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Abstract—Robustness and uncertainty estimation are crucial
to the safety of deep neural networks deployed on the edge. The
deep ensemble model, composed of a set of individual deep neural
networks (namely members), has strong performance in accuracy,
uncertainty estimation, and robustness to out-of-distribution data
and adversarial attacks. However, the storage and memory con-
sumption increases linearly with the number of members within
an ensemble. Previous works focus on selecting better members,
layer-wise low-rank approximation of ensemble parameters and
designing partial ensemble model for reducing the ensemble size,
thus lowering storage and memory consumption. In this work, we
pay attention to the quantization of the ensemble, which serves
as the last mile of network deployment.

We propose a differentiable and parallelizable bit sharing
scheme that allows the members to share the less significant bits
of parameters, without hurting the performance, leaving alone
the more significant bits. The intuition is that, numerically, more
significant bits (e.g., the bit for the sign) are more useful in distin-
guishing a member from other members. For real deployment of
the bit-sharing scheme, we further propose an efficient encoding-
decoding scheme with minimal storage overhead. Experimental
results show that, BitsEnsemble reduces the storage size of
ensemble for over 22x, with only 0.36x increase in training
latency, and no sacrifice of inference latency. The code is available
in https://github.com/ralphc1212/bitsensemble.

Index Terms—Deep ensemble, edge computing, neural network
quantization, Bits-Ensemble

I. INTRODUCTION

Safety and Robustness are crucial for the deep neural
networks (DNNs) deployed on the edge side. The potential
hazards may comes from the nature of over-confidence in
DNNs [3], [5], [12], [13], [15], [21], [32], data domain
shift [27], [31] and adversarial attack [6], [14], [25], [39]
in real world. The predictions and predictive distributions of
DNNs are used to make decisions in important applications
on edge, e.g., self-driving car [2] or medical diagnoses from
imaging [8]. A misclassification caused by domain shift or
adversarial attack, associated with high predictive confidence,
might cause catastrophic consequences. For example, the first
failure of self-driving car is caused by the perception system
was confused the white side of a trailer for bright sky [21].
A person wearing an adversarial T-shirt in different poses can
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stay undetected by a deep object detector with high success
rate [38].

The deep ensemble model has strong performance in accu-
racy, uncertainty (confidence) calibration, robustness to data
shift and adversarial attack [23], [28], [39]. It contains a
set of deep neural networks (namely members) that jointly
make decisions for each input data. The reason an ensemble
performs well could be explained from a loss landscape per-
spective [9]. Specifically, different members fall into different
local optima, thus capture a global uncertainty instead of
a local uncertainty around one local optima. Empirically,
adding members would increase the ensemble performance in
accuracy and robustness [13], [23].

However, the computation operations and storage increase
linearly with the size of ensemble, which makes an ensemble
hard to fit in resource-limited edge devices. Previously, for mit-
igating this issue, researchers and practitioners study averaging
the members’ parameters within an ensemble to generate one
powerful model [11], [17], [26]. However, except for Bayesian
model averaging, these methods are highly non-explainable.
The over-confidence issue could not be resolved as a single
deterministic network is generated. Recent works explore
carefully designing an ensemble with moderate size using
evolutionary search algorithm [40], selecting active members
with sparse gates [29], fitting the ensemble in one DNN [37]
and combining Bayesian neural network with the ensemble [7].
There is no much attention paid on the developing network
quantization [16], [19] scheme for a deep ensemble.

We focus on this last mile of deploying the ensemble
models on the edge devices. Instead of directly applying the
existing quantization scheme to the deep ensemble, we exploit
the numerics similarities between the quantization bits. The
intuition is that the less significant bits could be less influential
to the diversity and performance of ensemble members, while
they take a large proportion of the quantization bits. The
quantization scheme with low bit-width [18], [33] chooses to
discard the less significant bits or prune them progressively
during training. We choose to cluster the similar less signifi-
cant bits between ensembles and derive the representation bits
for a cluster. The representation bits for less significant bits
are still maintained for refining the quantization of members
within its cluster, namely bits-sharing. The idea of bits-sharing
is described in Fig. 1.

A diversity analysis is conducted to validate the idea of
bits-sharing and shows a potential in saving quantization bits.
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Fig. 1. The description of concepts in BitsEnsemble. The left ensemble uses the decomposition in Eq. 5. [01, 02, 03, 04] are the full-precision scalar weights for
different members. Different colors represent bases or residual errors from different neural network members. The blue and brown color represents the clustered
residual errors with the same representation bits. [r1, 72,73, r4] are the bits-shared and quantized scalar weights for different members. [0, 05, 0%, 0] are

the quantized scalar weights by pruning the less significant bits.

However, the clustering introduces hyper-parameters to tune,
which is prevalent in the modern clustering algorithm, and
is inefficient to be executed for training under the context of
deep ensemble. The complexity and feasibility are studies in
the analysis. This poses two challenges for the design of bits-
sharing: differentiability and parallelizability.

In this paper, we propose a full solution to address the
two problems, containing a set of new differentiable and
parallelizable operands. Each operand is a replacement of the
non-differentiable and non-parallelizable of its 1-dimensional
counterpart. Note that some novel operands are general enough
and could be potentially useful to other applications, e.g., the
RBF kernel-based one-hot encoding scheme. The differentia-
bility allows the hyper-parameter to directly learn from data,
thus searching and tuning for hyper-parameter is no longer
required. The parallelizability allows efficient training of the
deep ensemble.

In addition, we propose a low-rank decomposition based
network layer, leveraging the bits sharing technique, for further
reducing the deep ensemble size. For realizing the storage
and delivery of deep ensemble on edge device, we design an
efficient encoding and decoding scheme for bits-sharing.

Experimental results with VGG and ResNet show that Bit-
sEnsemble reduces the storage size of ensemble for over 22,
with only 0.36x increase in training latency, and no sacrifice
of inference latency. The performance is also improved over
the quantized state-of-the-art ensemble, due to the diversity
induced by the learnable clustering hyper-parameters.

The proposed technique is named BitsEnsemble. To the best
of our knowledge, this is the first work that exploits saving bits
for the quantization of extensively deployed deep ensemble
model.

II. PRELIMINARY AND ANALYSIS

In this section, we present the scheme of sharing quanti-
zation bits of ensemble models. First, the preliminaries about
ensemble and quantization are reviewed. Second, the basics
of problem in bits-sharing is presented. Third, an analysis on
real dataset with deep ensemble is provided, to motivate this
work.

