
1

A Bag of Systems Representation for Music
Auto-tagging

Katherine Ellis*, Emanuele Coviello, Antoni B. Chan and Gert Lanckriet

Abstract—We present a content-based automatic tagging sys-
tem for music that relies on a high-level, concise “Bag of Systems”
(BoS) representation of the characteristics of a musical piece.
The BoS representation leverages a rich dictionary of musical
codewords, where each codeword is a generative model that
captures timbral and temporal characteristics of music. Songs
are represented as a BoS histogram over codewords, which
allows for the use of traditional algorithms for text document
retrieval to perform auto-tagging. Compared to estimating a
single generative model to directly capture the musical charac-
teristics of songs associated with a tag, the BoS approach offers
the flexibility to combine different generative models at various
time resolutions through the selection of the BoS codewords.
Additionally, decoupling the modeling of audio characteristics
from the modeling of tag-specific patterns makes BoS a more
robust and rich representation of music. Experiments show that
this leads to superior auto-tagging performance.

Index Terms—Content-based music processing, audio annota-
tion and retrieval, bag of systems, dynamic texture model, music
information retrieval

I. INTRODUCTION

As physical media has evolved towards digital content,
recent technologies have changed the way users discover
music. Millions of songs are instantly available via online
music players or personal listening devices, and new songs are
constantly being created. With such a large amount of data,
particularly in the “long tail” of relatively unknown music, it
becomes a challenge for listeners to discover new songs that
align with their musical tastes. Hence there is a growing need
for automated algorithms to explore and recommend musical
content.

Many recommendation systems rely on semantic tags,
which are words or short phrases that describe musically
meaningful concepts such as genres, instrumentation, mood
and usage. By bridging the gap between acoustic semantics
and human semantics, tags provide a concise description of
a musical piece. Tags can then be leveraged for semantic
search based on transparent textual queries, such as “mellow
acoustic rock”, or for playlist generation based on semantic
similarity to a query song. A variety of tag-based retrieval
systems use annotations provided by expert musicologists [1],
[2] or social services [3], and work well when provided

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

We acknowledge support from Google, Inc. E.C. and G.R.G.L. acknowledge
support from Yahoo!, Inc., the Sloan Foundation, KETI under the PHTM
program, and NSF Grants CCF-0830535 and IIS-1054960.

K. Ellis, E. Coviello and G. Lanckriet are with the Department of Elec-
trical and Computer Engineering, University of California at San Diego,
La Jolla, CA 92093 USA (e-mail: kellis@ucsd.edu, ecoviell@ucsd.edu,
gert@ece.ucsd.edu; phone: 1 858 539-6003; fax: 1 858 534-6976).

enough annotations. However, scaling these systems to the
size and needs associated with modern music collections is
not practical, due to the cost of human labor and the cold start
problem (i.e., the fact that songs that are not annotated cannot
be retrieved, and more popular songs (in the short-head) tend
to be annotated more thoroughly than unpopular songs (in the
long-tail)) [4]. Therefore, it is desirable to develop intelligent
algorithms that automatically annotate songs with semantic
tags based on the song’s acoustic content. In this paper we
present a new approach to content-based auto-tagging, which
we build on a novel, high-level descriptor of songs that uses a
vocabulary of musically meaningful codewords, each of which
is a generative model that captures some prototypical textures
or dynamical patterns of audio content.

A good deal of previously proposed approaches follow a
“fixed” recipe—start from a collection of annotated songs,
represented by a sequence of audio feature vectors, and
estimate a series of statistical models, one for each tag, to learn
which acoustic patterns are most predictive for each tag. Then,
the tag models are used to annotate new songs – the audio
features of a new song are compared to each tag model, and
the song is annotated with the subset of tags whose statistical
models best fit the song’s audio content.

A few solutions rely on generative models, which posit that
data points are randomly generated samples from a fully spec-
ified probabilistic model. This is in contrast to a discriminitive
approach, which models only the conditional distribution of a
tag conditioned on the observed audio data. After selecting a
base model, i.e., a particular type and time scale of generative
model, these approaches fine-tune an instance of this base
model for each tag, through maximum likelihood estimation,
to capture musical characteristics that are common to songs
associated with the tag. The choice of base model is usually
driven by the type of audio characteristics one intends to
capture with the tag models. For example, Turnbull et. al.
[5] use Gaussian mixture models (GMMs) over a “bag of
features” (BoF) representation of songs as a base model,
where each audio feature represents the timbre over a short
snippet of audio. Coviello et. al. [6] use the more sophisticated
dynamic texture mixture (DTM) models (i.e., linear dynamical
systems), to explicitly leverage the temporal dynamics (e.g.,
rhythm, beat, tempo) present in short audio fragments, i.e.,
sequences of audio features.

Our work is motivated by the observation that these direct
generative approaches have some inherent limitations. First,
their modeling power is determined by the choice of base
model (e.g., GMM, DTM, etc.) and the choice of time scale for
audio feature extraction (e.g., length of snippets, duration of
fragments). Alternative choices will result in tag models that

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

focus on complementary characteristics of the music signal,
and no particular set of choices may be uniformly better,
for all tags, than any other. For example, in [6], Coviello
et al. reported that while the DTM models they propose
outperformed GMM models (as proposed by Turnbull et. al.
in [5]) on average, this superior DTM performance is not
consistently observed for all tags. Indeed, each method was
best on a subset of tags, suggesting that different fundamental
design choices are best suited to model different groups of
tags. In addition, fixing a single time scale may be suboptimal,
as acoustic patterns common to different tags may unfold
over different time scales. A second limitation of the direct
generative methodology is that fitting tag models, in partic-
ular complex ones such as DTMs, involves estimating many
parameters. This may result in non-reliable estimates for tags
associated with few example songs in the annotated collection.

To address these limitations, we propose a “Bag of Sys-
tems” (BoS) representation of music, which indirectly uses
generative models to represent tag-specific characteristics. The
BoS representation is a rich, high-level descriptor of musical
content that uses generative models as musical codewords.
Similar to the bag of words (BoW) representation commonly
used in text retrieval [7] which represents textual documents
as histograms over a vocabulary of English words, the BoS ap-
proach represents songs as histograms over counts of musical
codewords. Given a vocabulary of musical codewords (which
we call a BoS codebook), a song’s BoS histogram is derived
by “counting” the occurrences of each codeword in the song
through probabilistic inference. Once songs are represented as
a BoS histogram, a variety of supervised learning algorithms
(e.g., those generally employed with BoW representations in
the text mining community) can be leveraged to implement a
music auto-tagger over the BoS histograms of songs.

The BoS representation enables combining the benefits of
different types of generative models over various time scales
in a single auto-tagger. In this paper we demonstrate that a
codebook which uses a combination of Gaussian models and
dynamic texture models that operate over various time scales
as BoS codewords improves the performance of the auto-
tagger relative to codebooks that are formed with codewords
from only one base model.

The BoS codebook is similar to the classical vector-
quantized (VQ) codebook of prototypical feature vectors, but
contains richer and more complex codewords. A Gaussian
codeword in the BoS representation captures the same infor-
mation contained in a VQ codeword, i.e., the mean feature
vector, but includes additional information about the variance
of the cluster that is not accounted for by VQ. Additionally,
the use of DT codewords in the BoS representation adds
information about the temporal dynamics of sequences of
feature vectors that a VQ representation cannot capture.

Another key advantage of the BoS representation is that
it decouples modeling music from modeling tags. First, a
vocabulary of BoS codewords that model typical character-
istics of musical audio is learned from some large, repre-
sentative collection of songs, which need not be annotated.
With a suitable collection, these BoS codewords will be rich
descriptors that can represent a wide variety of songs. Once a

BoS representation for music has been obtained, auto-tagging
reduces to learning recurring patterns in the BoS histograms
of songs associated with each tag. The advantage is that
relatively simple tag models (i.e., relative to the sophisticated
generative models used at the codeword level) may suffice
to capture tag-specific characteristics in the BoS histograms,
while still leveraging the full descriptiveness of the codebook.
In particular, estimating simpler statistical models is less
prone to over-fitting and, thus, more likely to provide robust
estimates for tags with few example songs in the annotated
collection (used for estimating tag models). We demonstrate
this advantage through experiments later in this paper.

This paper expands on results described in a previous
conference publication [8], including an expanded discussion
of algorithmic details and a more extensive experimental
evaluation. In particular, we analyze in more depth the method
we use to generate BoS codebooks, with a comparison to
three alternative methods of codebook generation. We include
more experiments dealing with parameter selection, e.g., the
effect of the codebook size, the size of codebook song set, and
the histogram smoothing parameter. We include experiments
using additional time scales of base models. We also include
for comparison two additional baseline methods beyond the
direct generative HEM-DTM and HEM-GMM methods shown
in the conference publication — one that uses VQ codebooks
and one that averages probabilities given by the direct gen-
erative approaches across different time scales and models.
Additionally, we include more experiments that investigate the
composition of the codebook song set, using combinations of
labeled and unlabeled data.

The remainder of this paper is organized as follows. In
Section II we overview related work. Then in Section III we
delve into the details of the BoS representation of music,
including the generative models used as codewords (III-A),
and algorithms for learning a BoS codebook (III-B) and for
representing songs using the resulting BoS codebook (III-C).
Music annotation and retrieval with BoS histograms is dis-
cussed in Section IV. After introducing the music datasets
used in our experiments in Section V, we present experiments
that demonstrate the effectiveness of the BoS representation
for music auto-tagging in Section VI.

