcorder with an angled viewpoint over a walkway
at UCSD. The dataset contains 2000 video frames (frame size
of 238×158 at 10 fps). The LHI dataset contains three types of
video, categorized by the camera tilt angle. In our experiments,
we use the “3-3” video with a 40 degrees camera tilt angle,
which is the most challenging video in LHI due to the large
amounts of occlusion. An example frame is displayed in Figure
14b, and the frame size is 352×288.

1) Experiment setup: For UCSD, we follow the experi-
mental protocol in [2], where the training set consists of 800
frames (frames 600 to 1399), and the remaining 1200 frames
are used as the test set for validation. For LHI, the training
set is the first 800 frames and the following 1200 frames are
the test set. The LOI positions are also shown in Figure 14.
The ground-truth time that each person crossed the LOI was
labeled manually. For UCSD, the crowd was separated into
two components moving in opposite directions on the walk-
way (right and left), using the motion segmentation method
described in Section III-A. For LHI, the crowd is only moving
in the right direction. We estimate the instantaneous and
cumulative counts on the LOI using our proposed framework
with temporal window length L= 238. We also tested multiple
windows, L = {50,100,150,200}. We use global low-level
[2, 3] or LHOG features, with and without spatio-temporal
(ST) normalization. The regression model is learned from the
training set (UCSD or LHI), and predictions made on the
corresponding test set. The hyperparameters of the regression
model are estimated automatically by maximizing the marginal
likelihood of the training set. All other parameters are fixed
for all videos. For comparison, we also predict the cumulative
counts using the flow-mosaicking [1]. Both methods are run
on the same motion segmentation and optical flow images.

We also compare with KLT tracker [23] as a baseline for
line counting using standard visual tracking algorithms. The

KLT trajectories are locally clustered in each frame, and the
number of people crossing the LOI is calculated as the number
of trajectories intersecting a bounding box around the line.
Note that the KLT tracker does not require training, while our
algorithm needs scene-specific training.

The counting results are evaluated with AE (Eq. 9) and
WAE (Eq. 10). For flow-mosaicking, which is blob-based and
inherently cannot produce smooth cumulative counts, we also
consider a “blob ground-truth” that updates only when the
predicted count changes, i.e., when a blob is counted. The
performance of the instantaneous count prediction is measured
using an F-distance curve as introduced in Section IV-A.

2) Counting results: The counting results on UCSD and
LHI are presented in Table II, with the cumulative and
instantaneous counts plotted in Figure 156. First comparing the
different feature sets on the UCSD dataset, the LHOG feature
achieves comparable results with the global low-level features
(AE 0.604 vs 0.534; WAE@100 0.723 vs 0.793) for the left
direction. On the right direction, LHOG obtains significantly
less error than the global features (AE 0.6883 vs 1.5067;
WAE@100 0.511 vs 0.703). Since the right direction contains
larger crowds, this suggests that LHOG is better at counting
the partially-occluded people. Furthermore, the counting error
with LHOG is nearly the same when ST normalization is
not used, increasing slightly (< 0.03 for AE or WAE on
UCSD;< 0.005 on LHI). On the other hand, the error for
the global features increases significantly, e.g., for the right
direction, from 1.507 to 2.416 for AE, and from 0.703 to 1.253
for WAE@100. This demonstrates that LHOG is more robust
to perspective and velocity effects than the global features.
Concatenating the LHOG bag-of-words and global features
does not yield to improved performance, possibly due to
overfitting or incompatibility of the features. Finally, using
multiple windows (denoted as “LHOG-mix”) can improve the
WAE@100 compared to using just a single window, but at the
expense of increased AE.

Our LOI counting framework using LHOG has lower AE
than flow-mosaicking (for both the ground-truth and blob
ground-truth). Flow-mosaicking has a particularly large error
(AE 8.240; WAE@100 2.588) on the UCSD right direction. In
crowded scenes with large blobs, the flow mosaicking method
tends to have high error, which is also shown in the count plots
for UCSD-right and LHI-right (Figure 15 bottom). Overall, the
KLT tracker has lower WAE@100 than flow-mosaicking on
the UCSD/LHI datasets (average WAE@100 of 1.15 vs. 1.19),
but also higher AE. KLT-tracker can perform reasonably well
in these videos because the pedestrians are large enough for
the tracker to find stable features. However, KLT performance
is still worse than our method (WAE of 0.69).

