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Modeling Music as a Dynamic Texture
Luke Barrington, Student Member, IEEE, Antoni B. Chan, Member, IEEE, and Gert Lanckriet

Abstract—We consider representing a short temporal fragment
of musical audio as adynamic texture, a model of both the timbral
and rhythmical qualities of sound, two of the important aspects re-
quired for automatic music analysis. The dynamic texture model
treats asequenceof audio feature vectors as a sample from a linear
dynamical system. We apply this new representation to the task of
automatic song segmentation. In particular, we cluster audio frag-
a song as an unordered set or “bag” of audio feature vectors
(e.g., Mel-frequency cepstral coef�cients). While this has
shown promise in many applications, (e.g., music annotation
and retrieval [1], audio similarity [2] and song segmentation
[3]), the bag-of-feature-vectors representation is fundamentally
limited by ignoring the time-dependency between feature
vectors. Permuting the feature vectors in the bag will not
alter the representation, so information encapsulated in how
feature vectors are ordered in time is ignored. As a result,
the bag-of-feature-vectors representation fails to represent
the higher level, longer term musical dynamics of an audio
fragment, like rhythmic qualities (e.g., tempo and beat patterns)
and temporal structure (e.g., repeated riffs and arpeggios).

In this paper, we address the limitations of the bag-of-fea-
tures representation by modeling simultaneously the instanta-
neous spectral content (timbre) as well as the longer term spec-
tral dynamics (rhythmic and temporal structure) of audio frag-
ments that are several seconds in length [4]. To do this, we pro-
pose to use adynamic texture(DT) [5] to represent asequence
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of audio feature vectors as a sample from a generative proba-
bilistic model, speci�cally, a linear dynamical system (LDS).

One application where it is useful to model the temporal, as
well as timbral, dynamics of music is automatic song segmen-
tation; the task of dividing a song into self-coherent units which
a human listener would label as similar (e.g., verse, chorus,
bridge, etc.). In particular, we propose a new algorithm that seg-
ments a song by clustering fragments of the song’s audio con-
tent, using adynamic texture mixture(DTM) model [6]. We test
the segmentation algorithm on a wide variety of songs from two
popular music datasets, and show that the dynamic texture cap-
tures much of the information required to determine the struc-
ture of music.

We also illustrate the applicability of the DTM segmenta-
tion to other music information retrieval problems. For example,
one common problem with semantic song annotation (auto-tag-
ging) occurs when different segments of the same song contain
a variety of musical styles and instrumentations (the “Bohemian
Rhapsody problem”). For such songs, the bag-of-features repre-
sentation averages musical information from the whole song and
existing auto-tagging systems (e.g., [1]) will produce generic
descriptions of the song. One solution to this problem is �rst to
segment the song into its constituent parts using the proposed
automatic segmentation algorithm, and then to generate tags for
each segment. We show that the dynamic texture model pro-
duces musical segments with homogeneous timbre and tempo,
resulting in a more precise description of the song.

The remainder of this paper is organized as follows. In
Section II, we review related work on song segmentation. In
Section III, we introduce the dynamic texture models for audio
fragments, and in Section IV we propose an algorithm for
segmenting song structure using the DTM. Section V evaluates
the segmentation algorithm on two music datasets. Finally,
Section VI illustrates several applications of song segmentation
to music annotation, retrieval, and visualization.

II. RELATED WORK

The goal of automatic song segmentation is to divide a song
into self-coherent units such as the chorus, verse, bridge, etc.
Foote [7] segments music based on self-similarity between
timbre features. Paulus and Klapuri [8] ef�ciently search the
space of all possible segmentations and use a musicological
model to label the most plausible segmentation.

Other methods attempt to model music explicitly and then
cast segmentation as a clustering problem. Gaussian mixture
models (GMMs) ignore temporal relations between features but
model music well for applications such as music segmentation
and similarity [3] as well as classi�cation of a variety of se-
mantic musical attributes [1]. Hidden Markov models (HMMs)
consider transitions between feature states and have offered
improvements for segmentation [9], key phrase detection [10]
and genre classi�cation [11]. Abdallahet al. [12] incorporate
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prior knowledge about segment duration into a HMM clustering
model to address the problem of over-segmentation. Levy and
Sandler [13] realize that feature-level HMMs do not capture
suf�cient temporal information so encode musical segments as
clusters of HMM state-sequences and improve their clustering
using constraints based on the temporal length of musical
segments.

The DT model used in this paper is similar to the HMM, in
that they are both probabilistic time-series models with hidden
states that evolve over time. The main difference between the
two models is that the hidden states of the HMM take ondis-
crete values, whereas those of the DT arereal-valued vectors.
As a consequence, the HMM representation discretizes the ob-
servations into bins de�ned by the observation likelihoods, and
the evolution of the sequence is modeled as jumps between these
bins. Thecontinuousstate space of the DT, on the other hand,
can capture smooth (rather than discrete) dynamics of state tran-
sitions and model the observed audio fragments without quan-
tization.