TABLE I
LIST OF SYMBOLS.

Symbol Description

Step size for quantization
Upper bound S and lower bound « for quantization
Input for different functions
Base quantization bits
Residual error at 4 bit level, encoded with 2 bits, et cetera
Residual error matrix
sorted residual errors
A (quantized) weight scalar
Quantized weight matrix
Quantized weight matrix by bits sharing
Index of a member
Ensemble size
All parameters of the k-th member
The k-th member
Index of a bin within [0, 1]
Number of bins
Scalar clustering parameter
Distance scalar of adjacent elements in sorted residual errors
Distance matrix of adjacent elements in sorted residual errors
Binary variable indicating a partitioning
Vector of binary variable indicating a partitioning
Matrix form of p
Cummulative summation of p
Index matrix of sorting
One-hot encoded index matrix of sorting
Weight matrix of a layer
Index for the merged weight dimension
Merged weight dimension
Training objective
Temperature for compare function
Clustering matrix
Matrix of representation bits
Output of bits sharing in sorted order
Output of bits sharing
RBF kernel at center
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Din Input dimension or number of input channels
Dout Output dimension or number of output channels
K Convolutional kernel size
H Input activation of a layer
l Layer index
Q Shared matrix in BatchEnsemble
Sk k-the rank-1 matrix in BatchEnsemble
[sQut, sin A pair of vector for Sy,
Low-rank matrix in BitsEnsemble for input dimension
\4 Low-rank matrix in BitsEnsemble for output dimension

A. Preliminaries

a) Quantization: The weights and activation quantization
of a single deterministic neural network have been extensively
explored [4], [20], [30], [35]. One branch is to design a quan-
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tization function that applies to the weights and activations for
generating the discrete values. However, due to the complex
design of quantization functions, the deployment of some
quantized networks is obscure.

The additive power-of-two quantization bit-width [19], [34]
allows the multiplication to be calculated by bit-shift, which is
compatible with modern mobile hardware. Consider the input
6 of a quantization function in the range [«, 5] is uniformly
quantized with the bit-width b:

0 8-«
S|_ —|7 §= 21, 1 (])

S

where the integer generated by L%} could be represented in
binary bits.

Consider the quantization of 6 with b = 2:
_B-o
201
The residual error is € — 05, which could be further quantized
by the lower-level bits, say the next two bits. Then,

60— 92 o S9
o ST
Note that ¢4 is quantized by 2 bits instead of 4. The key feature
in this quantization scheme is that, by addition, 8, = 65 +
€4, the quantized tensor 64 could be obtained, which has an
effective bit width of b = 4 with a step size of s4 = % In
other words, the high precision quantization (64, 4 bits) could
be obtained by summation of base quantization (65, 2 bits) and
residual error quantization (e4, 4 — 2 = 2 bits). This property
of addition could be extended to any-bit quantization, e.g.,

0
02 = 59 Lg], 52 ()

3)

€4 = S4|_

0 = qo+ €4 + €3 + €16 + €32, 4

where each quantized residual error could be obtained recur-
sively with the example approach. In Bayesian Bits [34], a
probabilistic training method is proposed for automatically
determining the quantization bits, by adding a binary gate for
each residual error. ABS [24] uses a loss-aware objective for
training the binary gates of residual errors.

b) Ensemble: The deep ensemble model is a set of deep
neural networks (DNNs), {fi(-;Wx)}E |, where K is the
ensemble size and Wy represents the parameters for k-th
member. Each DNN is randomly initialized and trained with
the whole training datasets Dy, individually. For a testing data
z* in testing set Di,, each DNN predicts it’s own results
S (x*; y). All prediction results are aggregated to generate
the final prediction y*. General aggregation methods includes
majority voting, averaging and weighted averaging.

The naive way for ensemble quantization is to quantize the
ensemble by power-of-bits quantization functions. By allowing
the adaptive bit-width, each member could be reduced to a
moderate size such that the storage and memory consumption
could be saved.

In this work, we propose to exploit the numerical similarity
of quantization bits among different ensembles. The similar
quantization bits could be clustered into a group and repre-
sented with the shared bits, namely representation bits. The
intuition is that, the base quantization bits, e.g., 2, determine
the main value that the a member weight should be based on.

The high level quantization bits, namely the less significant
bits, only determine the residual quantization errors, thus refine
the base values. Clustering the similar less significant bits
would introduce trivial impact on the network diversity, thus
approximates the full-precision ensemble performance better.

B. Basics of BitsEnsemble

The members in an ensemble could be different in structure.
However, heterogenous structures cause a large overhead for
parallelization. In this work, we study the ensemble with the
same structure but different initializations, which was shown
to perform well in the literature.

We present the basic setup which is generally applicable
for the ensembles. Say the ensemble size (the number of
members) is K. A weight scalar at some position has K
corresponding scalars for different members. Each scalar could
be decomposed into weights using the decomposition in Eq. 2
and Eq. 3.

1 1 1 1 1 1
00 =qy +e; +eg e+ €z,

9

9K2q5(+ef+6§(+6{%+6§<2 5)

We named it the decomposed view. As the base bits are
crucial for the value, we only consider clustering the residual
quantization errors ¢’s. The objective is to find N cluster
centers that covers all values, with minimal number of cluster
centers and low cluster sizes. For example, in the bit-level
4, lel,e3,... €] are clustered and N cluster centers are
calculated. The cluster centers are taken as the representations
bits to replace other bits. As fewer bits are used across member
1 to member K, the major methodology is named bits-sharing.

C. Motivation of bit-sharing

1) Setups and metrics: Before diving into the methodology,
an empirical analysis is conducted on quantization on a trained
ensemble, namely post-quantization, to motivate the bits-
sharing scheme. The correlation of weights in the ensemble
is first analyzed. The accuracy, calibration and ensemble
diversity are evaluated for validating our main idea. We note
that, this example might not have the best performance under
this setting, but is for providing the insight for bits-sharing.