Figure 16a presents the WAE for various temporal window
lengths, and Figure 16b shows the corresponding average
number of ground truth people. For our method, the WAE
is relatively stable regardless of the length of the window
evaluated, whereas that of flow-mosaicking increases as the
window length T and number of people increases.

6Videos of the line counting results on UCSD and LHI datasets can be found
at http://visal.cs.cityu.edu.hk/research/linecount-demo/.
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Table II
CUMULATIVE COUNTING RESULTS ON UCSD AND LHI DATASETS. FLOW-MOSAICKING IS DENOTED AS FLMSK.

ST Method Features UCSD Left UCSD Right LHI Right
norm. AE WAE@100 AE WAE@100 AE WAE@100

Yes

Ours

LHOG 0.6040 0.7231 0.6883 0.5105 0.8208 0.8252
LHOG-mix 0.7220 0.5621 0.7245 0.5017 0.9020 0.8240
segment 1.2233 0.8647 4.5367 1.2625 1.2608 1.0167
edge 3.8417 1.3642 1.7517 1.1090 1.5008 1.2521
segment, edge, texture 0.5342 0.7929 1.5067 0.7030 1.0350 0.9201
LHOG, segment, edge, texture 0.7000 0.8856 0.9600 1.0725 0.9525 0.8547

FlMsk area, edge length 1.7233 1.2679 8.2400 2.5876 3.3400 1.7956
FlMsk (blob GT) area, edge length 1.3108 - 8.3767 - 2.4058 -

No

Ours
local HOG 0.6083 0.7548 0.7100 0.5313 0.8250 0.8283
LHOG-mix 0.7358 0.5886 0.7383 0.5231 0.9028 0.8238
segment, edge, texture 0.9958 1.1580 2.4158 1.2534 1.0625 0.9237

FlMsk area, edge length 1.8583 1.4199 11.0108 2.9691 3.5267 1.8610
FlMsk (blob GT) area, edge length 1.4458 - 11.1492 - 2.4675 -
KLT tracker - 5.7542 1.0300 3.0858 1.1474 5.4958 1.2825
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Figure 15. Counting results on UCSD and LHI datasets using: (top) LHOG and integer programming; (bottom) flow-mosaicking. (a) plots show cumulative
counts, while (b) plots show the instantaneous counts for LHOG or blob counts for flow-mosaicking.

The recovered instantaneous counts are presented in Figure
2, and the accuracy is evaluated using the F-distance curves in
Figure 17. For correctly identifying pedestrians crossing the
line within 2 seconds, our method has F-scores of 0.82, 0.84,
and 0.90 on UCSD-right, UCSD-left, and LHI. For compari-
son, flow-mosaicking has an F-score of 0.48, 0.73, and 0.76.
Our method can generate more accurate instantaneous counts
than flow-mosaicking, which is a “blob-centric” method.

B. Experiments on Grand Central dataset

We next present counting experiments on the Grand Central
dataset from [16]. The video is collected from the inside
of the Grand Central Station in New York (see Figure 18).
Compared with the previous outdoor videos (UCSD and LHI),
this video is more challenging, since the reflection on the floor
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Figure 16. a) windowed absolute error (WAE) vs. WAE window length T ;
b) average count vs. WAE window length T .

and the shadows of people introduce noise that affects the
segmentation and introduces noise in the features.
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Figure 17. F-distance curves on UCSD and LHI datasets.

L1 L7 L8 L2

L6

L5

L4
L3

Figure 18. Frame from the Grand Central dataset. The yellow lines are
the lines-of-interest of our algorithm, while the blue rectangle boxes are the
counting areas for the KLT tracker baseline.