Structural segmentation of music is often used as a �rst step
in discovering distinctive or repeated sections that can serve as a
representative summary or musical thumbnail of both acoustic
[10], [14], [15] and symbolic [16] music representations. For
example, Bartsch and Wake�eld [17] follow [7] but use chroma
features to identify repeated segments for audio thumbnailing
and Goto adds high-level assumptions about repeated sections
to build a system for automatically detecting choruses [18].

Similar to song segmentation is the task of detecting bound-
aries between musical segments (e.g., the change from verse
to chorus). Turnbullet al. [19] present both an unsupervised
(picking peaks of difference features) and supervised (boosted
decision stumps) method for identifying musical segment
boundaries. Similarly, Ong and Herrera [20] look for novelty
in successive feature vectors to predict segment boundaries.
These methods only detect the segment boundaries and make
no attempt to assess the similarity of resulting segments.

Our formulation of treating audio as a dynamic texture was
originally introduced in [4]. The current paper goes beyond [4]
in the following ways: 1) we include a complete description of
our segmentation algorithm; 2) we add a new step to the algo-
rithm that uses music-based constraints to smooth the segments;
3) we present additional experiments on the PopMusic dataset
from [13], along with illustrative examples; and 4) we include
additional and more rigorous experiments on automatic annota-
tion of music segments as opposed to entire songs.

III. D YNAMIC TEXTURESMODELS

Consider representing the audio fragment in Fig. 1(a) with
the corresponding sequence of audio feature vectors shown in
Fig. 1(b). We would like to use these features to model simul-
taneously the instantaneous audio content (e.g., the instrumen-
tation and timbre) and the melodic and rhythmic content (e.g.,
guitar riff, drum patterns, and tempo). In this paper, we will
model the temporal dependencies in the audiofragmentusing
a single model for the entiresequenceof feature vectors. In par-
ticular, we will treat the sequence of feature vectors as a sample
from a linear dynamical system (LDS). The LDS contains two
random variables: 1) an observed variable, which generates the
feature vector at each time-step (i.e., the instantaneous audio);

Fig. 1. Modeling audio as a temporal texture. (a) An audio waveform, and
(b) feature vectors� extracted from the audio. (c) The sequence of features
vectors� � � is modeled as the output of a linear dynamical system, where (d)
the hidden state-space sequence� � � encodes both the instantaneous sound tex-
ture and the evolution of this texture over time.

and 2) a hidden variable which models the higher level musical
state and how it dynamically evolves over time (i.e., the melodic
and rhythmic content). In this way, we are able to captureboth
the spectral and temporal propertiesof the musical signal in a
single probabilistic generative model.

The treatment of a time-series as a sample from a linear dy-
namical system is also known as adynamic texture(DT) [5] in
the computer vision literature, where a video is modeled as a se-
quence of vectorized image frames. The dynamic texture model
has been successfully applied to various computer vision prob-
lems, including video texture synthesis [5], video recognition
[21], [22], and motion segmentation [6], [23]. Although the DT
was originally proposed in the computer vision literature as a
generative model of video sequences, it is a generic model that
can be applied to any time-series data, which in our case, are se-
quences of feature vectors that represent fragments of musical
audio.

A. Dynamic Textures

A dynamic texture [5] is a generative model that treats a
vector time-series as a sample from a linear dynamical system
(LDS). Formally, the model captures both the appearance and
the dynamics of the sequence with two random variables: anob-
served variable , which encodes the appearance com-
ponent (feature vector at time); and ahidden state variable

(with ), which encodes higher level character-
istics of the time-series and their dynamics (sequence evolution
over time). The state and observed variables are related through
thelinear dynamical system(LDS) de�ned by

(1)
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where is a state transition matrix, which encodes
the dynamics of the hidden state, is an observation
matrix, which maps the hidden state variable to an observed fea-
ture vector, and is the mean of the observed feature
vectors, or the constant offset of the observation variable, .
The driving noise process is normally distributed with zero
mean and covariance , i.e., , where
is a positive definite matrix, with the set of positive
definite matrices of dimension . The observation noise
is also zero mean and Gaussian, with covariance , i.e.,

, where . The initial state vector , which de-
termines the starting point of the model, is distributed according
to , with and . The dynamic tex-
ture is specified by parameters and
the graphical model of the dynamic texture is shown in Fig. 1(c).

A number of methods are available to learn the parameters
of the dynamic texture from a training sequence, including
maximum-likelihood methods (e.g., expectation–maximization
[24]), non-iterative subspace methods (e.g., N4SID [25], CCA
[26], [27]), or a suboptimal, but computationally efficient,
least-squares procedure [5]. The dynamic texture has an inter-
esting interpretation when the columns of are orthogonal
(e.g., when learned with the method of [5]). In this case, the
columns of are the principal components of the observations
(feature vectors) in time. Hence, the hidden state vector
contains the PCA coefficients that generate each observation

, where the PCA coefficients themselves evolve over
time according to a Gauss–Markov process. In this sense,
the dynamic texture is an evolving PCA representation of the
sequence.