We introduce the following metrics for evaluating the en-
semble performance.

o Accuracy: the accuracy evaluated with averaged outputs

of an ensemble.

o Expected calibration error (ECE): the calibration errors
by dividing the predicted probability range [0, 1] into
bins {B,, }M_, and taking average of the calibration over
bins.

o~ 1Bl
ECE = Z:l T’” lacc(B,,) — conf(By,)|,  (6)
where n is the number of data points, M is the number of
bins. This metric is important for evaluating if a learning
model is over-confident. A perfect calibration means the
averaged prediction confidence is equivalent to the overall
accuracy, which is reached when ECE = 0.
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Fig. 2. The performance of deep ensemble under different member size and bits-sharing scheme in analysis. The first four bits-sharing schemes set A to be
the median of bit distances. bits — sharing e} uses a tuned smaller A. bits — sharing e4&eg is at the two levels with two tuned A’s.
TABLE II
THE PERCENTAGE OF SAVED BITS UNDER DIFFERENT BITS-SHARING (BS) SCHEME.

Name FP | BS €32 BS €16 BS es BS ¢4 BS ¢ BS eq&es
Saved bits in total (% 71) 0 46.7 73.4 86.7 93.3 90.4 90.1
Saved bits at its level (% 1) 0 933 93.5 93.3 93.3 47.5 79.2
» Expected negative correlation (ENC): The negative corre-  [w1q,...,wk] indicates the parameter vectors of different

lation (NC) is a metric to evaluate the diversity according
to the model output.

NC = div(fx(x); f1.x)
= (fr(x) = FE))D_(fi(x) = Fx)),

i#k

(7

where f(x) = & SO% | fr(x). The ENC is the expected
NC over all members. Previous works use it for enhanc-
ing the diversity of boosted models. Here, it could be
a portable metric for evaluating the diversity in deep
ensemble. A diverse ensemble tends to explore more local
optima in the loss landscape, thus could be potential to
perform well.

The accuracy and ECE dominate the ENC metric as they are
directly related to the performance.

The experiments are conducted on the hand-written digits
dataset with 10 classes. A full-precision ensemble of size 16 is
trained first. Each member in the full-precision ensemble is a
neural network with structure 784-128-10 and Relu activation.
Each network is trained individually on the training set.
Fig. 2 shows the performance with increased ensemble size.
Under full precision setup, the ensemble accuracy increases
from 92.1% to 94.6% by increasing the ensemble size. ECE
decreases from 0.035 to 0.029, while ENC decreases from
-9.25 to -19.54.

2) Correlation of weights: Afterwards, we perform the
decomposition presented in Eq. 5 for quantizing the trained
parameters and bits-sharing.

We empirically motivates the idea of clustering bits at the
same location by the similarity of weights. The analysis is
performed on a ensemble of 2-layer neural network trained
on the MNIST dataset. The first metric is cosine similarities
of parameters of different members.

T
Cos(wq,ws) = _WiWa (8)
[[wall [[w2l]
K2 g Kl K
Corr = —y Z Z Cos(wi, wj) )
i=1 j=i

members. The reason of using cosine similarity is to obtain
the correlations of consequent clustering scheme in high-
dimensional space. The second metric is based on variance.

aWK]T))

where disp means dispersion. A lower disp means the el-
ements are more correlated. The inside variance is taken
along the second dimension of the matrix [wy,..., wk]|T
and generates a vector of variance. For example, the first
entry of this vector is the variance over [w11, way, ..., Wk1]-
The outside mean is taken over this vector. This metric is to
show the numeric similarity of different members at the same
location. A smaller variance shows the a higher correlation.

There are four types of parameters in the tested network:
layer-1-weight, layer-1-bias, layer-2-weight and layer-2-bias.
The weight matrix is flattened as a vector for calculating
the correlation. For comparison, we perturb the parameters
by reversing the entry locations of half of w;’s. Furthermore,
we randomly perturb the parameters by shuffling the entries’
location of each wj;’s. The random perturbations are executed
for 3 times and the average results are presented.

(10)

disp = mean(variance([wq, . ..

TABLE III
THE WEIGHT CORRELATION OF THE TRAINED ENSEMBLE.
NOR. (NORMAL), REV. (REVERSE), RAN. (RANDOM)

Corr (x10~2) disp (x10~3)
Name Nor. Rev. Ran. | Nor. Rev. Ran.
layer-1-weight | 1.2 1.0 0.2 4.5 4.5 4.7
layer-1-bias 6.7 6.3 5.8 5.0 5.1 5.5
layer-2-weight 4.1 3.6 1.0 222 224 230
layer-2-bias 55.6 46.6 74 2.8 4.1 6.9

The results show that among different members, high corre-
lations are observed in the same location. Furthermore, exhaus-
tively exploiting similarity of weights at different locations
might find parameters that has higher numerical similarity, but
introduces an indexing matrix to remember which elements
be clustered and stored, for each parameter matrix. This
contradicts with our idea of saving storage space with the bits-
sharing scheme.

3) A smart sharing scheme saves bits: We propose an
unsupervised clustering algorithm with an adjustable cluster
distance A presented in Algo. 1, which is a vanilla version of
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bits-sharing. A is a hyper-parameter for thresholding the gap of
the sorted residual errors. Whenever the algorithm meets a gap
less than A, the buffered residual errors are put in one cluster
and the representation is calculated (line 10 - line 15). By
controlling the value of A, we could determine how sensitive
and frequent the algorithm make a clustering operation. By
properly tuning A, the center distance and the optimal cluster
size could be determined. In this example, we tune A to be
the median of all possible distances between bits. The bits-
sharing is conducted on each bit level first. For example, at
the eg bit level, all e35’s and €14’s are dropped, we only cluster
es’s. Fig. 2 shows the performance with different bits-sharing
scheme. Tab. II shows the corresponding percentage of saved
bits. It could be concluded that bits-sharing at level €32 and
€16 performs similarly with the full precision ensemble under
all metrics. It is worth to note that, bits-sharing at eg provides
an improvement of ENC when maintaining high accuracy and
ECE. However, when more significant bits (¢4) are shared, the
performance drops significantly. Although ENC is improved
due to the large numerical difference, it could not provide
an evidence for better performance due to the large drops of
accuracy and ECE. Under such case, increasing the ensemble
size could not provide performance gain.