1) Experiment setup: We define 8 lines-of-interest, as
shown in Figure 18, which are labeled L1 to L8 and cover
the entrances and exits of the scene. We manually label the
ground truth of the first 8000 frames of the video (about 5.3
minutes at 25 fps). The training set for each line consists of
1000 frames, with the other 7000 frames for testing. Since
the temporal distribution of people is different for each line,
the training sets for each line are selected so that they contain
a range of crowd sizes (see Table III). The total number of
people crossing each LOI and the number of people in training
and test dataset are also shown in Table III. The most crowded
line is L4, where the right direction contains 543 pedestrians.
Since L7 left direction only has one pedestrian in its training
set, the training set of L8 is used as the training set for L7.

Table III
TRAINING SETS AND NO. OF PEOPLE IN THE GRAND CENTRAL DATASET.

Lines Training frames
L1-L4 2001 to 3000
L5 2001 to 2500, 3001 to 3500
L6 2001 to 2500, 3501 to 4000
L7-L8 4001 to 5000

Data set Direction L1 L2 L3 L4 L5 L6 L7 L8

Train set left/down 37 27 28 3 29 31 1 4
right/up 29 11 10 60 2 17 9 17

Test set left/down 184 249 118 32 157 192 7 9
right/up 209 100 40 484 11 108 54 82

Total left/down 221 276 146 35 186 223 8 13
right/up 238 111 50 543 13 125 63 99

Table IV
CUMULATIVE COUNTING RESULTS ON GRAND CENTRAL DATASET.

Line Method Left/Down Right/Up
AE WAE@100 AE WAE@100

L1

KLT 39.7744 2.0406 40.6136 2.1378
flow-mosaicking 19.3056 1.5476 19.1054 2.112
LHOG-mix 8.6735 1.0465 8.5991 1.1594
LHOG-238 14.7026 1.3889 11.4042 1.2740

L2

KLT 34.3199 2.5267 14.2189 1.3790
flow-mosaicking 47.9159 2.6651 7.3389 1.3092
LHOG-mix 8.8842 2.3250 5.8536 1.2617
LHOG-238 31.7000 2.2869 10.0820 1.2253

L3

KLT 28.5777 2.1442 3.7009 0.9050
flow-mosaicking 32.3197 1.5799 3.4459 0.2533
LHOG-mix 2.5308 0.3677 1.6722 0.1947
LHOG-238 6.6725 0.6486 4.0207 0.3618

L4

KLT 5.3343 0.6840 42.0110 4.0090
flow-mosaicking 4.539 0.2601 24.3476 3.9478
LHOG-mix 6.4384 0.1679 11.6508 1.4915
LHOG-238 10.9603 0.3271 10.0320 1.7779

L5

KLT 9.7004 1.9336 1.8543 0.2046
flow-mosaicking 7.8677 2.0706 0.8179 0.0756
LHOG-mix 8.4251 0.9796 0.8010 0.0727
LHOG-238 7.5983 1.2323 0.4550 0.0952

L6

KLT 17.580 1.8402 16.3181 1.4056
flow-mosaicking 16.697 1.8722 2.7464 0.9512
LHOG-mix 29.1323 1.7961 5.8866 0.6073
LHOG-238 30.9304 2.1510 3.9623 0.6132

L7

KLT 2.0357 0.1304 10.9519 0.8576
flow-mosaicking 0.4587 0.0968 2.0687 0.4315
LHOG-mix 0.0239 0.0484 3.7773 0.4042
LHOG-238 0.3758 0.0525 10.8120 0.5514

L8

KLT 1.6110 0.1884 28.9231 1.1259
flow-mosaicking 0.6063 0.1075 12.9126 0.8731
LHOG-mix 0.0286 0.0580 5.0090 0.5029
LHOG-238 0.1853 0.0949 7.0966 0.6334

Avg

KLT 17.3668 1.4360 19.8240 1.5031
flow-mosaicking 16.2137 1.2750 9.0979 1.2442
LHOG-mix 8.0171 0.8487 5.4062 0.7118
LHOG-238 12.8907 1.0228 7.2331 0.8165

For estimating the instantaneous count, we consider one
window length, L = 238 denoted as LHOG-238, and multiple
window lengths. For multiple windows (denoted as LHOG-
mix), we use sizes L = {200,220,240,260} for L1-L2, and
L = {50,100,150,200} for L3-L8. L1-L2 use larger windows
than L3-L8 because the people are moving slowly across the
line, resulting in stretched bodies in the temporal slice image.
Finally, we also estimate the count using the KLT tracking
results provided with the Grand Central dataset [16].