II. RELATED WORK

In recent years content-based auto-tagging has seen increas-
ing interest as a result of the growing amount of online music
and the impossibility of manual labeling. Music auto-tagging
has been approached from a variety of perspectives, both
discriminative and generative, as well as a few unsupervised
methods. Generative models previously used in auto-taggers
include Gaussian mixture models (GMMs) [5], [9], hidden
Markov models (HMMs) [10]–[12], hierarchical Dirichlet pro-
cesses (HDPs) [13], a codeword Bernoulli average model
(CBA) [14] and dynamic texture mixture models (DTMs) [6].
Previously proposed auto-taggers that rely on a discriminative
framework employ algorithms such as multiple-instance learn-
ing [15], stacked SVMs [16], boosting [17], nearest-neighbor
[10], logistic regression [18], locally-sensitive hashing [19]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

and temporal pooling with multilayer perceptrons [20]. In [21],
the authors approach music auto-tagging as a low rank matrix
factorization problem. Alternative approaches add information
from non-audio data, such as a hybrid music recommender
system that combines usage and content data [22] and a
multimodal music recommendation algorithm that combines
information from music content, music context, and user
context [23].

Recent work in music auto-tagging has focused on devel-
oping approaches that can take into account information at
different time scales. For example, one approach uses boosting
to combine features extracted at different time scales by using
trees as weak classifiers [24]. Another approach integrates
features computed from shorter frames over the duration
of a longer analysis window, before applying a classifier
[25]. Additionally, Sturm et. al. [26] found that combining
MFCCs over multiple time scales to create a unified feature
vector improved performance in automatic musical instrument
identification. Multi-scale spectrotemporal features are used to
discriminate speech from non-speech audio in [27]. In [28], the
authors use an unsupervised deep convolutional representation
for genre recognition and artist identification, demonstrating
an improvement over raw MFCC features. In [29], scattering
representations of MFCCs were used for genre classification.

Existing auto-tagging algorithms for music that employ a
codebook representation of songs have only focused on vector-
quantized (VQ) codebooks of raw audio features [14], [18].
One of these approaches combines multiple VQ codebooks,
learned from the same set of features but with slightly different
initial conditions, to reduce the variance in codebook construc-
tion [30]. In VQ codebooks, each codeword is a prototypical
feature vector, while in BoS codebooks, each codeword is a
generative model that describes sets or sequences of features
vectors; this allows for the capture of higher-level and richer
musical characteristics.

The BoS approach provides a way to combine discrimina-
tive and generative components into a single learning frame-
work — while the modeling power of the BoS representation
is achieved through generative models used as codewords,
once songs are represented as BoS histograms, any standard
supervised learning algorithm, discriminative or generative,
can be used to learn tag models. A related approach that
merges discriminative and generative learning is the use of ker-
nels to integrate the generative models within a discriminative
learning paradigm, for example through probability product
kernels (PPK) [31].

A BoS approach has been used for the classification of
videos [32]–[34], and a similar idea has inspired anchor
modeling for speaker identification [35].

III. THE BAG OF SYSTEMS REPRESENTATION OF MUSIC

Analogous to the bag-of-words representation of text doc-
uments, the BoS approach represents songs with respect to
a codebook, where generative models are used in lieu of
words. These generative models compactly characterize typical
audio features and musical dynamics in songs. A song is then
modeled as a composition of these codewords, just as a text

(a)

Music	 informa-on	 retrieval	 (MIR)	
is	 the	 interdisciplinary	 science	 of	
retrieving	 informa-on	 from	 music.	
MIR	 is	 a	 small	 but	 growing	 field	 of	
research	 with	 many	 real-‐world	
applica-ons…	

ap
pli

ca
tio

n

ac
ad

em
ic

mus
ic

mus
ico

log
y

worl
d

… …

Document BoW Histogram

aardvark	
abacus	

…	
zygote	

Vocabulary

(b)

…

Song BoS Histogram

BoS Codebook

BoS Histogram

BoS Codebook

Song
⇥1

BoS Histogram

BoS Codebook

Song BoS Histogram

BoS Codebook

Song
BoS Histogram

BoS Codebook

Song
⇥2⇥3 ⇥K

⇥K

⇥1

⇥2

…

Fig. 1. (a) Bag of Words modeling process: a document is represented as
a histogram over word counts. (b) Bag of Systems modeling process: a song
is represented as a histogram over musical codewords, where each codeword
is a generative model that captures timbral and temporal characteristics of
music.

document is composed of words, and a BoS histogram is
constructed by counting the occurrences of each codeword in
the song through probabilistic inference (see Figure 1).

In this section, we establish a BoS representation for music.
We first discuss the (generative) base models from which
we will derive BoS codewords (Section III-A). We choose
Gaussian and dynamic texture (DT) models to capture proto-
typical timbral content and temporal dynamics, respectively,
although it should be noted that the BoS representation is
not restricted to these choices of generative models. We then
present several approaches to learn a dictionary of codewords
from a collection of representative songs (Section III-B).
Finally, we describe how to map songs to the BoS codebook
using probabilistic inference (Section III-C).

A. Generative Models as Codewords

To construct a rich codebook that can model diverse aspects
of musical signals, we consider two different base models, the
Gaussian model and the dynamic texture (DT) model [36].
Each captures distinct musical characteristics.

In particular, the audio content of a song is first represented
by a sequence of audio feature vectors (e.g., MFCCs, which
capture timbre) Y = {y1, . . . , yT }, extracted from equally
spaced, half-overlapping time windows of length η (which
determines the time resolution of the features), where T
depends on the duration of the song and the sampling process.
Gaussian codewords will capture average timbral information
in unordered portions of Y; DT codewords will model char-
acteristic temporal dynamics in ordered subsequences of Y .
Below, we discuss each base model in more detail. To further
increase the diversity of the codebook, we will consider the
above base models at different time resolutions η as well.

1) Gaussian Models: A Gaussian codeword models the
average timbral characteristics of the bag-of-features represen-
tation of a sequence of audio feature vectors, without taking
into account the actual ordering of audio features. In particular,
the model assumes each vector in the bag-of-features is
generated by a multivariate Gaussian N (µ,Σ), where µ and

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

η

y1 y2 y3

x1 x3x2

. . .
y4

x4

Audio
fragment

Sequence
of feature
vectors
y1:τ

DT
model

λ

Fig. 2. A dynamic texture model represents a fragment of audio of length
λ. We first compute a sequence of τ feature vectors, each computed from
a window of length η. The DT models each feature vector as an observed
variable yt in a linear dynamical system.

Σ are the mean and the covariance matrix, respectively. Hence
the codeword is parameterized by Θ = {µ,Σ}.

2) Dynamic Texture Models: A dynamic texture (DT) code-
word captures timbre as well as explicit temporal dynamics of
an audio fragment (i.e., a sequence of audio feature vectors)
by explicitly modeling the sequential ordering of the audio
feature vectors.

Specifically, a DT treats a sequence y1:τ of τ audio feature
vectors as the output of a linear dynamical system (LDS):

xt = Axt−1 + vt, (1)
yt = Cxt + wt + ȳ, (2)

where the random variable yt ∈ Rm encodes the timbral
content (audio feature vector) at time t, and a lower di-
mensional hidden variable xt ∈ Rn encodes the dynamics
of the observations over time. The codeword is specified
by parameters Θ = {A,Q,C,R, µ, S, ȳ}, where the state
transition matrix A ∈ Rn×n encodes the evolution of the
hidden state xt over time, vt ∼ N (0, Q) is the driving noise
process, the observation matrix C ∈ Rm×n encodes the basis
functions for representing the observations yt, ȳ is the mean of
the observation vectors, and wt ∼ N (0, R) is the observation
noise. The initial condition is distributed as x1 ∼ N (µ, S).
We note that the columns of the observation matrix C can be
interpreted as the principal components (or basis functions) of
the audio feature vectors over time. Hence, each audio feature
vector can be represented as a linear combination of principal
components, with corresponding weights given by the current
hidden state. In this way, the DT can be interpreted as a time-
varying PCA representation of an audio feature vector time
series.

Figure 2 illustrates the underlying generative process of a
DT modeling a sequence of feature vectors. The time scale of
a DT is determined by the duration λ of an audio-fragment,
and the length η of a window from which feature vectors
are computed. Note that the duration λ is directly determined
by η and the number of feature vectors in a sequence, τ , by
λ = η

2 (τ + 1), since we compute feature vectors from half-
overlapping windows.

B. Codebook Generation
We are interested in compiling a rich codebook, which

effectively quantizes the space of music-fragment models. The

codebook should have a high representational power for music,
i.e., contain a diverse set of codewords that can capture many
different musical characteristics. First, in order to consider
diverse aspects of the musical signal (e.g., timbre in short
snippets of audio, or more complex timbral and dynamic
patterns in longer fragments), we choose M different base
models (i.e., type of generative model and time scale). We
learn the codebook by learning groups of codewords, where
each codeword in a group is derived from a certain base model.

More formally, we define the subset of the codebook
consisting of codewords derived from the mth base model
as Vm = {Θi}Km

i=1 , where Km is the number of codewords
derived from base model m. Hence for a given song Y ,
the mth subset of codewords is associated with a particular
feature vector representation Ym of the song at the specified
time scale. For codeword subset m with a Gaussian base
model, each codeword Θ ∈ Vm takes the form Θ = {µ,Σ},
and song Y is represented as a bag of audio feature vectors
Ym = {y1, . . . , yTm}, extracted from windows of length
ηm. For codeword subset n with a DT base model, each
codeword Θ ∈ Vn takes the form Θ = {A,Q,C,R, µ, S, ȳ},
and song Y is represented as a bag of audio fragments
Yn = {y1

1:τn , . . . , y
Tn
1:τn
}. Audio fragments are sequences of

τn feature vectors, each feature extracted from a window of
length ηn. The length of an audio fragment is defined as λn
and the step size between successive audio fragments is νn.

In what follows, we assume that all codeword subsets are
the same size, i.e., K1 = K2 = · · · = KM = K̃. The union
of all these subsets of codewords is the BoS codebook, V =⋃M
m=1 Vm = {Θi}Ki=1, where K = MK̃ is the total number

of codewords in the codebook.
In practice, to compile a codebook we select a collection

of representative songs Xc. Then, based on this collection,
we obtain some codewords for each of the M base models.
In particular, we will learn the codewords in each codeword
subset m independently, by first generating the corresponding
representation Ym for each song Y ∈ Xc, and then estimating
the parameters for a set of K̃ codewords of that base model
to adequately span these audio representations.