Algorithm 1 1-dimensional bits-sharing

Require: [eg,...,ex]T, scalar or vector A
1: initialize a list cluster of size K
. counter = 0, buffer = 0, milestone = 1
c (€, )T D) = sort([eq, .., ex]T)
01 0K = ey ] — [

2

3

4 ¥
5: p = compare([6y,...,0x_1]T, A, >)

6

7

8

9

€
cp=[p1... . pr-1, 17
: for i from 1 to K do

buffer += ¢*

counter += 1

10: if p; == 1 then
11: avg = buffer / counter
12 cluster[milestone : i] = avg
13: milestone =1 + 1
14: buffer = 0
15: end if
16: end for
17: result = map_back(cluster, index)
18: Return result

Then, we set A to be the mean of all possible distances
between bits to obtain bits-sharing €. The brown line (bits-
sharing €}) in Fig. 2 shows the performance is improved
but still far from the others. The percentage of saved bits
at this level is also reduced to 47.5%. For finding a better
setup, a bits-sharing at two levels, €4 and eg, is executed.
The A’s are explored by grid search. Under this evaluation,
the performance is improved to a comparable level with
full precision ensemble. The saved bits at each level is also
improved by around 31.7% compared with bits-sharing €.

We could draw the conclusion that a properly tuned clus-
tering distance, thus clustering centers for each weight, is
useful for the bits-sharing scheme. However, how to determine
the clustering centers with general clustering algorithms is

difficult. Following the notation in Sec.Il.A, for a deep neural
networks, W consists of parameters from different layers
Uy = [W];, where [ is the index of a layer. Clustering the
residual errors at each bit level is a classical NP-hard K-
center problem. For example, for the 4-bit level, [e}, ..., €},
the problem is to find the K cluster centers that covers all
values, with minimal number of cluster centers and low cluster
size. As the modern neural network has at least millions
of parameters, solving the problem with non-parallelizable
heuristics is both inefficient and less effective.

From another perspective, if a search algorithm is adopted.
The search space for the clustering of an deep ensemble is

K
4-25.% " |y,
k=1

where |Uy| represents the number of parameters in a DNN
member. The number 4 means there are 4 bit levels. 25 is
the number of possible combinations. Each search would be
associated with a forward pass of the whole ensemble. As
the size of neural network is notoriously large (e.g. ResNet50
has over 23 million parameters), it is inefficient to directly
searching for the best parameters for the bits clustering.

Furthermore, the analysis uses post-training quantization for
an easy exposition. A post-training quantization for large-scale
neural network might introduce relatively large quantization
error.

This drives us to explore a fully learnable bits-sharing
scheme, for efficiently optimizing the clusters of bits and
prediction objective jointly.

(1)

III. PARALLELIZABLE AND DIFFERENTIABLE
BITS-SHARING

The core algorithm of our bits-sharing is based on the
numerical distance of sorted elements. The vanilla algorithm
is shown in Algo. 1. The idea is to first sort the residual
errors at some bit level, then perform a partitioning operation
according to the gap of adjacent elements. The effect of sorting
is to make the similar numerics aligned closely. Then a simple
comparison operation could generate the clustering.

p = compare(d, A, >)

pi=1, if §; >A;, elsep;, =0 (12)

A brief elaboration of the algorithm is as follows: At line 3,
the residual errors are sorted with the indices corresponding
to the original location returned. A’s are calculated as the
gaps of adjacent elements in the sorted vector. The gaps are
then compared with the elements in A which determines if
a partitioning should take effect. Lines 7-16 denote that the
mean of elements partitioned in a cluster is calculated as the
representation bits, which are re-assigned to these elements
then. Line 17 maps the updated elements to the original
location before sorting.

The algorithm complexity of comparing and re-assigning
values is O(K), while that of whole algorithm is bounded
by the sorting algorithm. However, comparing with the other
clustering-based algorithms, sorting is of lower time com-
plexity and could be efficiently parallelized for all parameter
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values. More importantly, this vanilla bits-sharing scheme
makes it possible to build learnable bits-sharing scheme, which
will discussed in the following subsections.

To make the vanilla Algo. 1 work for the whole neural
network efficiently, the following key points and challenges
arise:

o The whole algorithm should be parallelizable for all ele-
ments in neural network tensors in order to be efficiently
executed in an element-wise fashion.

o The algorithm should provide useful gradients for A, such
that the bits-sharing scheme could learn from data instead
of being searched or tuned manually.

The reason why element-wise execution is preferred than
clustering high dimensional vectors or matrices is two-fold: 1)
besides 1-dimensional numerical distance, there is no direct
correlation between the multi-dimensional representation of
residual errors; 2) high-dimensional clustering is inefficient to
execute during training of neural network; 3) it is obscure
to design a learnable clustering without introducing much
hyperparameters.

A software solution for parallelizing is using library that
supports functions like for-loop and the condition function,
e.g., Jax [10]. However, the library could not provide useful
gradients as the gradients are not properly defined. Meanwhile,
the intermediate variable incurs large overhead for optimizing
the GPU memory usage.

In this section, we propose a package of solutions for solve
the two challenges. Each solution contains a novel technique
which is potentially useful to more fundamental sub-problems
that Algo. 1 induces.

A. General setups

We consider a weight matrix of an neural network layer
W ¢ REXI where K is the ensemble size, II is the
product of input and output dimension or the product of
(output channel, input channel, kernel size, kernel size) for
convolutional layer. W could be recursively quantized in a
parallelizable fashion and written in Eq. 5.

© = quant(W)

Oke = a5™ + €57 + €™ + €57 + €57 (13)

The objective is designing a replacement of Algo. 1 to
generate @ that is parallelizable over [0.1,...,0.x] and has
useful gradient %E, where L is the training objective. © is
supposed to have shared bits which has reduced bits usage
compared with ©.

The presented solutions assume a particular bit-level, e.g.,
&y = [eéi™]*™, similar to Algo. 1, and follow the execution
order in Algo. 1. The key computation modules are highlighted
with bold italic font in the paper.

B. Compare function: compare(d, A, >)

Sorting is a well-explored algorithm with mature parallel
computing software support. Letting the gradient %e’ pass

sorting is straightforward as ¢ — ¢’ is a one-to-one mapping
memorized by the computation flow. Therefore, line 3-4 are
already parallelizable and differentiable for input matrix .

Assume we obtained a matrix A = [§j. |k~ that represents
the difference of the bits at each weight dimension 7w, we
use the following function to replace Eq. 14 for the compare
function,

1
14 +exp(d — A)

p=g(0,AN) = (14)

Note that g(-) is based on the sigmoid function with a
temperature \.