2) Experiment results: The cumulative counting results are
shown in Table IV, and 3 representative lines plotted in Figure
19 (see Supplemental for all plots). Using multiple windows
lengths produced more accurate counts than using a single
window length on 14 out of 16 line-directions according to
WAE@100, and had overall better accuracy averaged over all
lines (average WAE@100 of 0.78 vs 0.92).

Counting with KLT has higher average WAE@100 than
LHOG-mix (1.47 vs 0.78). The KLT tracker has difficulty
tracking the people in lines L1, L2, L7 and L8 because they are
far away from the camera, and the people tend to be small and
partially occluded. KLT also has difficulty on L4-right, which
is the most crowded line, exhibiting a much higher WAE@100
of 4.0 than LHOG-mix (1.49). Our algorithm also has lower
average WAE than Flow-Mosaicking (0.78 vs 1.26). Note that,
on Grand Central, Flow-Mosaicking performs better than KLT
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Figure 19. Line counting results using LHOG and KLT on Grand Central dataset (lines L2, L3 and L8).

tracker, most likely because the pedestrians appear smaller on
this dataset, resulting in more trajectories missed by KLT.

One failure case of LHOG is on L6-left. The temporal
distribution of the pedestrian is extremely unbalanced. As
a result, the TROI counting function makes more errors,
resulting in larger errors in the instantaneous and cumulative
count predictions, compared to the KLT (AE of 29.1 vs 17.6).

Finally, Figure 20 plots the F-distance curves averaged over
all lines and directions on Grand Central. For our method, the
average F-score for detecting people crossing a line within 2
seconds (50 frames; 25 fps) is 0.77, compared with 0.40 for
KLT and 0.71 for flow-mosaicking.
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Figure 20. F-distance curve averaged over all lines on Grand Central dataset.

C. Counting results using people detection methods

We next test people detection methods for line counting on
UCSD and LHI.

(a) (b)

Figure 21. Line poses for people detection for a) UCSD and b) LHI datasets.

1) Setup: We use two people detectors, HOG [13] and
DPM [15], to detect and count people in the temporal slice
image. The standard detection framework applies a detector
with a fixed-size image input to an image pyramid in order
to detect people at multiple scales. To adapt the detection
framework to work on the temporal slice image, we modify
the image pyramid to separately scale the height and the width
of the temporal image. The image height is scaled to handle
changes in a person’s height due to perspective, while the
image width (i.e., the temporal dimension) is scaled to handle
changes in a person’s width due to its velocity (e.g., see Figure
5). In addition, we use vertical LOIs (Figure 21) so that people
in the temporal slice image are not distorted too much. Both
detectors are trained on the temporal slice images of UCSD
and LHI. The training samples are labeled from the temporal
slice image after spatio-temporal normalization. Finally, the
threshold of the detector is learned on the training set, while
the counting results are evaluated on the test set.

In addition to detection on the temporal image, we also
perform standard people detection in the spatial image around
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Table V
CUMULATIVE COUNTING RESULTS USING PEOPLE DETECTION ON UCSD AND LHI. S AND T DENOTE DETECTION IN SPATIAL OR TEMPORAL IMAGE.