A natural approach to this estimation problem is to use the
EM algorithm to directly learn a mixture of K̃ codewords
(of base model m) from all audio data — i.e., the combined
audio data from all the songs in Xc. However, this becomes
expensive as K̃ and the amount of audio data increases.
Therefore, we also investigate alternative methods of codebook
generation, which are expected to increase computational
efficiency by learning fewer (than K̃) codewords at once
and/or learning from (small) subsets of all audio data in Xc.

In particular, we will consider four different procedures for
learning K̃ codewords for subset m: (1) learn each of the K̃
codewords independently from very small (non-overlapping)
subsets of all available audio data (e.g., from a fragment of a
song in Xc), (2) learn q small mixtures of a few (Ks = K̃/q)
codewords independently from small (but slightly larger, non-
overlapping) subsets of all available audio data (e.g., from indi-
vidual songs in Xc), (3) learn all K̃ codewords simultaneously
from all available audio data in Xc, either by using standard
EM, or (4) with recourse to a more efficient, hierarchical

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

(a) (b) (c) (d)

Fig. 3. Learning a BoS Codebook V = {Θi}Ki=1 by (a) modeling random audio fragments with a single instance of the model, (b) modeling each song with
a small mixture model, (c) modeling all available audio data with a large mixture model using standard EM, or (d) using a more efficient, hierarchical EM
(HEM) algorithm. A solid arrow corresponds to applying EM, a dashed arrow to applying HEM, and a dotted arrow to direct estimation (see Section III-B1).

EM (HEM) algorithm. Each of these methods is depicted
graphically in Figure 3. In Section VI-A we experimentally
evaluate each codebook generation method, leading us to settle
upon the second, song-based method of codebook generation,
as the best combination of efficient learning time and good
performance.

In what follows, we detail each codebook generation
method, applied to learning a subset of codewords Vm for
a single base model m. To generate a codebook from M base
models, we repeat the procedure for each base model and pool
the resulting codeword subsets.

1) Fragment-based Procedure: An individual codeword
Θ ∈ Vm is learned directly from a very small subset of all
available audio data in Xc. In particular, to learn a Gaussian
codeword, a song is selected uniformly at random from
the codebook song set Xc, represented appropriately as Ym,
and a few (sequential) audio feature vectors are (uniformly)
randomly chosen from Ym. The parameters of Θ are then
directly estimated by computing the mean and the (diagonal)
covariance matrix of these feature vectors. To learn a DT code-
word, again a song is selected uniformly at random from the
codebook song set Xc, represented appropriately as Ym, and
an audio fragment y1:τm is (uniformly) randomly chosen from
Ym. The parameters of Θ are directly estimated from the audio
fragment, using an approximate and efficient algorithm based
on principal component analysis for DT codewords [36]. The
process is repeated until the desired number of codewords (K̃)
has been collected. With complexity O(K̃), this is the least
computationally expensive method of codebook generation, as
each codeword is learned individually and efficiently from a
small amount of data (as shown in Figure 3(a)). Additionally,
since each codeword is learned independently, the learning
processes can easily be parallelized, reducing the complexity
to O(K̃Np

), where Np is the number of processors available.

2) Song-based Procedure: Mixtures of a few codewords are
learned from individual songs in the codebook song set Xc and
are then pooled together to form the codeword set Vm. More
specifically, each song in Xc (represented appropriately as Ym)
is modeled with a Gaussian mixture model (GMM) or dynamic
texture mixture (DTM) model {πj ,Θj}Ks

j=1 with Ks mixture
components, where the Θj’s are Gaussian or DT components
and the πj’s are the corresponding mixture weights. These
mixture models are learned using the EM algorithm (EM-
GMM [37] or EM-DTM [38] for Gaussian mixture models or

dynamic texture mixture models, respectively). We then aggre-
gate the mixture components (ignoring the mixture weights1)
from each song-level model to form Vm = {Θi}K̃i=1, where
K̃ = Ks|Xc|.

This approach has a complexity of O(dFKs|Xc|) =
O(dFK̃), where d is the average number of iterations for
each run of the EM algorithm and F is the average number of
data samples used as input to the EM algorithm. In the case of
Gaussian codewords, F is the average number of audio feature
vectors per song, while in the case of DT codewords, F is the
average number of audio fragments per song. In comparison
to the fragment-based procedure, the song-based procedure
makes use of the entire codebook song set, and provides a
regularization effect in learning the codewords by smoothing
over an entire song rather than using a single fragment for
estimation. As Figure 3(b) shows, each song is associated with
a few codewords, from the corresponding song model. Since
song models can be learned in parallel, the complexity can
be reduced to O(dFKs|Xc|

Np
), where again Np is the number of

processors available.
3) Collection-based Procedure: All the codewords in Vm

are learned jointly, as one large mixture model, from all
available audio data in the codebook song set Xc. In par-
ticular, for Gaussian codewords, we pool the bag-of-features
representations of all the songs in Xc, and use this as in-
put to the EM-GMM algorithm to learn a mixture model
{πi,Θi}K̃i=1, where each Θi parameterizes a Gaussian and πi
is the corresponding mixture weight. For DT codewords, we
pool the bag-of fragments representations of all the songs in
Xc, and use this as input to the EM-DTM algorithm to learn
a mixture model {πi,Θi}K̃i=1, where each Θi parameterizes
a DT and πi is the corresponding mixture weight. Each
individual mixture component becomes a codeword in Vm
(mixture weights are discarded). Therefore, the number of
mixture components corresponds to K̃ (the desired number
of codewords in Vm). The computational complexity of this
procedure is O(dNK̃) = O(dF |Xc|K̃), where N = F |Xc|

1The alternative to ignoring mixture weights would be to use the mixture
weights when building the BoS histograms for each song — so a more
common codeword, with a high mixture weight, is more likely to be assigned
to represent a portion of audio than a rare codeword, which would have a low
mixture weight. However, it makes more sense assign to a snippet of audio
the codeword that best matches, even if it is a rare codeword, to create the
most precise representation of the song. In fact, these rare codewords may
have more discriminative power than more common codewords, which may
occur across many tags.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

is the number of samples used as input to the EM algorithm.
This approach has a factor of |Xc| higher time complexity than
the song-based procedure. However, the complexity can be
improved by subsampling the inputs to the EM algorithm, i.e.,
using N < F |Xc|. The EM algorithm usually requires storing
in memory (RAM) all available audio data, and hence scales
poorly to large codebook song sets. Even though a parallel
implementation of EM could effectively alleviate the high
memory requirements (at the likely modest cost of globally
coordinating the local computations), the cumulative CPU time
requirements would be still elevated because each iteration
would still need to process the entire data. Figure 3(c) shows
the collection based procedure.

4) Hierarchical Collection-based Procedure: Similar to the
previous approach, this procedure learns a mixture model with
K̃ components from all available audio data in Xc, but now
using a more efficient two-stage procedure. First, a series of
mixture models are estimated from small subsets of the data,
using EM. Then, after aggregating all mixture components, the
resulting (very large) mixture is reduced to a mixture with K̃
components using the hierarchical EM algorithm (HEM) [33],
[39]. Specifically, a large collection of codewords V(b)

m of size
K̃(b) is learned from Xc with the song-based procedure, using
K ′s mixture components per song. Then, the K̃(b) = K ′s|Xc|
codewords in V(b)

m are clustered to form a codeword set Vm
of size K̃ < K̃(b) using the HEM algorithm for GMMs
[39] or the HEM algorithm for DTMs [33]. In this case,
the HEM algorithm takes as input a large mixture model
{ 1
K̃(b)

,Θ
(b)
i }K̃

(b)

i=1 (weighing all mixture components equally),
and produces a reduced mixture model with fewer components
{πj ,Θj}K̃j=1, where each component Θj is a novel codeword
that groups, i.e., clusters, some of the original codewords. As
before, each individual mixture component in the output model
becomes a codeword.

The complexity is O(dFK ′s|Xc|+d′K̃(b)K̃), where d′ is the
average number of iterations of the HEM algorithm. Assuming
F ≈ K̃ and d′ ≈ d, this becomes O(d′|Xc|(F+K̃)K ′s), saving
a factor K̃/K ′s compared to the previous, direct collection-
based procedure. Furthermore, since learning the song models
in the first stage can be parallelized, the complexity can be
further reduced to O(

dFK′
s|Xc|
Np

+ d′K̃(b)K̃). As before, Np is
the number of processors available. Figure 3(d) shows the two
stages of this method of codebook generation.

C. Representing Songs with the Codebook

Once a codebook is available, a song Y is represented by a
BoS histogram b ∈ RK , where b[i] is the weight of codeword
i in the song. To count the number of “occurrences” of a
given codeword Θi ∈ Vm in the song, we start from the
appropriate song representation, Ym, at the appropriate time
scale. At various time points t in the song (e.g., every νm
seconds), we compare the likelihood of Θi to the likelihood
of all other codewords derived from the same codeword subset,
i.e., all Θ ∈ Vm (since likelihoods are only comparable
between similar models with the same time scale). We count
an occurrence of Θi at t if it has the highest likelihood
of all the codewords in Vm given the audio data yt, i.e.,

Θi = argmaxΘ∈Vm P (yt|Θ). For GMM codewords, yt is a
single audio feature vector, extracted from a window of width
ηm starting at t, while for DTM codewords, yt is a sequence
of τm such feature vectors, extracted at intervals of ηm

2 .
Finally, codeword counts are normalized to frequencies to

obtain the BoS histogram b for song Y:

b[i] =
1

M |Ym|
∑

yt∈Ym

1[Θi = argmax
Θ∈Vm

P (yt|Θ)]. (3)

We first normalize within each codeword subset — by the
number of fragments, |Ym|, in Ym — and then between
subsets — by the number of base models, M .