B. Mixture of Dynamic Textures

The DT models a single observed sequence, e.g., an audio
fragment lasting several seconds. It could also model multiple
sequences, if all exhibited the same dynamic texture (specified
by the parameters ). However, many applications require the
simultaneous analysis of sequences, where it is known a
priori that any single sequence exhibits one of a small set of
dynamic textures (with ). For example, the sequences
could be audio fragments extracted from a song that can be clus-
tered into a limited number of textures (e.g., corresponding to
the verse, chorus, bridge, etc.). Such a clustering would unravel
the verse-chorus-bridge structure of the song. An extension of
the DT, the DTM model, was proposed in [6] to handle exactly
this situation. The DTM is a generative model that treats a col-
lection of sequences as samples from a set of dynamic
textures.

Clustering is performed by first learning a DTM for the se-
quences, and then assigning each sequence to the DT component
with largest posterior probability. This is analogous to clustering
feature vectors using a GMM, except that the DTM clusters
time-series (sequences of feature vectors), whereas the GMM
clusters only feature vectors.

Formally, the DTM [6] is a mixture model where each
mixture component is a dynamic texture, and is defined by the
system of equations

(2)

Fig. 2. Graphical model for the dynamic texture mixture. The hidden variable
� selects the parameters of the DT represented by the remaining nodes.

where

multinomial s.t. (3)

is a random variable that signals the mixture component
from which each sequence is drawn. Conditioned on this
assignment variable , the hidden-state , and observation

behave like a standard dynamic texture with parameters
. The graphical model for

the dynamic texture mixture is presented in Fig. 2.
In computer vision, the model has been shown to be a ro-

bust model for motion segmentation by clustering patches of
video [6]. In this paper, we will use the DTM to segment a song
into sections (e.g., verse, chorus, and bridge) in a similar way
by clustering audio fragments (sequences of audio feature vec-
tors) extracted from the song. We next present an algorithm for
learning the parameters of a DTM from training sequences.

C. Parameter Estimation of DTMs

Given a set of sequences , where
and is the sequence length, the parameters

that best fit the observed sequences, in the maximum-likelihood
sense [28], can be learned by optimizing

(4)

where are the parameters of the DTM,
and are the parameters for
the th DT component. Note that the data likelihood function

depends on two sets of hidden variables: 1) the
assignment variable , which assigns each sequence
to a mixture component; and 2) the hidden state sequence

that produces each . Since the data
likelihood depends on hidden variables (i.e., missing informa-
tion), the maximum-likelihood solution of (4) can be found
with recourse to the expectation–maximization (EM) algorithm
[29]. The EM algorithm is an iterative procedure that alternates
between estimating the missing information with the current
parameters, and computing new parameters given the estimate
of the missing information. For the DTM, each iteration of EM
consists of

E-Step (5)

M-Step (6)
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where is the complete-data likelihood
of the observations , hidden states se-

quences , and hidden assignment variables

, parameterized by .
The EM algorithm for the mixture of dynamic textures was

derived in [6], and a summary is presented in Algorithm 1. The
E-step relies on the Kalman smoothing filter [6], [24] to com-
pute: 1) the expectations of the hidden state variables , given
the observed sequence came from the th component; and
2) the likelihood of observing from the th component.
The M-step then computes the maximum-likelihood parameter
values for each dynamic texture component , by averaging over
all sequences , weighted by the posterior probability of
assigning .

Algorithm 1 EM for a Mixture of Dynamic Textures

1: Input: sequences , number of components .

2: Initialize .

3: repeat

4: {Expectation Step}

5: for and do

6: Compute the conditional expectations

by running the Kalman smoothing filter [6], [24] with
parameters on sequence .

7: Compute the posterior assignment probability

8: end for

9: {Maximization Step}

10: for to do

11: Compute aggregate expectations

12: Compute new parameters

13: end for

14: until convergence

15: Output:

It is known that the accuracy of parameter estimates produced
by EM is dependent on how the algorithm is initialized. We
use the initialization strategy from [6], where EM is run several
times with an increasing number of mixture components. After
each EM converges, one of the components is duplicated and
its parameters are perturbed slightly, and EM is run again on the
new mixture model. More details on the EM algorithm for DTM
and the initialization strategy are available in [6].

IV. SONG SEGMENTATION WITH DTM

Fig. 3 outlines our approach to song segmentation using the
DTM model. First, audio features vectors are extracted from
the song’s audio waveform [e.g., Mel-frequency cepstral coeffi-
cients shown in Fig. 3(b)]. Overlapping sequences of audio fea-
ture vectors are extracted from a 5 second fragment of the song
where the start position of the fragment slides through the entire
song with a large step-size ( 0.5 s). A DTM is learned from the
collection of these audio fragments and a coarse song segmen-
tation is obtained by assigning each 5 second audio fragment to
the most probable DTM component [Fig. 3(c)]. Next, we con-
strain the assigned segmentation so that very short segments are
unlikely [Fig. 3(d)]. Finally, we run a second segmentation using
sequences with a much smaller fragment length ( 1.75 s) and
step size ( 0.05 s) to refine the precise location of the segment
boundaries [Fig. 3(e)] and evaluate the results with reference to
a human-labeled “true” segmentation [Fig. 3(f)]. Each of these
steps is described in detail below.