Feature-Method UCSD Left UCSD Right UCSD Scene LHI Right Average
AE WAE@100 AE WAE@100 AE WAE@100 AE WAE@100 AE WAE@100

LHOG regression 0.608 0.755 0.710 0.531 1.848 1.471 0.825 0.828 0.998 0.896
HOG-T detection [13] 4.797 1.767 6.589 2.480 11.384 4.063 5.057 1.812 6.957 2.531
HOG-S detection [13] 7.139 1.413 7.855 1.762 15.377 3.075 5.496 1.281 8.967 1.883
DPM-T detection [15] 2.356 1.128 2.565 1.172 4.908 1.667 4.509 1.728 3.585 1.424
DPM-S detection [15] 1.784 0.833 3.292 1.025 5.506 1.412 2.829 0.965 3.353 1.059
DPM-ST detection [15] 3.941 0.831 2.606 1.267 4.431 1.916 5.803 1.254 4.195 1.317

the LOI, and apply non-maximum suppression to obtain the
count of people crossing the line (denoted as HOG-S or DPM-
S). We also combine the detection maps from the temporal and
spatial images to obtain a line count (HOG-ST or DPM-ST).

The x-coordinate of the center of a detection box indicates
when a person has passed the line-of-interest and these are
collected to form the instantaneous count. To improve the
detection results, we use two post-processing constraints to
remove false positive errors. First, we only keep detections
whose centers are in the motion segment, in order to remove
erroneous detections caused by background clutter. Second,
we remove detections that do not fit the perspective geometry
of the scene, i.e., those that suggest a person that is too tall
or too wide for the given location. Using the crowd motion
segments, we obtain the line counts for each direction: right,
left, and scene (both right and left).

2) Results: The cumulative counting results are presented
in Table V (see Supplemental for detection and count plots).
On these scenes, DPM obtains a lower cumulative counting
error than HOG; the deformable model is better able to
handle the distortion of a person’s appearance in the temporal
slice image. However, the counting-by-detection results have
a higher error rate compared to our LHOG regression model.

DPM-T is successful in detecting most people walking
alone, while moving at normal speeds (around one pixel per
frame). However, the detector has difficulty when the person is
moving too fast or too slow. When a person is moving slowly,
its appearance in the temporal slice image will be stretched
due to the slow speed, and blurred due to the changing pose.
When a person is moving too quickly, the appearance will
be thin and low quality, because the line sampling process
skips slices of the person. Therefore, the appearance of each
pedestrian in temporal slice image is not stable, compared to
its appearance in a normal image. The two detectors also have
difficulty on people walking together in a group, which is due
to both partial occlusion between pedestrians and the distortion
due to the line sampling process.

Finally, the overall detection results of DPM-S are better
than DPM-T. However, DPM-S still has higher error than
LHOG regression, except on UCSD Scene where they get
similar performance in terms of WAE@100. On average,
the combined detection (DPM-ST) has larger error than only
detection on the image. Table VI shows the processing
time for the line counting algorithms on UCSD and LHI.
Our framework has comparable processing time with flow-
mosaicking (both implemented in MATLAB), and is faster
than the people detectors (implemented in C).

Table VI
PROCESSING TIME OF LINE COUNTING ALGORITHMS ON UCSD AND LHI.

Algorithm Language Time (ms/frame)
Flow Mosaicking MATLAB 71.6
KLT-Tracker C 15
DPM C 191
HOG C 180
Ours (LHOG, L2) MATLAB 102.8
Ours (LHOG, L1) MATLAB 66.5

VI. EXPERIMENTS ON FRAMEWORK COMPONENTS

In this section, we conduct further in-depth experiments on
our proposed line-counting framework.

A. Comparing framework components for line-counting

The experiment results in Section V-A compare our method
and the flow-mosaicking [1] at the framework level. These two
frameworks use different feature sets, line-sampling and nor-
malization methods, and regression methods. For feature sets,
our framework uses LHOG features or 30 global features [2],
while flow-mosaicking uses area & edge-length features [1].
To form the temporal slice image, our framework uses fixed-
width line-sampling in conjunction with ST normalization to
adjust for people moving at different speeds. In contrast, flow-
mosaicking uses a variable-width line, with width that adapts
to the speed of the blob segment so that people have similar
sizes in the temporal slice image; spatial normalization is used
to handle perspective. Finally, our framework uses BPR for
counting in the TROIs and integer programing to recover the
instantaneous counts (denoted as BPR+IP). Flow-mosaicking
counts people in each blob using quadratic regression.