Equation 3 is derived from the standard term frequency
representation of a document, where each audio fragment is
replaced by its closest codeword. However, this can become
unstable when a fragment has multiple codewords with (ap-
proximately) equal likelihoods, which is more likely to happen
as the size of the codebook increases. To counteract this effect,
we generalize Equation 3 to support the assignment of multiple
codewords at each point in the song. We introduce a smoothing
parameter k ∈ {1, 2, . . . , |Vm|}. In particular, we assign the k
most likely codewords (within one subset) to each portion of
audio. The softened histogram is then constructed as:

b[i] =
1

M |Ym|
∑

yt∈Ym

1

k
1[Θi ∈ argmax

Θ∈Vm

kP (yt|Θ)], (4)

where the additional normalization factor of 1/k ensures that b
is still a valid multinomial for k > 1. The argmaxk is formally
defined for a function f over a discrete set U as {x : 6 ∃ Y ⊂ U
such that x /∈ Y, |Y | = k, and ∀z ∈ Y, f(z) ≥ f(x)}.

IV. MUSIC ANNOTATION AND RETRIEVAL USING THE
BAG-OF-SYSTEMS REPRESENTATION

Once a BoS codebook V has been generated and songs
represented by BoS histograms, a content-based auto-tagger
may be obtained based on this representation — by modeling
the characteristic codeword patterns in the BoS histograms of
songs associated with each tag in a given vocabulary. In this
section, we formulate annotation and retrieval as a multiclass
multi-label classification of BoS histograms and discuss the
algorithms used to learn tag models.

A. Annotation and Retrieval with BoS Histograms

Formally, assume we are given a training dataset Xt, i.e.,
a collection of songs annotated with semantic tags from
a vocabulary T . Each song s in Xt is associated with a
BoS histogram bs = (bs[1], . . . , bs[K]) which describes the
song’s acoustic content with respect to the BoS codebook
V . The song s is also associated with an annotation vector
cs = (cs[1], . . . , cs[|T |]) which expresses the song’s semantic
content with respect to T , where cs[i] = 1 if s has been
annotated with tag wi ∈ T , and cs[i] = 0 otherwise. In short,
a training dataset is a collection of histogram-annotation pairs
Xt = {(bs, cs)}|Xt|

s=1.
Given a training set Xt, we estimate a series of tag-level

models that capture the statistical regularities in the BoS

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

histograms representing the subsets of songs in Xt associated
with each tag in T , using standard text-mining algorithms.
Given the BoS histogram representation of a novel song, b,
we can then resort to the previously trained tag-level models
to compute the relevance of each tag in T to the song. In
this work, we consider two algorithms with a probabilistic
interpretation, which output posterior probabilities p(wi|b)
that a tag wi applies to a song with BoS histogram b. We
then aggregate the posterior probabilities to form a semantic
multinomial (SMN) p = (p1, . . . , p|T |), characterizing the
relevance of each tag to the song (pi ≥ 0 ∀i and

∑|T |
i=1 pi = 1).

Annotation involves selecting the most representative tags
for a new song, and hence reduces to selecting the tags with
the highest entries in the SMN p. Retrieval consists of rank
ordering a set of songs S = {s1, s2 . . . sR} according to their
relevance to a query. When the query is a single tag wi from
T , we define the relevance of a song to the tag by pi, and
hence retrieval consists of ranking the songs in the database
based on the ith entry in their SMN.

B. Learning Tag Models from BoS Histograms

The BoS histogram representation of songs is amenable to
a variety of annotation and retrieval algorithms. In this work,
we investigate one generative algorithm, Codeword Bernoulli
Average (CBA), and one discriminative algorithm, multiclass
kernel logistic regression (LR).

1) Codeword Bernoulli Average: The CBA model proposed
by Hoffman et. al. [14] is a generative process that models the
conditional probability that a tag applies to a song. Hoffman
et al. define CBA based on a vector quantized (VQ) codebook
representation of songs. For our work, we use instead the BoS
representation. CBA defines a collection of binary random
variables yji ∈ {0, 1}, which determine whether or not tag
wi applies to song j, with a two-step generative process.
First, a codeword zji ∈ {1, . . . ,K} is chosen according to
the distribution given by the song’s BoS histogram bj , i.e.,

p(zji = l|bj) = bj [l]. (5)

Then, a value for yji is chosen from a Bernoulli distribution
with parameter βli, which represents the probability of tag
word wi given codeword l:

p(yji = 1|zji, β) = βzjii,

p(yji = 0|zji, β) = 1− βzjii. (6)

We use the author’s code [14] to fit the CBA model, i.e.,
learn the parameters β. To obtain the SMN of a novel song
with BoS histogram b, we compute the posterior probabilities
p(yi = 1|b, β) = pi under the estimated CBA model, and
normalize p = (p1, . . . , pK) by its L1 norm.

2) Multiclass Logistic Regression: For each tag, logistic
regression defines a linear classifier with a probabilistic in-
terpretation by fitting a logistic function to BoS histograms
associated and not associated with the tag:

P (wi|b, βi, αi) =
1

1 + exp (βTi b + αi)
. (7)

Codeword Base Model Window Fragment Fragment
length (η) length (λ) step (ν)

G1 46 ms — —
G2 93 ms — —

DT1 12 ms 726 ms 145 ms
DT2 93 ms 5.8 s 1.16 s
DT3 93 ms 11.6 s 2.32 s

TABLE I
DESCRIPTION OF BASE MODELS USED IN EXPERIMENTS: TWO TIME

SCALES OF GAUSSIANS AND THREE TIME SCALES OF DTS.

Kernel logistic regression [40] finds a linear classifier after
applying a non-linear transformation to the data, ϕ : Rd →
Rdϕ . The feature map ϕ is indirectly defined via a kernel
function κ(a,b) = 〈ϕ(a), ϕ(b)〉.

In our experiments, we use the histogram intersection kernel
[41], which is defined by the kernel function:

κ(a,b) =
∑
j

min(a[j], b[j]), (8)

where a and b are BoS histograms. In our implementation
we use the software package Liblinear [42] to learn an
L2-regularized logistic regression model for each tag using
the “one-vs-the rest” approach. We select the regularization
parameter C by performing 4-fold cross-validation on the
training set. Given the BoS histogram of a new song b, we
collect the posterior probabilities p(wi|b) and normalize to
obtain the song’s SMN.

V. MUSIC DATA

In this section we introduce the two music datasets used in
our experiments, along with the audio features and the base
models used for the codewords.

A. CAL500 Dataset

The CAL500 [5] dataset consists of 502 Western popular
songs from 502 different artists. Each song-tag association has
been evaluated by at least 3 humans, using a vocabulary of
149 tags, including genres, instruments, vocal characteristics,
emotions, acoustic characteristics, and use cases. CAL500
provides binary annotations that can be safely considered as
hard labels, i.e., c[i] = 1 when a tag i applies to the song and 0
when the tag does not apply. We restrict our experiments to the
97 tags with at least 30 example songs. CAL500 experiments
use 5-fold cross-validation where each song appears in the test
set exactly once.

B. CAL10K Dataset

The CAL10K dataset [43] is a collection of over ten
thousand songs from 4,597 different artists, weakly labeled
(i.e., song annotations may be incomplete) from a vocabulary
of over 500 tags. The song-tag associations are mined from
Pandora’s website. We restrict our experiments to the 55 tags
in common with CAL500.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

C. Codeword Base Models and Audio Features

We choose a priori five different base models for codewords:
two time scales of Gaussians (G1 and G2) and three time
scales of DTs (DT1, DT2 and DT3). These time scales were
chosen by referring to previous work [5], [6], and with the
goal of spanning a reasonable range of scales that occur
in music. For example, codewords from model class DT1

will capture dynamics that unfold over a few miliseconds to
while codewords from model class DT3 will capture dynamics
that unfold in the time span of several seconds. We will
experimentally determine the best base models and combi-
nations of models from these five choices. For the Gaussian
codewords, we use as audio features the first 13 Mel-frequency
cepstral coefficients (MFCCs) appended with first and second
instantaneous derivatives (MFCC deltas). This results in 39-
dimensional feature vectors [44]. For the DT codewords, we
model 34-bin Mel-frequency spectral features.2 We note that
these features represent timbre, but not other facets of music
such as rhythm or tonality.

To motivate the difference in features between Gaussian
and DT codewords, note that Mel-frequency cepstral coeffi-
cients (MFCCs) use the discrete cosine transform (DCT) to
decorrelate the bins of a Mel-frequency spectrum. In Section
III-A2 we noted that the DT model can be viewed as a time-
varying PCA representation of the audio feature vectors. This
suggests that we can represent the Mel-frequency spectrum
over time as the output of the DT model. In this case, the
columns of the observation matrix (a learned PCA matrix)
are analogous to the DCT basis functions, and the hidden
states are the coefficients (analogous to the MFCCs). The
advantage of learning the PCA representation, rather than
using the standard DCT basis, is that different basis functions
(matrices) can be learned to best represent the particular
codeword, and different codewords can focus on different
frequency structures. Also, note that since the DT explicitly
models the temporal evolution of the audio features, we do
not need to include their instantaneous derivatives (as in the
MFCC deltas).

In both cases, feature vectors are extracted from half-
overlapping windows of audio. The window and fragment
length for each codeword base model are specified in Table
I. These choices were intended to cover a few sufficiently
distinct time resolutions, and the step size between fragments
is relatively small in order to increase the number of fragments
we can extract from each song.

VI. EXPERIMENTAL EVALUATION

In this section we present experimental results on music an-
notation and retrieval using the BoS representation. Annotation
performance is measured using mean per-tag precision (P),
mean per-tag recall (R) and mean per-tag F-score. Retrieval
performance is measured using area under the receiver op-
erating characteristic curve (AROC), mean average precision
(MAP), and precision at 10 (P10) averaged over all one-tag
queries. We refer the reader to Turnbull et al. [5] for a detailed
definition of these metrics.

2We use 30 Mel-frequency bins to compute the MFCC features, which
provides a similar spectral resolution to the 34-bin Mel-frequency features.