15 15
1.01 1.01
0.5 0.5
0.0 1 0.0 1

—0.51 / —0.51 /
-1.0 T T T T T -1.0 T T T

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

X
— 6=2-x A=02-x —— p=g(6,A1.) —— p=g(5,A,0.01)

Fig. 3. The differentiable compare function under different temperature. x is
a dummy variable for constructing ¢ and A.

It could observed that the designed function g realize the
compare function with soft relaxation. When ¢ > A, the value
gradually changes to 1. Otherwise, it approaches to 0. When A
is large, g generates a smoother function that increases slowly.
Otherwise, a hard function with steeper change is generated,
with less approximation error to an exact step function.

As all the operands in Eq. 2 is differentiable, the gradient
Lg(0,A,0) = —m is calculated in closed form.
As all operands have the vectorized implementation with mod-
ern computation library, the compare operation could be fully
parallelizd for the matrix A to generate P = [p1,...,pn].
Instead of paddding 1 to the tail of p, like Algo. 1, we pad 0
as the first element of p,. The functionality will be illustrated
in Sec. III-C.

As the function might generate a value between [0, 1] for
Dkr, ONE option is to use a rounding function for pg,, namely
Dif round. Estimating the gradient of rounding could use the
straight-through-estimator [1], which is generally adopted in
the quantization network.

C. Clustering and re-assigning

Assume we calculated the matrix P = [pgr]rr of O and
1, representing the partitioning of clusters at a each position,
the next step is to execute the partition and calculate the
representation in each cluster. The 1-dimensional counterpart
is line 7-16 in Algo. 1.

The idea of parallelizing the clustering is first use P to
construct another matrix Q, where each cluster has the same
value. To this end, we use a cummulative summation for
each column p,, namely cummulative_sum. For example, we
assume there a p, = [0, 1, 1, 0], which means the 7-th column
has the information of partitioning at the the second and third
member weight. q, = cummulative_sum(p,) = [0, 1,2, 2],
with each value exactly represents the cluster index number.
As cummulative_sum is highly parallelizable, it could be
executed for matrix P in a column-wise fashion.

We use the mean of residual errors within each cluster as
the representation of the cluster. If we could obtain a one-hot
encoded clustering matrix C for P, the clustering and weight
re-assigning could be done by matrix operation. Assume the
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Fig. 4. An example of parallelizable and differentiable bits-sharing. For simplicity, we use integer as the residual errors at a certain bit level. The key
computation modules are highlighted with bold italic font in Sec III. The output matrix R is an approximation to input matrix £ of residual errors,

determined by the learnable clustering parameter A. The gradlents
input and output mean decimal system.

clustering matrix is obtained, C € {0, 1}X*1XK The cluster
representation calculation is done by

b)

>k Chrj

where m; is the elements in M and ci; is the elements
in C. M € REXT is contains the representation bits in each

cluster.
§ ChkmjMapj

This step is to re-assign the corresponding representation val-
ues to elements within a cluster. R’ is the final approximation
to £.

However, the problem is, the regular one-hot encoding C =
onehot(P) is not differentiable. For addressing this problem,
we propose an RBF kernel-based one-hot encoding scheme.
We place a radial basis function (RBF) kernel at each possible
index of cluster.

|z —a'|?
]Cz(xl) = ’C(I7x/) = €xp (W

Using the above example, p, = [0,1,1,0] and q, =
[0,1,2,2], the kernel functions should be place at the index
[0, 1,2, 3] as there are four possible positions. Thus, the kernels
[Kozo(z'),...,Ky=s(z")] centered at each index center scalar
should be used.

Each g, in q, will be placed as the input =’ of kernels
[Ku=o(z'),...,Ky=3(z")], generating a one-hot encoded vec-
tor. For example, [Ky—0(gsr = 2),...,Kz=3(q3r = 2)] =
[0,0,1,0]. The reason is the proposed kernel only generates
1 when x = 2. The sensitivity could be controlled by setting
an empirical value for the standard deviation o.

In this way, the clustering matrix C could be obtained
efficiently, with the pre-defined RBF kernels. This process

M = [111r]n = (15)

=7 = (16)

a7

R and

R could be computed by general computation library. The footnotes for the

could be fully parallelized using the modern computation
library. As all operations are differentiable, the calculation of
RBF one-hot encoding provides useful gradients for the whole
training process.

D. Map function: map_back

As mentioned in Sec. III-B, sorting is differentiable and
efficient to execute. However, the sorted and clustered residual
errors should be mapped to the original location according
to the index provided by sort using map_back. This process
is inefficient if executed one by one. Similar to the idea in
clustering matrix C, we propose a one-hot encoded index map
T for the index.

(18)
19)

T = [tkn;|er; = onehot(index)
R' = Z rk}ﬂ'tkﬂ'j7

where R € RE*I i the final results that provided by the
bits-sharing algorithm.

[rjlmj

E. Whole workflow

An example of the whole workflow is shown in Fig. 4.
We could conclude that combining the solutions provides an
efficient and learnable bits-sharing scheme.

The bits-sharing results at different quantization levels are
aggregated by summation, in the similar form denoted in
Eq. 13.

(:)ZR52+R54+R58-~- (20)

It is worthy to note that, although the bits-sharing scheme
should be repetitively executed for different bit levels, in
practice, it is only required to execute twice (Rg, and Rg,)
for a weight matrix. The reason is that higher levels could
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be eliminated as they have subtle affection on the ensemble
performance. We keep the bits at base level Rg, not shared,
as these numeric are important for the ensemble diversity.

The middle results and dummy parameters including A will
be discarded once the training is finished. The clustering ma-
trix C and index matrix I will be aggregated and transformed
into a codebook with a low storage cost (see Sec. V).

IV. DETAILS FOR BITSENSEMBLE

The proposed bits-sharing scheme is generally applicable to
all deep ensembles, as long as they share the same architecture.
For persuing a practically useful ensemble with moderate size
for embedded devices, we fit the deep ensemble in one neural
network.

Traditionally, the ensemble should be repetitively executed
or it requires large amount of memory for parallelization.
One way to fit an ensemble to one neural network is to
split network computation workflow into several independent
branches. Each branch is feed with different training data,
such that the training process of a branch does not interfere
with others. During inference time, the same data is feed into
different branches to obtain the ensemble output. In this way,
the network could perform the inference in one pass instead
of repetitively executing all networks in an ensemble. This
setting was explored in BatchEnsemble [37] for improving
the inference efficiency with full-precision weights. Our im-
plementation of the network execution workflow is similar to
the ensemble. We present the detailed execution flow in the
appendix.’