Here we compare the performance of individual components
within the same counting framework, i.e., one component is
changed while the remaining two are fixed. The counting
results on UCSD are presented in Table VII. First, for the same
feature set (either global, area/edge, or LHOG) and BPR+IP
counting, our ST normalization method with fixed-width line-
sampling is more accurate than using variable-width line-
sampling (i.e., flow-mosaicking). Because the variable line-
width is based on the average speed of the blob, it may distort
the people when there are several people moving at different
speeds. On the other hand, our ST normalization can better
handle this case (see Figure 6b) by effectively applying per-
person normalization. Second, for BPR+IP, the global and
LHOG features performs better than the area/edge features.
Third, using the same feature set and variable-width line-
sampling, our BPR-IP counting function is more accurate than
blob-level regression. Note that we did not test the LHOG
features with blob-level regression, since for small blobs there
are too few LHOG patches to build a useful descriptor. In sum-
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Table VII
COUNTING RESULTS ON UCSD FOR DIFFERENT COMBINATIONS OF FEATURES, LINE-SAMPLING, NORMALIZATION, AND REGRESSION METHODS.

Features Line-sampling/Normalization Regression Left Right
AE WAE@100 AE WAE@100

global features
fixed-width/spatio-temporal BPR+IP 0.5342 0.7929 1.5067 0.7030
variable-width/spatial [1] BPR+IP 0.9892 0.8274 3.3350 1.2906
variable-width/spatial [1] Blob-level 2.8233 1.2498 3.8800 2.4514

area+edge length
fixed-width/spatio-temporal BPR+IP 0.9092 0.9074 1.4942 1.5232
variable-width/spatial [1] BPR+IP 1.300 0.9410 6.7583 1.9991
variable-width/spatial [1] Blob-level 1.7233 1.2679 8.2400 2.5876

local HOG fixed-width/spatio-temporal BPR+IP 0.6040 0.7231 0.6883 0.5105
variable-width/spatial [1] BPR+IP 1.1958 0.9186 1.6992 1.0781

Table VIII
COUNTING RESULTS ON UCSD DATASET WHEN USING DIFFERENT

OUTPUT DOMAINS FOR INSTANTANEOUS COUNTS.

Output type Left Right
AE WAE@100 AE WAE@100

real numbers 0.8775 0.8746 1.8813 0.7679
non-negative real numbers 0.6120 0.7406 1.4307 0.6307
non-negative integers 0.6083 0.7548 0.7100 0.5313

mary, each of the components in our framework individually
contributes to the improvement in counting over [1] .

B. Comparison of instantaneous count methods

We compare different formulations of recovering the in-
stantaneous counts. First, we investigate the effect of using
different output domains when solving the least-squares re-
construction of the instantaneous counts (Eq. 6). In partic-
ular, we consider using the output domains of real-number
(i.e., ordinary least-squares), non-negative real numbers, and
non-negative integers (integer programming). The counting
results of the three approaches are presented in Table VIII
(using LHOG features without ST normalization). The integer
programming method yields the best result. In practice, for
the instantaneous count, we also tend to prefer non-negative
integer value rather than real value.

We next consider different norms for the reconstruction
error, in particular the L2-norm in (6) and the L1-norm in
(7). The test results on UCSD and LHI are presented in
Table IX. Averaged over the three datasets, using the L2-
norm yields lower AE and WAE@100 than L1-norm. Note
that these results are consistent with the results of the synthetic
experiments in Figure 13, since the UCSD and LHI datasets
have less than 50 people in the test set. Finally, the average
processing time (i7 CPU, 3.40 GhZ, 4G memory) needed for
the L1 reconstruction (0.91 ms / frame)7 is about 40 times
faster than reconstruction using L2. Hence, with a small loss
in performance, L1 reconstruction can be used to decrease the
runtime of the line counting framework.

Table IX
CUMULATIVE COUNTING RESULTS USING L2-NORM AND L1-NORM

ERROR FOR RECONSTRUCTING INSTANTANEOUS COUNTS.