Method Speedup Annotation Retrieval
P R F-Score AROC MAP P10

Codeword Base Model G1

Frag 81.3 0.370 0.217 0.217 0.689 0.423 0.439
Song 1 0.390 0.229 0.230 0.701 0.437 0.449
Coll 0.015 0.382 0.228 0.229 0.704 0.441 0.452
Hier 0.875 0.376 0.227 0.227 0.697 0.435 0.447

Codeword Base Model DT2

Frag 54.2 0.381 0.229 0.225 0.695 0.433 0.456
Song 1 0.411 0.246 0.247 0.712 0.457 0.479
Coll 0.036 0.398 0.243 0.242 0.709 0.455 0.471
Hier 0.070 0.390 0.236 0.230 0.705 0.447 0.463

TABLE II
EXP-1: LEARNING A BOS CODEBOOK WITH FOUR DIFFERENT METHODS:

FRAGMENT-BASED (FRAG), SONG-BASED (SONG) COLLECTION-BASED
(COLL) AND HIERARCHICAL (HIER). K = 128 CODEWORDS ARE

LEARNED FROM A CODEBOOK SONG SET OF |Xc| = 64 SONGS. BOS
HISTOGRAMS USE SMOOTHING PARAMETER k = 10, AND ARE

ANNOTATED WITH LR. SPEEDUP IS REPORTED RELATIVE TO THE
SONG-BASED METHOD.

A. Design Choices

The combination of four codebook generation methods, five
base models of codewords and two BoS histogram annotation
algorithms creates a large number of possibilities for the
implementation of the BoS framework. Along with the choice
of codebook size K and histogram smoothing parameter k,
it becomes difficult to present an exhaustive comparison of
all possibilities. We instead evaluate each design parameter
independently while keeping all other parameters fixed, which
leads us to select (1) the song-based procedure for codebook
generation, (2) a combination of three codeword base models
(DT1, DT2, and G1; see Table I), and (3) logistic regression
to annotate BoS histograms. Appendix I discusses each of
these design choices in more detail. For each design choice,
alternatives are compared by measuring the annotation and
retrieval performance of a series of BoS auto-taggers. In the
experiments in this section, reported metrics are the result of
five-fold cross-validation where tag model training and testing
are done using LR on CAL500.

EXP-1: Codebook Generation Methods: We first compare
the four methods of codebook generation presented in section
III-B. We restrict our attention to codebooks consisting of a
single base model (G1 only or DT2 only) and use a small
codebook size K (because for the collection-based codebook
learning procedures, learning time quickly becomes prohibitive
with larger values of K). Additional parameter settings for this
experiment can be found in Appendix I.

Annotation and retrieval results for these experiments are
reported in Table II. We find that learning codewords with
the song-based procedure produces the best combination of
performance and efficiency. While highly efficient, learning
codewords at the fragment level gives sub-optimal perfor-
mance. The collection-based procedure (with standard EM)
provides good performance in terms of annotation and re-
trieval, but training times are an order of magnitude higher
than the song-based method. Moreover, the results in Table
II are for relatively small codebooks (K = 128) — as the
codebook size increases, the computational cost of the EM
algorithm becomes even more prohibitive. In Appendix I we
analyze the codebooks produced by each method in more

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

detail, in particular investigating the diversity and spread of
the learned codewords using appropriate pairwise distances
and 2-D visualization. Hence, for the remainder of experiments
codebooks are learned by the song-based method.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

K

M
A

P

DT
2

G
1

Fig. 4. EXP-2: Retrieval performance (MAP) as a function of BoS codebook
size K. Each codebook is generated with a song-based approach. For a fixed
codebook song set Xc, the codebook size is varied by varying the number of
codewords learned per song, Ks. The error bars indicate the standard error
over the five cross-validation folds of CAL500.

EXP-2: Codebook Size: In this experiment we investigate
the effect of the codebook size, K, on annotation and retrieval
performance. Figure 4 plots the retrieval performance (MAP)
as a function of the codebook size, for values of K ranging
from 50 to 4800. Further details about the parameter settings
for this experiment are provided in Appendix I. We find that
once the codebook has reached a certain size, adding more
codewords has a negligible effect on performance, and in
fact for DT codewords performance eventually degrades as
the codebook becomes large. We see an optimal range for K
between 800 and 3200, corresponding to an optimal range for
Ks between 2 and 8. Based on these results we choose for
future experiments K̃ = 1600 (corresponding to Ks = 4) for
each codeword group, for codebooks learned from CAL500.
We note however, that these results are for a single base model,
and we see in preliminary experiments that when codewords
from a variety of different base models are combined, we can
use a larger codebook without saturating performance (see
Section VI-A). We also note that these results are based on a
fixed codebook song set size |Xc| = 400. We found in pre-
liminary experiments that with a larger codebook song set, we
can keep Ks in a similar range, allowing for larger codebooks
before performance deteriorates. In particular, when using the
CAL10K dataset as the codebook song set, we set Ks = 2
(see Section VI-B2).

EXP-3: Codeword Base Models: One of the key advantages
of the BoS framework is that it allows one to leverage code-
words from different base models (i.e., model types and time
scales) to produce a rich codebook. In this set of experiments,
we investigate the extent to which using multiple base models
is useful.

We evaluate various combinations of the codeword base
models defined in Table I, adjusting the number of codewords
learned from each base model, K̃, to obtain a fixed codebook
size K. We begin with a codebook with all codewords of

Base Annotation Retrieval
Models P R F-Score AROC MAP P10

DT2 0.418 0.253 0.258 0.724 0.469 0.491

DT1,2 0.424 0.255 0.263 0.729 0.475 0.499
DT2,G1 0.439 0.258 0.264 0.735 0.479 0.500

DT1,2,G1 0.433 0.263 0.267 0.744 0.489 0.506

DT1,2,3,G1 0.431 0.260 0.265 0.739 0.483 0.504

DT1,2,3G1,2, 0.428 0.261 0.266 0.739 0.483 0.505

TABLE III
EXP-3: RESULTS USING BOS CODEBOOKS WITH CODEWORDS FROM

VARIOUS BASE MODELS. ALL CODEBOOKS HAVE K = 4800 CODEWORDS,
WITH VARYING NUMBER OF CODEWORD BASE MODELS, M , CODEWORDS
PER BASE MODEL, K̃ , AND SIZE OF SONG MODEL, Ks . BOS HISTOGRAMS
USE SMOOTHING PARAMETER k = 10, AND ARE ANNOTATED USING LR.

base model DT2, which was the best performing individual
codeword base model in preliminary experiments, and com-
pare it with codebooks containing additional base models of
codewords. Additional parameter settings can be found in
Appendix I.

Results are presented in Table III. We find that using
multiple types of generative models with different time scales
in a codebook is beneficial. Compared to a codebook of DT2
codewords only, adding Gaussian codewords3 (i.e., G1) or DT
codewords on a shorter time scale4 (i.e., DT1) leads to a
significant improvement in performance. In particular, the best
performance is achieved when all of the above base models are
combined: DT1, DT2 and G1. This is a significant improvement
in performance over the DT2,G1 codebook.5 While Figure 4
shows that adding more codewords of the same base model to
a codebook of size 1600 saturates and eventually deteriorates
performance, Table III illustrates that adding codewords of a
different base model can further improve performance. This
confirms the codebook is enriched with codewords that model
different aspects of the musical signal.

We notice, however, that adding a third set of DT codewords
no longer improves performance. We speculate this is because
the DT2 and DT3 base models use feature vectors sampled
at the same time resolution, η; they differ in the number of
feature vectors, τ , in the fragments they model, which is twice
as long for DT3 as DT2. The hidden state of a DT model
evolves as a first order Markov process, with the evolution
from state xt−1 to xt defined by the transition matrix A. While
a different time resolution can significantly affect A, the model
(and the corresponding codewords) does not explicitly encode
the fragment length, τ . The latter only defines the length of
the input audio fragments used in the learning stage of the
algorithm. Using larger values of τ means using longer audio
fragments, resulting in more smoothed DT models. Hence the
codewords in DT2 and DT3 may capture more or less the
same dynamics, although the codewords in DT3 may be more
smoothed than those in DT2. 6

Similarly, adding a second set of Gaussian codewords
provides no improvement in performance. Indeed, since Gaus-

3Paired t-test of MAP score on 97 tags: t(96) = 6.43, p < .001
4Paired t-test of MAP score on 97 tags: t(96) = 9.08, p < .001
5Paired t-test of MAP scores on 97 tags: t(96) = 5.38, p < .001
6See Chan and Vasconcelos [38] for more details.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

sians do not model temporal dynamics, the only time scale
parameter to tune is the window length (i.e., η), varying
which determines the amount of audio that is averaged over to
produce timbral features. Therefore, features extracted at the
time scale for G2 are essentially more smoothed versions of
the features extracted for G1 (with slightly different frequency
bands), and the codewords capture much of the same timbral
information.

0

0.4

k = 1

0

0.1

k = 5

0

0.05

k = 10

0

0.01

k = 50

Fig. 5. BoS histograms with smoothing parameter k = 5, 10 and 50 for
Guns N’ Roses’ November Rain. The smoothing parameter k determines the
number of codewords to be assigned at each point in the song, so using a
smaller value of k will assign only a few different codewords, leading to more
peaked histograms, while a larger value of k creates smoother histograms.
Note the different y-axis scales.

EXP-4: BoS Histogram Smoothing Parameter k: In this
experiment we investigate the effect of the BoS histogram
smoothing parameter k on annotation and retrieval perfor-
mance. Figure 5 illustrates a few example BoS histograms with
varying values for k for a song from CAL500. When building
BoS histograms, we assign the k most likely codewords (of
each base model) to each portion of audio. Hence when a
smaller value of k is used, songs tend to be represented by only
a few different codewords, leading to more peaked histograms,
while a larger value of k creates smoother histograms.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.22

0.24

0.26

0.28

0

0.42

0.44

0.46

0.48

0.5

k

LR

CBA

MAP

F−Score

Fig. 6. EXP-4: Annotation (F-score) and retrieval (MAP) performance of
the BoS approach, using LR on the CAL500 dataset, as a function of the
smoothing parameter k.