A. Features

The content of each 22 050 Hz-sampled, monaural waveform
is represented using two types of music information features.

1) Mel-Frequency Cepstral Coefficients: Mel-frequency
cepstral coefficients (MFCCs), developed for speech analysis
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Fig. 3. DTM song segmentation. A song’s waveform (a) is represented as a se-
ries of audio feature vectors that are collected into short, overlapping sequences
(b). These sequences of feature vectors are modeled as a dynamic texture mix-
ture and the song is segmented based on the dynamic texture mixture component
to which each sequence is assigned (c). Segments are constrained (d) and refined
(e) to produce a final segmentation which is evaluated with reference to a human
labeled ground-truth segmentation (f).

[30], describe the timbre or spectral shape of a short-time
piece of audio and are a popular feature for a number of music
information analysis tasks, including segmentation [3], [7],
[19]. We compute the first 13 MFCCs for half-overlapping
frames of 256 samples (each feature vector summarizes 12 ms
of audio, extracted every 6 ms). In music information retrieval,
it is common to augment the MFCC feature vector with its
instantaneous first and second derivatives, in order to capture
some information about the temporal evolution of the feature.
When using the DT, this extra complexity is not required since
the temporal evolution is modeled explicitly by the DT.

2) Chroma: Chroma features have also been successfully
applied for song segmentation [17], [18], [31]. They represent
the harmonic content of a short-time window of audio by com-
puting the spectral energy present at frequencies that correspond
to each of the 12 notes and their octave harmonics in a standard
chromatic scale. We compute a 12-dimensional chroma feature
vector from three-quarter overlapping frames of 2048 samples
(each feature vector summarizes 93 ms of audio, extracted every
23 ms).

B. Song Segmentation

Song segmentation is performed with the DTM using a
coarse-to-fine approach. A DTM is learned from the collec-
tion of audio fragments, using the EM algorithm described
in Section III-C. A coarse song segmentation is formed by

assigning each fragment to the DTM component with largest
posterior probability, i.e.,

(7)

where is the likelihood of sequence under the
th mixture component . Next, musical constraints are ap-

plied to the segmentation, and the boundaries are refined for
better localization.

C. Musical Constraints on Segments

Levy and Sandler [13] note that musical segments are most
likely to last 16 or 32 beats (4 or 8 bars of music in standard 4/4
time). They find that imposing constraints on the minimum seg-
ment length results in improved segmentations. To include this
constrained clustering in our model, we wish to encourage audio
fragments which are close in time to be assigned to the same seg-
ment class. This defines a Markov random field (MRF) over the
DTM’s assignment variables, , which restricts the probability
that , the class label variable for a given output , will
differ from the labels assigned to sequences neighboring .

The MRF penalizes the class conditional likelihoods output
by the DTM in proportion to their disagreement with the class
labels assigned to neighboring sequences. The constrained as-
signments are estimated as in [13] using iterated conditional
modes (ICM) as follows. Labels are first assigned to all
audio fragments, as in (7). Next, the constraints are incorpo-
rated while iterating through each fragment . The log-likeli-
hood, with constraints, of fragment under each mixture com-
ponent is computed

(8)
where is the length of the temporal neighborhood sur-
rounding the fragment over which the constraints are
imposed, and

if
otherwise

(9)

adds a penalty of when the neighboring class labels do
not match the current label . The new constrained class label
of the fragment is then assigned according to

(10)

The process is iterated, for all , until convergence of the class
labels for all fragments. The fixed cost parameter and the
neighborhood size over which the constraints are imposed
are determined experimentally and depend on the type of fea-
ture and sequence step size being used. We find that
and a constraint neighborhood corresponding to 15–20 seconds
is optimal.

D. Refining Segment Boundaries

This first segmentation is relatively coarse and can localize
segment boundaries, at best, to within 0.25 seconds, due to the
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large step size and the poor localization properties of using long
audio fragments. Precise boundaries are found by extracting
audio fragments with shorter length ( 1.75 s) and step size
( 0.05 s). We assign these short fragments to the same DTM
components learned in Section IV-B, resulting in a finer segmen-
tation of the song. This tends to over-segment songs as the DTM
state changes too frequently: the coarse segmentation more ac-
curately learns the temporal structure of each song. However,
we can refine the original, coarse segmentation by moving each
segment boundary to the closest corresponding boundary from
the fine segmentation. These refined boundaries are likely to be
valid since they were produced by the same DTM model. They
are expected to provide a more precise estimate of the true seg-
ment boundaries.

V. SEGMENTATION EVALUATION

In this section, we evaluate the proposed algorithm for song
segmentation on two music datasets. We also test the applica-
bility of the algorithm to the similar task of music boundary de-
tection.