Norm UCSD Left UCSD Right LHI Right ms/frameAE WAE@100 AE WAE@100 AE WAE@100
L2 0.6083 0.7548 0.7100 0.5313 0.8250 0.8283 37.2
L1 0.6233 1.0400 1.2658 0.7402 0.8325 0.7611 0.91

7The proposed method works in batch mode on a chunk of video (e.g.,
1000 frames). Here we report the average processing time over all frames.

C. Comparison of window lengths
To investigate the performance of multiple temporal win-

dow, we test the performance of using single windows of
various lengths and multiple windows consisting of different
combinations. Figure 22 shows the results on L1 and L3 of
Grand Central. Compared with only using a single length-
50 window, the mixture of multiple windows improves the
performance (increase of 9.30%, 11.51% and 13.81% for sets
{50,100}, {50,100,150}, {50,100,150,200}, respectively).
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Figure 22. The average WAE@100 of the left and right directions of L1 and
L3 on Grand Central dataset.

D. Training set size
To analyze the influence of the training set size, we trained

the regression model on UCSD and LHI with smaller subsets
{100,200,400} of the original training set, while keeping the
test set fixed. Figure 23 shows the results for different training
set sizes. When using half of the original training set, the
errors increase by 13.8%/14.7%/1.23% for UCSD-left/UCSD-
right/LHI. However, even only using 100 frames for training,
our results (1.0645/0.9546/0.8792) are still better than flow
mosaicking and KLT.

E. LHOG without spatial-temporal normalization
Next we investigate why LHOG can achieve good results

without using ST normalization. Figure 24 shows a plot of the
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Figure 23. Counting results on UCSD and LHI vs. training set sizes.
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Figure 24. LHOG codebook learned without spatial-temporal normalization.
Codeword (x-axis) vs. optical flow speed of image patches assigned to that
codeword (y-axis). The red circle and the red bar show the average and
standard deviation of the speed. The codeword visualizations are on top.

LHOG codewords (without ST normalization) versus the speed
of image patches assigned to that codeword. Codewords tend
to specialize on the appearance of people moving at different
speeds. Codewords for slow moving people (e.g., Codeword
1) consist of horizontal edges, as the appearance of a slow-
moving pedestrian contains elongated horizontal edges due to
sample slices being repeated. In contrast, codewords for fast
moving people (e.g., Codeword 40) consist of two vertical
edges, which corresponds to the “thin” appearance of a fast-
moving person (see Figure 5). Hence, the LHOG bag-of-words
descriptor without ST normalization is capable of capturing
variations in the appearance due to the person’s speed, from
which a reliable counting function can be learned.

VII. CONCLUSION

In this paper, we have presented a novel line counting frame-
work, which is based on using integer programming to recover
the instantaneous counts on the LOI from TROI counts of a
sliding window over the temporal slice image. We validate our
framework on three datasets. The results show that, compared
with global low-level features, the proposed LHOG feature is
more robust to the perspective and object velocity variations,
and performs equally well without using spatio-temporal nor-
malization. Moreover, compared with “blob-centric” methods
(e.g. flow-mosaicking), our method can generate more accurate
instantaneous and cumulative counts, especially in crowded
scenes. Further experiments showed that the components in
our line-counting framework, in particular fixed-width line
sampling with spatio-temporal normalization, instantaneous
counting by integer programming, and LHOG features, each
contribute to improving the line counting accuracy.

There are four potential improvement to be considered for
future work. First, the appearance of pedestrians in the tempo-
ral slice image becomes distorted during line sampling when
using diagonal or horizontal lines. Hence the features could
be made more robust by applying geometric normalization
to counteract this distortion. Second, the instantaneous count
reconstruction runs in “batch” mode on all TROI counts.
For online estimation, the LOI counts could be obtained by
appending the new frame to the previous frames and running
the batch method, but this would be inefficient. Efficient online
updating of the reconstruction is another topic of future work.
Third, devising an automatic method for selecting the best
combination of TROI window lengths is an interesting topic

of future work. Finally, training of the proposed framework
is scene-specific since the LHOG and global features are
sensitive to the camera viewpoint and LOI orientation. Future
work will consider how to transform the LHOG feature when
the camera viewpoint changes, and how to apply scene transfer
algorithms such as [10, 24, 25].
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