Details of the experimental setup are provided in Appendix
I. Results are plotted in Figure 6 as a function of k. We
find that the performance is fairly stable for a wide range
of values for k, reaching a peak between k = 5 and k = 10.
The performance drops off gradually for large k and more
steeply for small k. This leads us to select k = 10 as the BoS
histogram smoothing parameter for further experiments.

Annotation Retrieval
P R F-Score AROC MAP P10

HEM-GMM 0.374 0.205 0.213 0.686 0.417 0.425
HEM-DTM 0.446 0.217 0.264 0.708 0.446 0.460
HEM-AVG 0.445 0.219 0.251 0.719 0.458 0.474

VQ-LR 0.413 0.243 0.255 0.717 0.456 0.480

BoS-CBA 0.378 0.262 0.248 0.738 0.482 0.505
BoS-LR 0.433 0.263 0.267 0.744 0.489 0.506

TABLE IV
BOS CODEBOOK PERFORMANCE ON CAL500, USING CBA AND LR,
COMPARED TO GAUSSIAN TAG MODELING (HEM-GMM), DTM TAG

MODELING (HEM-DTM), AVERAGING OF GMM AND DTM TAG MODELS
(HEM-AVG) AND VQ CODEBOOKS WITH LR.

We also notice throughout these (and following) experi-
ments that LR tends to outperform CBA as an annotation
algorithm, and hence LR is our annotation algorithm of choice.

B. BoS Performance

In this section we present experiments that demonstrate the
effectiveness of the BoS representation for music annotation
and retrieval, using the design choices made in the previous
section. We compare the BoS approach to several baseline
autotaggers on the CAL500 and CAL10K datasets.

1) Results on CAL500: We run annotation and retrieval
experiments on CAL500 using two BoS auto-taggers based
on a codebook of size K = 4800 which combines codeword
base models G1, DT1 and DT2, each with K̃ = 1600 and
obtained with the song-based method (Ks = 4, |Xc| = 400)
and histogram smoothing parameter k = 10. One auto-tagger
uses LR to annotate BoS histograms and the second uses
CBA — BoS-LR and BoS-CBA, respectively. For LR, the
regularization parameter C is chosen by 4-fold cross-validation
on the training set. All reported metrics are the result of five-
fold cross-validation, where for each split of the data the whole
training set is used as the codebook song set (i.e., Xc = Xt).

We compare our BoS-CBA and BoS-LR auto-taggers with
three state-of-the-art baselines for automatic music tagging.
The first two are based on hierarchically trained GMMs
(HEM-GMM) [5] and hierarchically trained DTMs (HEM-
DTM) [6], respectively. Note that the HEM-GMM and HEM-
DTM approaches each leverage one base model from among
those selected for our BoS codewords, but use it to directly
represent tag-specific distributions on low-level audio feature
spaces. In particular, the HEM-GMM auto-tagger learns tag-
level GMM distributions with K = 16 mixture components
over the same audio feature space as G1. The HEM-DTM fits
tag-level DTM distributions with K = 16 mixture components
over the same space of audio fragments as used for DT2. The
hyperparameters for these methods were set to those used in
previous works [5], [6].

The third baseline, HEM-AVG, averages (on a tag-by-tag
basis, by directly averaging the SMNs) the predictions of three
HEM auto-taggers: two versions of HEM-DTM (based on DT1

and DT2, respectively) and HEM-GMM (based on G1).
The fourth baseline (VQ-LR) is based on a VQ representa-

tion of songs [18]. Each song is represented as a Bag-of-Words
(BoW) histogram by vector-quantizing its MFCC features
with a VQ codebook of size K = 2048, and annotation

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

is implemented using L2-regularized logistic regression. In
preliminary experiments we found that, similarly to the BoS
representation, using a softened BoW histogram results in
superior performance, and consequently we used a smooth-
ing parameter of k = 5 to build VQ histograms. These
hyperparameters were tuned using cross-validation over the
CAL500 dataset, using the same methodology as for the BoS
hyperparameters.

Results for these experiments are reported in Table IV. The
BoS auto-taggers based on LR and CBA outperform the other
approaches on all metrics except precision, where HEM-DTM
performs best. HEM-AVG outperforms HEM-DTM and HEM-
GMM in retrieval metrics, indicating that leveraging multiple
time scales and models is beneficial in general, but BoS
outperforms HEM-AVG, which demonstrates the additional
modeling power the BoS framework provides.

In addition, we also notice that tagging BoS histograms with
LR leads to higher performance than CBA. This is not sur-
prising, as LR is a discriminative algorithm which is typically
better suited when training on small, hard-labeled datasets such
as CAL500, whereas CBA is a generative algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Recall

P
re

ci
si

on

PR curve

HEM−DTM
HEM−GMM
HEM−AVG
VQ−LR
BoS−LR
BoS−CBA

Fig. 7. Precision-recall curves for various auto-taggers on CAL500. HEM-
DTM dominates at low recall, but BoS outperforms HEM-DTM at higher
recall.

We plot precision-recall curves for each of these auto-
taggers in Figure 7. First, we notice that BoS-LR achieves the
best precision-recall trade-off point, and has the best precision
for intermediate and large values of recall. However, at low
levels of recall, HEM-DTM has the highest precision —
meaning some DTM tag models may be finely tuned to
capture certain patterns associated with a tag, at the risk of
not generalizing to all occurrences of that tag. We also note
that BoS-LR has a higher precision than BoS-CBA at all levels
of recall.

In order to provide a qualititative sense of how the BoS
autotagger performs for retrieval, Table V shows the top-10
retrieval results for the query “female lead vocals”, for the
three autotaggers HEM-GMM, HEM-DTM and BoS-LR.

2) Results on CAL10K: In order to analyze the perfor-
mance of the BoS approach when dealing with larger, weakly
labeled music collections, which are more representative of
web-scale applications, we train both the codebook and the
annotation models on CAL10K. Specifically, we subsample

Rank HEM-GMM

1 Joram “Solipsism”
2 Shakira “The one”
3 Dennis Brown “Tribulation
4 The Replacements “Answering machine”
5 Lambert, Hendricks & Ross “Gimme that wine”
6 Ray Charles “Hit the road Jack”
7 ABBA “S.O.S.”
8 Tim Rayborn “Yedi tekrar”
9 Everly Brothers “Take a message to Mary”
10 Sheryl Crow “I shall believe”

Rank HEM-DTM

1 Sheryl Crow “I shall believe”
2 Louis Armstrong “Hotter than that”
3 Joram “Solipsism”
4 The Mamas and the Papas “Words of love”
5 Jewel “Enter from the east”
6 Shakira “The one”
7 ABBA “S.O.S.”
8 Aimee Mann “Wise up”
9 Panacea “Dragaicuta”
10 Ike and Tina Turner “River deep mountain high”

Rank BoS-LR

1 ABBA “S.O.S.”
2 The Mamas and the Papas “Words of love”
3 Shakira “The one”
4 Sheryl Crow “I shall believe”
5 Spice Girls “Stop”
6 Cyndi Lauper “Money changes everything”
7 Aimee Mann “Wise up”
8 Ike and Tina Turner “River deep mountain high”
9 Bryan Adams “Cuts like a knife”
10 Jewel “Enter from the east”

TABLE V
TOP-10 RETRIEVED SONGS FOR “FEMALE LEAD VOCALS”. SONGS WITH

FEMALE LEAD VOCALS ARE MARKED IN BOLD.

from CAL10K a codebook song set Xc consisting of one song
from each artist (i.e., |Xc| = 4, 597), and use the song-based
method with Ks = 2 to compile a BoS codebook, resulting
in K̃ = 9, 194 codewords from each base model. (Because
the codebook song set is much larger in this experiment
than in previous CAL500 experiments, we find that it can
support much larger codebook sizes.) Similar to the CAL500
experiments, we use three base models of codewords, G1, DT1
and DT2, leading to K = 3K̃ = 27, 582 codewords overall.
As CAL10K is not well suited for evaluation purposes, (due
to the weakly labeled nature of its annotations the absence
of a tag in a song’s annotations does not generally imply
that it does not apply to the song), we train BoS tag models
on all of CAL10K, and reliably evaluate them on CAL500.
Our experiments are limited to the 55 tags that CAL10K
and CAL500 have in common. We fix the hyperparameters
to the best setting found through cross-validation on CAL500
(see Section VI-B1), i.e., BoS histogram smoothing parameter
k = 10 and LR regularization trade-off C = 1. We compare
the performance of BoS codebooks to the HEM-GMM, HEM-
DTM, and VQ-LR autotaggers.

Annotation and retrieval results reported in Table VI demon-
strate that the BoS approach outperforms direct tag modeling
also using larger, weakly annotated collections for training.
In addition, we notice that BoS-CBA catches up with BoS-
LR on several performance metrics. This is a consequence
of the weakly-annotated nature of CAL10K, which makes
the employment of generative models (such as CBA) more

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

Annotation Retrieval
P R F-Score AROC MAP P10

HEM-GMM 0.297 0.404 0.264 0.714 0.350 0.315
HEM-DTM 0.289 0.391 0.259 0.702 0.354 0.314

VQ-LR 0.295 0.412 0.263 0.703 0.347 0.315

BoS-CBA 0.310 0.495 0.295 0.756 0.414 0.361
BoS-LR 0.329 0.479 0.312 0.759 0.416 0.361

TABLE VI
BOS CODEBOOK PERFORMANCE FOR TRAINING TAG MODELS ON
CAL10K AND EVALUATING ON CAL500, USING CBA AND LR,

COMPARED TO GAUSSIAN TAG MODELING (HEM-GMM), DTM TAG
MODELING (HEM-DTM), AND VQ CODEBOOKS WITH LR.

appealing relative to discriminative models (such as LR).