A. Data

We evaluate the automatic song segmentation performance
of the DTM model on two separate musical datasets for which
human-derived structural segmentations exist.

1) RWC Dataset: The RWC Music Database (RWCMDB-P-
2001) [32] contains 100 Japanese pop songs where each song
has been segmented into coherent parts by a human listener [33].
The segments are accurate to 10 ms and are labeled with great
detail. For this work we group the labeled segments into four
possible classes: “verse” (i.e., including verse A, verse B, etc.),
“chorus,” “bridge,” and “other” (“other” includes labels such as
“intro,” “ending,” “pre-chorus,” etc. and is also used to model
any silent parts of the song). This results in a “ground truth”
segmentation of each song with four possible segment classes.
On average, each song contains 11 segments (with an average
segment length of 18.3 s).

2) PopMusic Dataset: The second dataset is a collection of
60 popular songs from multiple genres including rock, pop and
hip-hop. Half the tracks are by the Beatles and the remainder
are from a selection of popular artists from the past 40 years in-
cluding Radiohead, Michael Jackson and the Beastie Boys. The
human segmentations for this dataset were used by Levy and
Sandler [13] to evaluate their musical segmentation algorithm.
The ground truth segmentation of each song contains between 2
and 15 different segment classes mean and, on average,
each song also contains 11 segments (with an average segment
length of 16.5 s).

B. Experimental Setup

The songs in the RWC dataset were segmented with the DTM
model into segments (chosen to model “verse,” “chorus,”
“bridge,” and “other” segments and for comparison to previous
work on the same dataset [19]) using the method described in
Section IV. DTM models trained using either the MFCC or
chroma features, we denote DTM-MFCC and DTM-Chroma,
respectively. For DTM-MFCC, we use a sequence length of 900
MFCC feature vectors (extracted from 5.2 s of audio content)
and a step-size of 100 feature frames, while for DTM-Chroma,

TABLE I
SONG SEGMENTATION OF THE RWC DATASET

we use a sequence length of 600 chroma feature vectors (13.9 s
of audio) and a step-size of 20 frames. The dimension of the
hidden state-space of the DTM was for MFCC, and
for chroma.

For comparison, we also segment the songs using a GMM
trained on the same feature data [3]. We learn a compo-
nent GMM for each song, and segment by assigning features to
the most likely Gaussian component. Since segmentation deci-
sions are now made at the short time-scale of individual feature
vectors, we smooth the GMM segmentation with a length-1000
maximum-vote filter. We compare these models against two
baselines: “constant” assigns all windows to a single segment,
“random” selects segment labels for each window at random.

We quantitatively measure the correctness of a segmentation
by comparing with the ground-truth using two clustering met-
rics: 1) the Rand index [34] intuitively corresponds to the prob-
ability that any pair of audio fragments will be clustered cor-
rectly, with respect to each other (i.e., in the same cluster, or
in different clusters); 2) the pairwise F-measure [13] compares
pairs of feature sequences that the model labels as belonging to
the same segment-type with the true segmentation. If is the
set of audio fragment pairs that the model labels as similar and

is the set of fragment pairs that the human segmentation in-
dicates should be similar then

pairwise precision

pairwise recall

pairwise F-measure

We also report the average number of segments per song.

C. Segmentation Results

Table I reports the segmentation results on the RWC dataset.
DTM-MFCC outperforms all other models, with a Rand index
of 0.751 and a pairwise F-measure of 0.62. GMM performs sig-
nificantly worse than DTM, e.g., the F-measure drops to 0.52 on
the MFCC features. In particular, the GMM grossly over-seg-
ments the songs, leading to very low pairwise precision. This
suggests that there is indeed a benefit in modeling the temporal
dynamics with the DTM.

For the PopMusic dataset, we no longer restrict the segmenta-
tion to just four classes and instead attempt to model all possible

1This Rand index result is slightly lower than the value reported in [4] as, in
the current work, we allow each model segment to match only one reference
segment. This is consistent with the evaluations in [13].
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TABLE II
SONG SEGMENTATION OF THE POPMUSIC DATASET

TABLE III
EFFECT OF MUSICAL CONSTRAINTS AND BOUNDARY REFINEMENT ON

DTM-MFCC SEGMENTATION OF THE POPMUSIC DATASET

segment classes. Given that each song in the dataset has an av-
erage of 6.3 different segments, we set the number of mixture
components in the DTM model and increase the state-
space dimension to . The segmentation results are shown
in Table II and are very similar to the results obtained for the
RWC dataset. We note that the DTM-MFCC model F-measure
of 0.6196 0.0163 improves on the segmentation algorithm
of Levy and Sandler [13] who report an average F-measure of
0.603 using clusters to segment the same data. The re-
sult of [13] lies at the minimum of our confidence interval. A
paired comparison of the results for each song would be required
to conclusively determine the significance of our improvement,
but this data was not available in [13]. The state-of-the-art seg-
mentation performance validates the DTM’s capacity to model
musical audio content and its promise for applications beyond
segmentation, as a general, generative model for music.