We present a new method for further slimming the en-
semble network: Decomposition of weight matrices. Suppose
we obtained the quantized results generated by bits-sharing,
© = bits_sharing(W).

Keeping a full rank weight matrix like @ € R *PoutXDin
is beneficial for the diversity of ensemble. However, from the
storage perspective, it is highly inefficient as the network size
is K-fold greater than a regular neural network. BatchEnsem-
ble [37] uses a collection of rank-1 matrix S; = sz“ts}ch,
where s9Ut € RPoux1 and sit € RPnX1 for the k-th mem-
bers. There is a shared matrix € RPout*Pin for generating
the weight matrix by W = [Wy], and W, = S; o Q. More
discussions of the comparisons will be presented in Sec. VI-B
and Sec. VII.

Note that although BitsEnsemble is effective to execute
the bits-sharing for [s{"*]; and [s}], which are owned by
the members, the benefits is not s1gn1ﬁcant as the rank-1
decomposed vectors only take part of less than 20% of the
network weights. Over 80% of the network weights belongs
to €2, which is shared across the members.

To take a step further on saving quantization bits, we
propose to use the following low-rank decomposition for the
network weights, before bits-sharing:

v=p
_ E ukoiomll,Ulcd;nl/7
v=1

wkdoutdin 1)

Uhttps://anonymous.4open.science/r/bits_ensemble-C6A 1/

/<>

/

/ t

Component V Output tensor / Group
normahzatlon

Fig. 5. The computation workflow with weight matrix decomposition,
convolution and batch normalization in branch. Note that different colors
denote the different members. The ensemble size K = 4 and the number
of output channels Doyt = 4 in this example. Similar workflow applies to
fully connected layers, which does not have the x X « kernel dimension.

/
07 Douc =4

where W = [wkdoutdin]kdoutdin c
[ukdouw]kdouw c REXDousXp and V = [,deinu]kd;nu c
RKXD;H

RKXDoutXDin’U —

XK for fully connected layers. For convolutional lay-
ers, the two components U € REXDout xpuxkxr gnd V ¢
REXDinxuxrxr The benefits of the decomposition is that,
the two matrices are associated with each member, thus bits-
sharing could be applied to for all components of W, for
maximally reducing the bits usage. Thus, the computation of
quantized matrix becomes

© = bits_sharing(U)bits_sharing(V)” (22)

A example of the computation workflow of the weight
matrix decomposition, convolution and batch normalization in
branch is shown in Fig. 5.

V. ENSEMBLE ENCODING / DECODING METHODS

With our bit-sharing scheme, the quantization bits at each
quantization level could be virtually clustered. There is still a
large gap how these network parameters could be efficiently
stored for the storage and delivery. A proper data organization
paired up with the corresponding encoding and decoding
scheme is required for generating dense representations on
real devices. The overhead includes the bit-sharing scheme
itself, as well as metadata of the bit tensors. We design a
encoding scheme for storing the bits with minimal overhead.
The decoding scheme is also presented.

a) Storage layout: The quantization bits are stored in
binary files, which contains a sequence of blocks. Each block
consists of three kinds of bits.

e Metadata bits. The metadata bits indicate the bit-width
of stored network parameters. It is possible that a lot
of quantized network parameters have the same bit-
width. Instead of storing the bit-width of each parameter,
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storing the same bit-width and the number of consecutive

parameters following that bit-width can be more effective

to save the storage overhead of metadata.

o Pattern bits. The pattern bits indicate the sharing pattern
between ensemble members. The sharing pattern is repre-
sented by a fixed bit-width number code, which indicates
the order among all possible patterns. The bit-width of
the code is computed as the 2-based logarithm of the
number of all possible patterns. It is easy to compute the
number of patterns by enumeration for a small number
of members. While for a large number of members, the
number of patterns is the sum of the second-type Stirling
Numbers [22].

e Parameter bits. The parameter bits are the quantiza-
tion bits of network parameters. As sharing bits are
for different members, for each network parameter, the
quantization bits first contains the base quantization bits
then the shared less significant bits.

b) Encoding/Decoding Scheme: To encode the quantiza-
tion bits into a binary file, we use bit shifting to encapsulate
quantization bits into few unsigned integers. For example,
to encode a 2-bit parameter, a 4-bit parameter, and a 8-
bit parameter into two 8-bit unsigned integers, the encoding
scheme first shift all high two bits of each parameter into one
integer, leaving 2 bits to receive other bits. Then, the encoding
scheme shifts the bits of the residual error into the integer.
Since the remaining bits of the integer are not enough for the
bits of two residual errors, the encoding scheme stores the
4-bit parameter’s residual error bits in the previous integer,
use another integer to store the residual error bits of the 8-bit
parameter. If they share the residual error bits, the encoding
scheme only store once. Finally, the encoding scheme stores
the final residual error of the 8-bit parameter the following
bits of the integer. This can be implemented by an array of
unsigned integers called bit cache and the corresponding read,
write, and flush operations on the bit cache.

VI. EXPERIMENTS

This section presents the experimental evaluation for the
proposed BitsEnsemble scheme and the corresponding encod-
ing and decoding scheme.

A. Experimental setup

For evaluating the performance, we train a VGG11 network
and a ResNetl8 neural network on Cifarl0 dataset. The
BitsEnsemble technique is applied to all the layers in the two
networks. For comparison, the full rank network described in
Sec. IV and BatchEnsemble [37] are adopted. Full rank uses
a weight matrix W € RS Pout X Din X% Xk for the convolutional
layer and W € REDPouxDin for the fully connected layer.
BatchEnsemble uses a group of weight matrix for each layer
{[sgu]&_ | [sin]E_ Q}, where s{ut € RPew*! and sit €
RPin>1 For convolutional layer, 2 € RPoutXPinXrXK “while
for fully connected layer, Q € RPeut*DPin_ The two techniques
use a standard power-of-2 8-bit quantization during training,
without pruning or merging any bit, namely Full Rank (8 bit)
and BatchEnsemble (8 bit). For fairness, our BitsEnsemble

starts training with the maximal available bit level 8, that
means the bits-sharing is only executed on &; and &g, while
16 and &35 are discarded. The ensemble size is set to 4
as suggested in BatchEnsemble. As there is no approxima-
tion and bits loss on Full Rank (8 bit), its performance is
supposed to be the upper bound of BitsEnsemble. We also
apply the state-of-the-art BayesianBits [34] that use power-
of-two quantization for quantizing the full rank ensemble.
We report the full-precision results of the full rank ensemble
for reference, namely Full Rank (full precision). Note that,
activation quantization is an orthogonal technique to this work.
Applying activation quantization to the ensemble has the same
effect on the four evaluated deep ensemble.