VII. DISCUSSION

In this section we look at the performance of the BoS
autotagger in more detail, substantiating the claims we made in
the introduction about the advantages of the BoS framework.
Namely, that decoupling modeling music from modeling tags
makes the BoS system more robust for tags with few train-
ing examples (Section VII-A), that combining multiple types
and time scales of generative models improves performance
(VII-B) and that incorporating unlabeled songs when building
a codebook is advantageous (VII-C).

A. Decoupling Modeling Music from Modeling Tags

As anticipated in the introduction, we expect that the
BoS approach will be particularly robust for tags with fewer
training examples when compared to traditional generative
algorithms, because the relatively simpler tag models used in
the BoS approach are less prone to overfitting. To demon-
strate this, we analyze performance on subsets of CAL500
tags defined by their maximum cardinality α, i.e., subsets
{w ∈ T | |w| < α}, where the cardinality |w| of a tag w
is defined as the number of examples in the data set that are
labeled with the tag.

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Maximum Cardinality

In
c
re

a
s
e
 i
n
 M

A
P

 (
%

)

BoS−LR

BoS−CBA

Fig. 8. Retrieval performance (MAP) of the BoS approach, relative to HEM-
DTM, as a function of maximum tag cardinality. For each point in the graph,
the set of all CAL500 tags is restricted to those associated with a number of
songs that is at most the abscissa value. Experiments are run on the resulting
(reduced) data set as described in Section VI-B1, and the performance metrics
are averaged over each tag subset.

We report retrieval performance for both the BoS ap-
proaches and the direct generative approach with DTM models

Tag DT1 DT2 G1 DT1,2,G1

DT1 is the best-performing base model

angry 0.42 0.32 0.34 0.43
drum machine 0.45 0.40 0.42 0.47
electric guitar 0.28 0.27 0.18 0.29
electronica 0.56 0.48 0.50 0.62
fast 0.38 0.36 0.17 0.38

DT2 is the best-performing base model

aggressive 0.31 0.40 0.35 0.47
classic rock 0.45 0.48 0.40 0.49
emotional vocals 0.26 0.37 0.25 0.30
female lead vocals 0.70 0.72 0.45 0.70
synthesizer 0.32 0.37 0.29 0.38

G1 is the best-performing base model

going to sleep 0.29 0.33 0.40 0.40
low energy 0.55 0.51 0.56 0.56
mellow 0.37 0.35 0.42 0.49
positive 0.26 0.29 0.32 0.33
tender 0.51 0.49 0.52 0.57

average 0.253 0.258 0.245 0.267

TABLE VII
COMPARISON OF PER-TAG F-SCORES FOR BOS AUTOTAGGERS BASED ON

FOUR CODEBOOKS: (1) BASE MODEL DT1 ONLY (2) BASE MODEL DT2

ONLY (3) BASE MODEL G1 ONLY AND (4) BASE MODELS DT1 , DT2 AND
G1 .

(HEM-DTM), using the experimental setup in Section VI-B1.
In Figure 8 we plot the relative improvement in retrieval
performance (MAP score relative to the MAP score of HEM-
DTM) for both BoS auto-taggers as a function of maximum
tag cardinality. The BoS approach achieves the greatest im-
provement for tags with few training examples. Since the
BoS approach decouples modeling music from modeling tags,
simple tag models (with few tunable parameters) can leverage
the full descriptive power of a rich BoS codebook while
avoiding the risk of over-fitting small training sets.

B. Combining Codeword Base Models

A key advantage of the BoS framework is that it enables
combining different types of generative models over various
time scales in a single auto-tagger. We expect that different
tags will be better modeled by different model types and time
scales. Coviello et al. discuss this in [6], noting that DTM
models are more suitable for tags with characteristic temporal
dynamics (e.g., tempo, rhythm, etc.)), while some other tags
are well characterized by timbre alone and thus are better
suited for GMMs. A framework such as BoS, which allows
the combination of model types and time scales, can therefore
enable good performance over these different kinds of tags by
learning to use codewords from the most suitable base model
class in each tag model.

To illustrate this, Table VII compares the annotation (F-
score) performance of a BoS-LR autotagger based on four
codebooks, using: (1) base model DT1 only (2) base model
DT2 only (3) base model G1 only, and (4) base models DT1,
DT2 and G1, for a few tags in the CAL500 dataset.

DT codewords prove suitable for tags with signicant tempo-
ral structure, such as vocal characteristics and emotions such
as “angry” and “agressive”. Instruments such as electric guitar

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

Codebook Codebook Annotation Retrieval
Song Set (Xc) Size (K) P R F-Score AROC MAP P10

C400 4800 0.433 0.263 0.267 0.744 0.489 0.506

R400 4800 0.427 0.260 0.266 0.739 0.484 0.505
A5K 27,582 0.438 0.268 0.273 0.744 0.491 0.515

C400 ∪ R400 9600 0.441 0.266 0.270 0.740 0.488 0.511
C400 ∪ A5K 29,982 0.444 0.273 0.283 0.743 0.494 0.511

TABLE VIII
BOS CODEBOOK PERFORMANCE ON CAL500 USING CODEBOOKS

LEARNED FROM VARIOUS CODEBOOK SONG SETS. BOS HISTOGRAMS USE
SMOOTHING PARAMETER k = 10 AND ARE ANNOTATED WITH LR.

and synthesizer also perform well, perhaps because these
instruments exhibit some temporal signature that is captured in
the model. We can infer that tags that perform better with DT1

are characterized by dynamics that unfold more quickly than
tags that perform better with DT2, e.g., “fast” (recall that DT1

models fragments of 726ms, at a resolution of 12ms per feature
vector, while DT2 models fragments of 5.8s, at a resolution
of 93ms per feature vector). Additionally, as the performance
averaged over all the tags is a bit higher with DT2 codewords,
we gather that the longer time scale is a better “catch-all” to
model a wide range of tags. Other tags, such as “low engery”
and “mellow” seem to have little in the way temporal dynamics
to model, and are best described by timbre information alone.

We note that the BoS codebook combining all three base
models often leads to comparable or higher performance to
the highest performing indvidual base model codebook.

C. Incorporating Unlabeled Songs in the Codebook Song Set

An additional advantage of the BoS framework is that the
codebook can be learned without an annotated corpus of audio
data. This suggests that the codebook can be enriched by
expanding the codebook song set to include potentially large,
unannotated music collections. To illustrate this intuition, we
compare a variety of BoS auto-taggers, each of which differ
in the codebook song set Xc.

We start by forming three different codebook song sets by
aggregating subsets of CAL10K and CAL500: (1) Xc = C400,
the codebook song set corresponding to the training set for
each cross-validation split of CAL500 (as in Section VI-B1),
(2) Xc = R400, a codebook song set that is a subset of 400
randomly selected songs from the CAL10K collection and (3)
Xc = A5K, the codebook song set that is a subset of the
CAL10K dataset consisting of one song from each of the 4,597
artists (as in Section VI-B2). Note that, since we are using
only Xt = C400 as the training set in these experiments, the
CAL10K dataset, and thus R400 and A5K, can be considered
as collections of unlabeled data that could be used to form a
codebook song set. In addition, we consider codebooks derived
from the union of C400 with R400 and A5K, respectively. This
is a practical scenario — an annotated music collection is
augmented with additional unlabeled songs to build a richer
codebook.

Details of the experimental setup can be found in Appendix
III. Annotation and retrieval results are reported in Table VIII.
We notice that the best performances are obtained when a
richer codebook is produced from combining the training set
(i.e., C400) with a much larger collection of unlabeled music,

corresponding to C400 ∪ A5K in Table VIII. Adding only a
small set of unlabeled music to the codebook song set (i.e.,
C400 ∪ R400) does not lead to substantial improvements over
using only the training set.

We have shown before (in Section VI-A) that as we learn
increasingly more codewords from the same collection, perfor-
mance flattens and then deteriorates. However, if we increase
the size of our codebook song set, the added information
allows us to extract larger codebooks that are effectively
enriched. This results in a slight improvement of performance.

In addition, we notice that when codebook song sets are
equally sized, using the training collection as the codebook
song set (C400) outperforms using a different collection
(R400). This result may be affected by the fact that CAL500
is mostly pop music, while CAL10K has many other genres
(classical, jazz, etc.), so codewords learned from CAL10K
may not be as relevant for CAL500. However, growing the
size of the collection of unlabeled songs (A5K) allows it to
catch up with, and in fact outperform, the C400 codebooks.
The ability to leverage a large codebook compiled off-line
could, for example, be useful for an application that learns
personalized retrieval models. Such a system should be based
on a BoS codebook large and varied enough to represent
well the music various users are interested in. Personalized
tag models can then be learned from a smaller, user-specific
collection, perhaps located on the user’s personal device.
As demonstrated in Section VI-B1, these simple tag models
can be estimated reliably even when the collection of songs
associated with a specific tag is relatively small, as might be
the case when training on a user’s personal collection of music.

VIII. CONCLUSION

We have presented a semantic auto-tagging system for mu-
sic that leverages a rich “bag of systems” representation based
on generative modeling. The BoS representation allows for the
integration of the descriptive qualities of various generative
models of musical content with different time resolutions
into a single histogram descriptor of a song. This approach
improves performance over traditional generative modeling
approaches to auto-tagging, which directly model tags using
a single type of generative model. It also proves significantly
more robust for tags with few training examples, and can be
learned from a representative collection of songs which need
not be annotated. We have shown the BoS representation to be
effective for training annotation models on two very different
datasets, one small and strongly annotated and one larger and
weakly annotated, demonstrating its robustness under different
scenarios.

ACKNOWLEDGMENT

The authors would like to thank L. Barrington, B. McFee,
the editor and reviewers for their helpful feedback.

REFERENCES

[1] J. S. W. Glaser, T. Westergren and J. Kraft, “Consumer item matching
method and system,” US Patent Number 7003515, 2006.

[2] S. Clifford, “Pandora’s long strange trip,” Inc.com, 2007.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

[3] M. Levy and M. Sandler, “A semantic space for music derived from
social tags,” in Proc. ISMIR, 2007, pp. 411–416.