Looking at the different feature representations, the
DTM-MFCC outperforms DTM-Chroma on both datasets,
with F-scores of 0.62 versus 0.58 on RWC, and 0.62 versus
0.51 on PopMusic. On the other hand, GMM-MFCC and
GMM-Chroma perform similarly (F-scores of 0.52 versus 0.51
on RWC, and 0.49 versus. 0.50 on Pop). These results suggest
that chroma time-series are not as well modeled as MFCC
time–series by the DTM model. In particular, each coordinate
of the chroma feature vector is active (nonzero) when a partic-
ular musical key is present, and hence the time-series of chroma
features will tend to be “spiky,” depending on when the chords
change in the song. The chroma features are also non-negative.
Because of these two aspects, the chroma time-series is not as
well modeled by the DTM, which is better suited for modeling
second-order smooth time-series with Gaussian noise.

Table III examines the impact of the musical constraints and
boundary refinement on the segmentations produced by our best
model, the DTM-MFCC model. We see that the musical con-
straints improve the final segmentation of the PopMusic dataset
by removing short, inaccurate segments and thus reducing the
overall number of segments (the average number of segments
drops from 17.9 to 10.7 where the true segmentations contain

2http://cosmal.ucsd.edu/cal/projects/segment/

Fig. 4. DTM segmentations and reference segmentation of the track “p053”
from the RWC dataset (Rand Index � ����, Pairwise � � ����). The addition
of the musical constraints removes short segments.

Fig. 5. DTM segmentations and reference segmentation of “It’s Oh So Quiet”
by Björk from the PopMusic dataset (Rand Index � ����, Pairwise � � ����).
When there are more classes in the reference segmentation than there are DTM
components, the model successfully ignores the smallest classes (classes 5 and
8 in this example).

an average of 11.1 segments). Indeed, these constraints often
remove certain segment classes from the output altogether. In
cases where the true segmentation had less than different
classes, the model can now ignore irrelevant classes.

Examples of DTM song segmentations are compared to the
ground truth in Figs. 4 and 5 (more examples available online2).
We see that, while most DTM segments are accurate, there are a
few errors due to imprecise borders, and some cases where the
model over- or under-segments.

D. Boundary Detection Results

In addition to evaluating the segmentation performance of
the DTM model, we can consider its accuracy in detecting
the boundaries between segments (without trying to label the
segment classes). We evaluate boundary detection performance
using two median time metrics: true-to-guess (T-to-G) and
guess-to-true (G-to-T), respectively, measure the median time
from each true boundary to the closest model estimate, and
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TABLE IV
DTM BOUNDARY DETECTION PERFORMANCE ON THE RWC DATASET,

COMPARED TO A COMMERCIAL ONLINE SERVICE “THE ECHONEST”
AND THE SUPERVISED METHOD OF [19]

TABLE V
DTM BOUNDARY DETECTION PERFORMANCE ON THE POPMUSIC

DATASET COMPARED TO ECHONEST

the median time from each model estimate to the closest true
boundary, as in [19]. We also consider the precision, recall and
F-measure of boundary detection where a boundary output by
the model is considered a “hit” if it is within a certain time
threshold of a true segment boundary, as in [13], [19], and [20].

The boundary detection results, averaged over the 100 RWC
songs , are presented in Table IV. We use a threshold of
0.5 s for comparison to [19], who tackle the boundary detection
problem by learning a supervised classifier that is optimized for
boundary detection. In Table V, we show results for the Pop-
Music dataset where we now use a hit threshold of
3 s, following [13] and [20]. For both datasets, we also compare
with the music analysis company EchoNest [35], which offers
an online service for automatically detecting music boundaries.

For the PopMusic dataset, the boundary detection results
for the DTM segmentation (boundary F-measure )
are comparable to the performance of Levy and Sandler’s
segmentation algorithm (best boundary F-measure )
[13]. However, neither system approaches the accuracy of
specialized boundary detection algorithms (e.g., Ong and Her-
rera [20] achieve boundary F-measure of 0.75 on a test set of
similar Beatles music). Boundary detection algorithms (e.g.,
[19], [20]) are designed to detect novelty between successive
feature frames or respond to musical cues such as drum fills
or changes in instrumentation which indicate that one segment
is ending and another beginning. However, they do not model
the musical structure and there is no characterization of the
segments between the boundaries as the DTM or [13] provides.
In future work, we will investigate using a supervised boundary
detection algorithm to improve on the simple refinement of the
DTM segmentation that we propose in Section IV-D.

VI. APPLICATIONS OF AUTOMATIC SONG SEGMENTATION

In this section, we demonstrate several applications of the au-
tomatic song segmentation algorithm to music annotation, re-
trieval, and visualization.

A. Autotagging Song Segments

A number of algorithms have been proposed for automat-
ically associating music content with descriptive semantic

phrases or “tags” [1], [36], [37]. These supervised methods
use large corpora of semantically tagged music to discover
patterns in the audio content that are correlated with specific
tags. Various methods exist for collecting the tags used to train
these systems including hiring human subjects to label songs
[1], mining websites [38], or online games [39] (see [40] for a
review of the performance of each of these methods).