For BitsEnsemble, we use a shared A over various dimen-
sions, for introducing less overhead of parameters. For both
types of layers, A is a vector of size Dy, for U and a vector
of size D;, for V. The initial value for A is set to 0.2 for all
entries in the two vectors.

A standard training procedure is adopted. We use a SGD
optimizer with initial learning rate 0.01, weight decay 107°
and momentum 0.9. The batch size for each member in the
ensemble is 256, thus the total batch size is 1024. There is no
trick like mix-up is adopted except for the warm-up learning
rate scheduler, for the three techniques. The aim is to let the
quantization networks converges faster. In the first 20 epochs,
the learning rate is gradually increased to the initial learning
rate. Then, it decreases by a factor 0.1 with a period 40 epochs.
The implementation is on PyTorch and the training process is
conducted on an GeForce RTX 3090 GPU.

The encoding and decoding workflow is evaluated for
simulating the case that: 1) a server or an edge server encodes
the updated ensemble to a piece of dense code; 2) the code
is distributed to an edge device; 3) the edge device decodes
the ensemble for real deployment. The implementation is on
C/C++ standard library. The encoding stage is finished on a
desktop with Intel Core i7-10700 CPU and 64GB memory.
The decoding stage is evaluated on a Raspberry 4 device with
Cortex-A72 CPU and 4GB memory.

B. Performance of BitsEnsemble

For evaluating the performance, we use the accuracy, ECE
and ENC mentioned in Sec. II-C, on the testing dataset. The
efficiency of training and inference are considered, as well as
the storage. For the training and inference latency, we test the
time within single iteration. For the model size, we present the
parameter size stored by PyTorch without optimization. The
model size with our encoding scheme is presented in the next
section.

In terms of performance, BitsEnsemble outperforms the
full-rank ensemble and BatchEnsemble on most performance
metrics on the quantization tasks. On VGG11 network, Bit-
sEnsemble has better accuracy than Full-rank ensemble (8 bit)
and BatchEnsemble (8 bit) and approaches the accuracy of
full-rank VGGI11. BitsEnsemble provides the best expected
calibration error compared with the others and has better
diversity than Full-rank ensemble (8 bit) and BatchEnsemble
(8 bit). On ResNetl8, BitsEnsemble outperforms the other
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TABLE IV
THE COMPARISONS OF PERFORMANCE.
ALL MODEL SIZES HERE ARE STORED IN Full Precision WITH PYTORCH IMPLEMENTATION WITHOUT OPTIMIZED ENCODING.

Training time (s) | Inference time (s) R

Name Accuracy (%) | ECE ({) | ENC ({) per iter per iter Model size (MB)
Full-rank VGG11 (full-precision) 89.97 0.06 -8.12 1.02 0.91 227
Full-rank VGGI1 (8 bit) 87.66 0.06 -6.15 1.07 0.90 227
Full-rank VGG11 (BayesianBits) 88.10 0.05 -71.71 1.20 0.90 227
BatchEnsemble VGGI11 (8 bit) 85.31 0.08 -5.42 1.12 0.90 36
BitsEnsemble VGG11 89.78 0.05 -7.61 1.30 0.91 40
Full-rank Res18 (full-precision) 91.10 0.05 -9.31 1.53 1.12 173
Full-rank Res18 (8 bit) 90.34 0.05 -8.71 1.61 1.10 173
Full-rank Res18 (BayesianBits) 90.19 0.06 -9.67 1.73 1.11 173
BatchEnsemble Res18 (8 bit) 87.04 0.06 -4.63 1.49 1.10 117
BitsEnsemble Res18 91.41 0.05 -10.36 1.99 1.08 48

three schemes in accuracy and diversity, providing similar cal-
ibration performance for estimating the predictive confidence.

The phenomenon that BitsEnsemble outperforms Full-rank
ensemble (8 bit) could tell the bits-sharing scheme and low-
rank decomposition are not only helpful in reducing the en-
semble size, but provides useful regularization for the training
of quantized ensemble network. Combining the residual errors
is not harmful to the diversity of ensemble, but provides
improvement for it. This could be attributed to the learnable
parameter A, as it could be flexibly adjusted to obtain bet-
ter performance. The effectiveness of gradient ﬁR is then
validated.

The comparison with BatchEnsemble shows that directly
quantizing the rank-1 decomposed matrix in BatchEnsemble
could be harmful to the performance. The reason might be
that the quantization errors of the different components are
accumulated by multiple production as each component Wy,
is obtained by (si”tsiknT) o Q. Specifically, the quantization is
over [s¢u K [sin]K | and €. Quantization of each vector or
matrix would introduce errors which is then magnified by the
process to obtain W. It is meaningless to quantize the middle
results S, = sz“ts'}C“T, as storing [Sk]X_, would increase
the storage cost by K fold. Then, the rank-1 decomposition
in BatchEnsemble has no effect in reducing the model size.
Therefore, this validates the necessity of our design in Bit-
sEnsemble, which provides high performance ensemble with
a small size.

In terms of efficiency, compared with other schemes, the
training time of BitsEnsemble is increased by at most 27.5%
and 36% for the two networks. This value is acceptable as
the bits-sharing scheme should be executed twice (for £4 and
&g). At inference time, BitsEnsemble has similar performance
with the others, as the structures for different ensembles are
similar in inference time.

In terms of storage, the full precision results show that the
decomposition in BitsEnsemble is useful in reducing the model
size. By properly adjusting the latent dimension g, it could
reach a comparable model size as the rank-1 BatchEnsemble
on VGG11. On ResNet18, the reduction of model size is from
2.43x to 3.6x.

The next sub-section shows that the model size of a deep
ensemble could be further reduced by leveraging the clustering
information provided by bits-sharing, provided by our encod-
ing scheme.