[4] P. Lamere and O. Celma, “Music recommendation tutorial notes,” ISMIR
Tutorial, September 2007.

[5] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic
annotation and retrieval of music and sound effects,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 16, no. 2, pp. 467–476,
2008.

[6] E. Coviello, A. Chan, and G. Lanckriet, “Time series models for
semantic music annotation,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, no. 5, pp. 1343–1359, 2011.

[7] D. Aldous, I. Ibragimov, and J. Jacod, “Exchangeability and related top-
ics,” ser. Lecture Notes in Mathematics. Springer Berlin / Heidelberg,
1985, vol. 1117, pp. 1–198.

[8] K. Ellis, E. Coviello, and G. Lanckriet, “Semantic annotation and
retrieval of music using a bag of systems representation,” in Proc. ISMIR,
2011, pp. 723–728.

[9] G. Tzanetakis and P. Cook, “Musical genre classification of audio
signals,” IEEE Transactions on speech and audio processing, vol. 10,
no. 5, pp. 293–302, 2002.

[10] E. Pampalk, A. Flexer, and G. Widmer, “Improvements of audio-based
music similarity and genre classification,” in Proc. ISMIR, 2005, pp.
628–633.

[11] J. Reed and C. Lee, “A study on music genre classification based on
universal acoustic models,” in Proc. ISMIR, 2006, pp. 89–94.

[12] E. Coviello, A. Chan, and G. Lanckriet, “The variational hierarchical
EM algorithm for clustering hidden Markov models.” in Advances in
Neural Information Processing Systems 25, 2012, pp. 413–421.

[13] M. Hoffman, D. Blei, and P. Cook, “Content-based musical similarity
computation using the hierarchical Dirichlet process,” in Proc. ISMIR,
2008, pp. 349–354.

[14] M. Hoffman, D. Blei, and P. Cook, “Easy as CBA: A simple probabilistic
model for tagging music,” in Proc. ISMIR, 2009, pp. 369–374.

[15] M. Mandel and D. Ellis, “Multiple-instance learning for music informa-
tion retrieval,” in Proc. ISMIR, 2008, pp. 577–582.

[16] S. Ness, A. Theocharis, G. Tzanetakis, and L. Martins, “Improving auto-
matic music tag annotation using stacked generalization of probabilistic
svm outputs,” in Proc. ACM MULTIMEDIA, 2009, pp. 705–708.

[17] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green, “Automatic
generation of social tags for music recommendation,” in Advances in
Neural Information Processing Systems, 2007.

[18] B. Xie, W. Bian, D. Tao, and P. Chordia, “Music tagging with regularized
logistic regression,” in ISMIR, no. Ismir, 2011, pp. 711–716.

[19] M. Casey, C. Rhodes, and M. Slaney, “Analysis of minimum distances in
high-dimensional musical spaces,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 16, no. 5, pp. 1015–1028, 2008.

[20] P. Hamel, S. Lemieux, and Y. Bengio, “Temporal pooling and multiscale
learning for automatic annotation and ranking of music audio,” in Proc.
ISMIR, 2011, pp. 729–734.

[21] Y. Panagakis, C. Kotropoulos, and G. Arce, “Non-negative multilinear
principal component analysis of auditory temporal modulations for
music genre classification,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 18, no. 3, pp. 576–588, 2010.

[22] M. A. Domingues, F. Gouyon, A. M. Jorge, J. P. Leal, J. Vinagre,
L. Lemos, and M. Sordo, “Combining usage and content in an online
recommendation system for music in the long-tail,” International
Journal of Multimedia Information Retrieval, vol. 1, In Press. [Online].
Available: http://link.springer.com/content/pdf/10.1007%2Fs13735-012-
0025-1

[23] M. Schedl and D. Schnitzer, “Hybrid Retrieval Approaches to Geospatial
Music Recommendation,” in Proceedings of the 35th Annual Inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), Dublin, Ireland, July 31–August 1 2013.

[24] R. Foucard, S. Essid, and M. Lagrange, “Multi-scale temporal fusion by
boosting for music classification,” in Proc. ISMIR, 2011, pp. 663–668.

[25] C. Joder, S. Essid, and G. Richard, “Temporal integration for audio
classification with application to musical instrument classification,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 17,
no. 1, pp. 174–186, 2009.

[26] B. Sturm, M. Morvidone, and L. Daudet, “Musical instrument identi-
fication using multiscale mel-frequency cepstral coefficients,” in Proc.
EUSIPCO, no. 1, 2010, pp. 477–481.

[27] N. Mesgarani, M. Slaney, and S. A. Shamma, “Discrimination of speech
from nonspeech based on multiscale spectro-temporal modulations,”
Audio, Speech, and Language Processing, IEEE Transactions on, vol. 14,
no. 3, pp. 920–930, 2006.

[28] H. Lee, Y. Largman, P. Pham, and A. Y. Ng, “Unsupervised feature learn-
ing for audio classication using convolutional deep belief networks,” in
Advances in Neural Information Processing Systems, 2009.

[29] J. Andén and S. Mallat, “Multiscale scattering for audio classication,”
in Proc. ISMIR, 2011.

[30] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “Music classification via the
bag-of-features approach,” Pattern Recognition Letters, vol. 32, no. 14,
pp. 1768 – 1777, 2011.

[31] T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,”
Journal of Machine Learning Research, vol. 5, pp. 819–844, 2004.

[32] A. Ravichandran, R. Chaudhry, and R. Vidal, “View-invariant dynamic
texture recognition using a bag of dynamical systems,” in Proc. IEEE
CVPR, 2009.

[33] A. Chan, E. Coviello, and G. Lanckriet, “Clustering dynamic textures
with the hierarchical EM algorithm,” in Proc. IEEE CVPR, 2010.

[34] E. Coviello, A. Mumtaz, A. Chan, and G. Lanckriet, “Growing a bag of
systems tree for fast and accurate classification,” in Proc. IEEE CVPR,
2012.

[35] D. Sturim, D. Reynolds, E. Singer, and J. Campbell, “Speaker indexing
in large audio databases using anchor models,” in IEEE ICASSP, 2001,
pp. 429–432.

[36] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,”
Intl. J. Computer Vision, vol. 51, no. 2, pp. 91–109, 2003.

[37] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society B, vol. 39, pp. 1–38, 1977.

[38] A. B. Chan and N. Vasconcelos, “Modeling, clustering, and segmenting
video with mixtures of dynamic textures,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, no. 5, pp. 909–926, 2008.

[39] N. Vasconcelos and A. Lippman, “Learning mixture hierarchies,” in
Advances in Neural Information Processing Systems, 1998.

[40] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed., 2009.

[41] M. Swain and D. Ballard, “Color indexing,” International Journal of
Computer Vision, vol. 7, no. 1, pp. 11–32, 1991.

[42] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” Journal of Machine
Learning Research, vol. 9, pp. 1871–1874, 2008.

[43] D. Tingle, Y. E. Kim, and D. Turnbull, “Exploring automatic music
annotation with ”acoustically-objective” tags,” in Proc. MIR. New York,
NY, USA: ACM, 2010, pp. 55–62.

[44] L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition.
Englewood Cliffs, NJ: Prentice-Hall, 1993.

Katherine Ellis received the B.S. degree in Elec-
trical Engineering from the University of Southern
California in 2010 and the M.S. degree in Electrical
and Computer Engineering from the Univeristy of
California, San Diego (UCSD) in 2012. She is
currently working toward her Ph.D. in Electrical
and Computer Engineering at UCSD. Her research
interests are in machine learning and applications to
music information retrieval, and activity recognition.

Emanuele Coviello received his Bachelor degree in
Information Engineering, and his Masters degree in
Telecommunication Engineering from the Universit
degli Studi di Padova, Italy, in 2006 and 2008, re-
spectively. He is currently a senior Ph.D. Candidate
in Electrical and Computer Engineering, at the Uni-
versity of California, San Diego (UCSD). Emanuele
is an expert in machine learning and multi-media
content analysis. He received the Premio Guglielmo
Marconi Junior Award in 2009, from the Guglielmo
Marconi Foundation, and the Yahoo! Key Scientific

Challenges Award in 2010, for his work on content-based analysis and tagging
of music videos.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

Antoni B. Chan received the B.S. and M.Eng.
degrees in electrical engineering from Cornell Uni-
versity, Ithaca, NY, in 2000 and 2001, respectively,
and the Ph.D. degree in electrical and computer engi-
neering from the University of California, San Diego
(UCSD), San Diego, in 2008. From 2001 to 2003, he
was a Visiting Scientist with the Vision and Image
Analysis Laboratory, Cornell University, Ithaca, NY,
and in 2009, he was a Postdoctoral Researcher with
the Statistical Visual Computing Laboratory, UCSD.
In 2009, he joined the Department of Computer

Science, City University of Hong Kong, Kowloon, Hong Kong, as an Assistant
Professor. His research interests include computer vision, machine learning,
pattern recognition, and music analysis. Dr. Chan was the recipient of an NSF
IGERT Fellowship from 2006 to 2008, and an Early Career Award in 2012
from the Research Grants Council of the Hong Kong SAR, China.

Gert R.G. Lanckriet received the MS degree in
electrical engineering from the Katholieke Univer-
siteit Leuven, Belgium, in 2000 and the MS and
PhD degrees in electrical engineering and computer
science from the University of California, Berkeley,
in 2001 and 2005, respectively. In 2005, he joined
the Department of Electrical and Computer Engi-
neering, University of California, San Diego, where
he heads the Computer Audition Laboratory. His
research focuses on the interplay of convex opti-
mization, machine learning, and signal processing,

with applications in computer audition and music information retrieval. He
was awarded the SIAM Optimization Prize in 2008 and is the recipient of a
Hellman Fellowship, an IBM Faculty Award, an NSF CAREER Award, and an
Alfred P. Sloan Foundation Research Fellowship. In 2011, MIT Technology
Review named him one of the 35 top young technology innovators in the
world (TR35). He is a senior member of the IEEE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASL.2013.2279318

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