The tags generated by most of these method are presumed to
be associated with the entire song. However, depending on the
specific tag and the source from which it was collected, this may
not be true. For example, the song “Bohemian Rhapsody” by
Queen might accurately be tagged by one listener as a “melan-
choly piano ballad,” another listener might refer to the “ener-
getic opera with falsetto vocal harmonies,” while a third lis-
tener might hear “screaming classic rock with a powerful elec-
tric guitar riff.” The training of autotagging algorithms [1], [36]
is designed to accommodate the fact that not all of the features
present in the labeled music audio content will actually manifest
the associated tags. However, this “multiple instance learning”
problem presents a challenge for evaluating the output of such
algorithms since many of the tags apply to only certain segments
of the song.

The solution to the “Bohemian Rhapsody problem” lies in
first dividing a song into musically homogeneous segments
and then tagging each of the segments individually. We use
the music tagging algorithm described in [1] to associate the
segments extracted from the 60-song PopMusic dataset de-
scribed in Section V with 149 semantic tags from the CAL-500
vocabulary used in [1]. Given a music waveform, the output of
this algorithm is a semantic multinomial distribution, a vector
of probabilities that each tag in the vocabulary applies to the
music content. These tags include genre, emotion, instrument,
vocal style and song-usage descriptors. The accuracy of the
tagging algorithm has been found to predict one human’s
responses as accurately as another human would [1] (i.e., it
approaches the limit imposed by musical subjectivity) and
was the best performing automatic music tagging algorithm in
the 2008 Music Information Retrieval Evaluation eXchange
(MIREX) contest [41].

Fig. 6 demonstrates the class DTM segmentation of
the song “Bohemian Rhapsody.” Four of the top automatically
determined tags are displayed for each segment where the first
indicates the segment’s most likely genre, the second detects the
most prevalent instrument or vocal characteristic, the third de-
scribes the emotion evoked by the segment, and the fourth gives
a general description of the segment. The majority of the tags ac-
curately describe the musical content although a few are clearly
incorrect (e.g., there is no saxophone in the second segment and,
though his voice was high pitched, Freddie Mercury was not
a female singer!). More importantly, there is a big difference
between the tags that describe the mellow, acoustic, early seg-
ments of the song and those used to describe the more rocking,
up-tempo segments towards the end. Compare the tags for each
segment in Fig. 6 with the top tags output for the entire song
which generically describe Bohemian Rhapsody as a pop song
with a female vocal that is pleasant and is not very danceable.

Table VI further illustrates the need for segmentation before
semantic analysis of audio content. In the left column, we
present the average Kullback–Leibler (KL) divergence between
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Fig. 6. DTM segmentation of the song “Bohemian Rhapsody” by Queen. The automatically generated tags show the most likely genre, the most prevalent in-
strument or vocal characteristic, the emotion evoked and a general description of each segment class. Treating the song as a whole results in the general tags pop,
female vocal, pleasant, and not very danceable. The �-axis labels are added by the authors to highlight the musical or lyrical content of each segment class.

TABLE VI
MEAN SEMANTIC KL DIVERGENCE AND TEMPO MISMATCH BETWEEN A DTM
SEGMENT AND ANOTHER SEGMENT FROM THE SAME CLASS, FROM THE SAME

SONG (BUT A DIFFERENT CLASS) AND FROM A DIFFERENT SONG, AVERAGED

OVER ALL SONGS FROM THE POPMUSIC DATASET. SECTION VI-B EXPLAINS

THE SIMILAR DT (BOTTOM ROW)

the semantic multinomial describing a single, automatically-ex-
tracted segment of a given song from the PopMusic dataset
(e.g., the first chorus of song 1) and other segments from that
song that are assigned to the same DTM component (e.g.,
other choruses from song 1), segments from the same song
but different classes (e.g., verse, bridge, etc. from song 1) and
segments chosen randomly from any other song in the dataset,
averaged over all songs from the PopMusic dataset. This method
of using semantic descriptors to determine audio similarity has
been shown to be more accurate than calculating similarity
of the acoustic content directly [2]. Table VI demonstrates
that while segments assigned to the same DTM components
produce almost identical semantic descriptions KL ,
there is a large divergence between the semantic multinomial
distributions of segments from different DTM components
from within the same song KL , approaching the
divergence between two random segments KL .

The right column of Table VI presents the average tempo
mismatch between segments, averaged over all songs from the
PopMusic dataset. We use an automatic tempo extraction algo-
rithm [42] to compute the tempo, in beats-per-minute (bpm), of
each segment. As in [43], we deem two segments to have similar
tempi if the bpm of the second is within 4% of the bpm of the
first, where, to account for confusion in the meter, matches with
one-third, half, double or triple the first bpm are also permitted.
We see that segments from the same class differ in tempo 20% of
the time whereas two random segments have almost 50% chance
of a tempo mismatch. The average tempo mismatch between
segments from the same class in the true segmentation is 10%.