C. Performance of encoding and decoding

To validate the performance of encoding/decoding with our
bit-sharing scheme on real devices, we evaluate the encod-
ing/decoding time and the encoded model size. The encoding
time is measured on the server side while the decoding time is
measured on the edge side, such as the Raspberry 4 device. We
collect the encoding/decoding time of each layer in VGGI11.
For the encoded file size, we collect the results of ours, Full-
rank ensemble (full-precision) and Full-rank ensemble (8 bit).
Besides, we also collect the storage overhead of different kinds
of bits.
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Fig. 6. The decoding time of each layer in VGG11 on the Raspberry 4 device.
n terms of decoding efficiency, BitsEnsemble only takes

5.25 seconds to decode the quantized VGG11 on the Raspberry
4 device. Figure 6 shows the decoding time of each layer in
VGG11 on the edge device. The main decoding time is spent
on the last four convolutional layers, due to the larger number
of parameters of these layers. Besides, we can observe that the
difference of decoding time between layers is less than about
1.2 seconds. Since the decoding of each layer is independent,
the decoding efficiency can be further improved with a simple
scheduling.
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Fig. 7. The encoding time of each layer in VGGI11 on the server.

Although the encoding stage is generally performed on
the server side with powerful computation resources, we also
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collect the total encoding time and the encoding time of each
layer to show the encoding efficiency. The total encoding time
of the quantized VGGI11 on the server side is 0.61 seconds.
Figure 7 shows the encoding time of each layer in VGGI11
on the server side. The encoding time of layers follows the
same rule that encoding those layers with larger number of
parameters is more time-consuming.
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Fig. 8. The encoded size of each layer in VGG11. The numbers denotes the
size of BitsEnsemble and Full rank (8 bit) in percentage (%) normalized by
the absolute size of Full rank (full precision).

To verify the efficacy of the proposed encoding scheme

in Sec. V, we also collect the encoded model size and the
encoded layer size in VGG11. The total encoded model size
of VGG11 is about // MB, which is much smaller than the
result (40 MB) in the Tab. IV. The reason is that the proposed
encoding scheme only stores the valid bits of each variable.
For sharing bits, the encoding scheme only stores once for
saving more bits, while BitsEnsemble stores multiple copies
for computation efficiency. During the decoding, those copies
can also be restored based on the metadata and pattern bits.
Compared to Full-rank (full-precision) and Full-rank (8 bit),
our encoding scheme reduces the model size by 92.60% and
70.39%, respectively. This also mainly benefits from the bit-
sharing scheme.

As shown in the Fig. 8, the numbers represent the ratio
of the layer size compared to the Full-rank (full-precision).
For the last three convolutional layers, the layer size of Full-
rank (full-precision) is greater than 20MB. From the layer size
results, our encoding scheme significantly reduces the layer
size, especially for the layers with large number of parameters,
e.g., the convolutional layer with channel size 512. For the
first layer and the last layer, our encoding scheme produce
more bits that the other comparisons. This is due to the larger
overhead introduced in the encoding scheme. However, the
layer size of the first layer and the last layer is quite small,
e.g., only 7.63 KB for the first layer with our encoding scheme,
thus the overhead of these two layers can be ignored.

BitsEnsemble (M), BitsEnsemble (P), BitsEnsemble (Q) in
the Fig. 8 represents the corresponding number of metadata
bits, pattern bits, and quantization bits. In our encoding
scheme, the overhead of metadata bits and pattern bits are
10.02% and 23.61% of each layer size on average. Our en-
coding scheme adopts the fixed bit-width number to store the
pattern bits, thus leading to a higher overhead than metadata
bits. However, adding all overheads, our encoding scheme can
still outperform than other schemes.

VII. RELATED WORK

We present the comparisons with BatchEnsemble and its
related technique in this section. We refer the readers to Sec. I
and Sec. II, for the related techniques for quantization and
ensemble.

As illustrated in Sec. IV, BatchEnsemble [37] is a full
precision ensemble. It fits an ensemble in one neural network
by splitting multiple sub-networks as the members of an en-
semble. The significant contribution of BatchEnsemble is the
rank-1 structure introduced to the weight matrix. For one layer,
the parameters contain {[s¢"¢]5_,, [siP]K_ 2}. A member k
is associated with a pair of vectors {sp"*,s}*}, which could
be used to generate the rank-1 matrix S, = s(,;“ts'}fT. Q is
shared across all members. The weight matrix for member k
is obtained by W = Sj o Q.

As illustrated in Sec. VI-B, a regular quantizaton scheme
is not suitable for quantizing BatchEnsemble. The reason is
applying quantization to {s{"*,si"} would cause quantization
errors. The errors would be magnified during the complex
process of obtaining S; and Wy, which seriously damages
the performance of quantized ensemble under even standard
quantization. Directly quantizing S; might produce a high
rank matrix to store, which introduce K X more storage
consumption.

By comparison, BitsEnsemble provides a robust and simple
W = UVT decomposition of the matrix. The quantization
errors on U and V won’t be significantly magnified as only
one tensor computation is used. Also, both U and V contain
components from K members. Our bits-sharing technique
could be fully leveraged for saving bits.

Dusenberry et al. [7] extends the BatchEnsemble by placing
uncertainty over the weights to obtain a scalable Bayesian
neural network. It would be interesting to study Bayesian
counterpart of BitsEnsemble and its corresponding quanti-
zation scheme. Wen et al. [36] use data augmentation to
enhance the performance of BatchEnsemble. Note that this
is an orthogonal technique to this work, as the same tricks
could be applied to BitsEnsemble for better performance.

VIII. CONCLUSION

In this paper, we propose to cluster the quantization residual
errors among members within a deep ensemble to save bits.
An analysis performed on real dataset shows, the clustering of
quantization bits could significantly reduce the ensemble size.
To obtain a decent clustering requires exhaustively searching
for the best hyper-parameter A and repetitively executing the
cluster algorithm for different parameters. Both are computa-
tionally prohibitive. We propose a generic bits-sharing scheme,
for making the whole clustering algorithm differentiable and
parallelizable. Differentiable bits-sharing could enable A to be
learned from data, thus no searching is required. Parallelizable
bits-sharing could leverage the modern computation library for
high training efficiency. The bits-sharing scheme is universally
applicable to ensemble with members in the same structure.
We further design our ensemble model for pursuing a smaller
model size. An encoding and decoding scheme is further
proposed for realizing the virtually shared bits for storage.
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