These results suggest that the DT is also capturing temporal in-
formation, along with the semantic information.

B. Song Segment Retrieval

The segmentation of a song obtained by modeling a series
of coherent audio fragments with a dynamic texture can be
used to retrieve musically similar segments from different
songs. We can now answer questions like “what sounds similar
to the verse of this song?” We represent each segment by its
corresponding dynamic texture component in the DTM-MFCC
model and measure similarities between dynamic textures
with the KL divergence between them [22] (note that this KL
divergence is now between dynamic texture models, rather than
the KL between semantic multinomial distributions considered
in the previous section and presented in Table VI). Using
each song segment from the RWC dataset as a query, the five
closest retrieved segments are presented online.3 Qualitatively,
the retrieved segments are similar in both audio texture and
temporal characteristics. For example, a segment with slow
piano will retrieve other slow piano songs, whereas a rock song
with piano will retrieve more upbeat segments.

To quantitatively evaluate the song segment retrieval, we
compute the average semantic KL divergence and tempo mis-
match between each query segment and the retrieved song
segments that are modeled with the most similar dynamic
texture component. The results for the single most similar DT
are presented in the bottom row of Table VI. It can be seen
that two segments with most similar DT components are, on
average, more semantically similar than two segments from
the same song (KL of 0.33 versus 0.54). The tempo mismatch
between retrieved segments is the same as segments from the
same song but significantly lower than segments from different
songs (note that 75% of the most similar retrieved segments
came from the same song as the query—DT components of
the same DTM model). This indicates that the dynamic texture
model captures both the timbre of the audio content, evidenced
by the similar semantic descriptions (derived from analysis of
the instantaneous spectral characteristics), as well as temporal
characteristics, as shown by the similar tempi.

3http://cosmal.ucsd.edu/cal/projects/segment/
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Fig. 7. 2-D visualization of the distribution of song segments. Each black dot
is a song segment. Areas of the space are automatically tagged based on the
system described in Section VI-A.

In order to visualize the distribution of songs in the dataset,
the automatically-extracted segments of songs from the Pop-
Music dataset were embedded into a 3-D manifold using local-
linear embedding (LLE) [44] of the KL similarity matrix com-
puted above for song retrieval. Two dimensions of the embed-
ding are shown in Fig. 7.

We add interpretability to this embedding by inferring genre
and emotion tags that best describe each part of the space. For
each tag, we compute a kernel density estimate of the tag’s prob-
ability distribution by placing a Gaussian kernel at each segment
point in the embedding space. We weight each kernel by the
tag probability assigned to the corresponding segment by the
autotagging algorithm described in Section VI-A. The result is
an estimate of the distribution over the embedding space of a
each tag’s relevance. In Fig. 7, we label the embedding space
by finding the centroid of the area of the top 20% of each of
these probability densities.

The four emotion tags in Fig. 7 illustrate that the largest
variance in the DTM segments results in good separation
between the tags “happy” and “sad” and between “calming”
and “arousing,” corresponding with the psychological prim-
itives or “core affect” described in [45]. The six genre tags
show a progression from synthesized music like “hip hop” and
“electronica” in the lower right, through “blues” and “pop” in
the center to “rock” and “punk” at the top left. This automatic
labeling of the embedding space again suggests that the DTM
model is successfully capturing both the audio texture (e.g.,
separating happy and sad) and the temporal characteristics
(e.g., separating calming and arousing) of the songs.

VII. CONCLUSION

We have presented a new representation for musical audio,
the dynamic texture (DT), which simultaneously accounts

for both the instantaneous content of short audio fragments
as well as the evolution of the audio over time. We applied
the new representation to the task of song segmentation (i.e.,
automatically dividing a song into coherent segments that
human listeners would label as verse, chorus, bridge, etc.), by
modeling audio fragments from a song as samples from a DTM
model. Experimentally, the resulting segmentation algorithm
achieves state-of-the-art results in segmentation experiments
on two music datasets. More importantly, the generative nature
of the proposed model of music makes it directly applicable
to a wider and more diverse range of applications, compared
to algorithms specifically developed for music segmentation.
Its state-of-the-art results on music segmentation indicate that
the dynamic texture representation shows promise as a new
model for automatic music analysis. Future work will consider
using the DTM model to move beyond the bag-of-features
representation in applications such as music similarity and
automatic music tagging.

Another interesting direction for future work is to use more
complex “switching” DT models [46]–[48] to improve on the
DTM segmentation. These models should better localize the
segment boundaries, as they operate on the entire song, rather
than in a fragment-based manner. In general, these switching
models are more difficult to learn robustly, due to the complexity
of the models and the necessity for approximate inference. How-
ever, their effectiveness can be greatly increased by initializing
the learning algorithm with a good segmentation, such as the one
provided by the proposed DTM segmentation algorithm. Also a
potential direction of future work is to modify the DTM so that
it better models the properties of the chroma time-series.
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