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Figure 1: Three layouts generated by our approach trained on “Fairy Tail”. The left side of each example displays the sequence of input
artworks (“Daffy: The Commando”(1943) in the public domain), single-panel semantics, including importance-ranking values (within the
parenthesis and region of interest (masked by rectangle), as well as optional inter-panel semantics that describe a group of consecutive
semantically related panels (grouped by a red line in the rightmost example). The character masked by the green rectangle is chosen for
a“fourth wall break” effect. The reading order of each layout is from left to right and then top to bottom.

Abstract

Manga layout is a core component in manga production, charac-
terized by its unique styles. However, stylistic manga layouts are
difficult for novices to produce as it requires hands-on experience
and domain knowledge. In this paper, we propose an approach
to automatically generate a stylistic manga layout from a set of
input artworks with user-specified semantics, thus allowing less-
experienced users to create high-quality manga layouts with min-
imal efforts. We first introduce three parametric style models that
encode the unique stylistic aspects of manga layouts, including lay-
out structure, panel importance, and panel shape. Next, we pro-
pose a two-stage approach to generate a manga layout: 1) an initial
layout is created that best fits the input artworks and layout struc-
ture model, according to a generative probabilistic framework; 2)
the layout and artwork geometries are jointly refined using an ef-
ficient optimization procedure, resulting in a professional-looking
manga layout. Through a user study, we demonstrate that our ap-
proach enables novice users to easily and quickly produce higher-
quality layouts that exhibit realistic manga styles, when compared
to a commercially-available manual layout tool.
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1 Introduction

During the last few decades, manga or Japanese comics have gained
in popularity across the world due to its unique styles in terms
of screening, ballooning and layout. This has resulted in an in-
creasing involvement of the general population in producing their
own manga. However, creating high-quality manga typically re-
quires well-trained skill and unique talent. Although various manga
production tools (e.g., Manga Studio [MangaStudio 2011]) have
emerged to help novices create manga from scratch, none of these
tools provide the insight into how manga layout can be done effec-
tively. Manga layout is at the core of manga production. Effective
manga layout is utilized by the artists to help storytelling, guide the
reader’s attention, and enhance the visual attractiveness of manga
pages [Rivkah 2006]. However, manga layout is a complicated task;
both in-depth understanding and hands-on experience are required
to achieve an effective manga layout [Tsai 2002].

In addition to some basic requirements, such as correct reading or-
der and efficient space utilization, Japanese manga artists typically
stylize their layout by introducing some customized features, such
as: 1) different layout structures (i.e., spatial arrangement of the
panels), rather than a single layout template, which augment the
visual richness; 2) variations in panel size, with larger panels for
important events and smaller panels for scene or moment transi-
tions, which increase the semantic contrast between the panels and
make the storytelling more dynamic; 3) irregular panel shapes, in-
stead of uniform rectangles, which make the contents in the panel
more dynamic and engaging. These factors characterize manga lay-
out, distinguishing it from the layout of traditional Western comics,
which is more rigid and grid-based (e.g., see Figure 2).

Manga artists rely upon their intuition and experience for layout de-
sign, which is hard to completely formulate. Hence, previous layout
algorithms, based on either heuristic rules [Taniguchi et al. 1997;
Thawonmas and Shuda 2008] or energy optimization [Purvis et al.
2003; Cagan et al. 2002; Geigel and Loui 2003; Merrell et al. 2011;
Yu et al. 2011], are not applicable, since there are no clear guide-
lines that can be incorporated into these frameworks. In contrast
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Figure 2: Differences between manga and traditional West-
ern comics. Left: a manga page from “Detective Conan”
( c�AYOYAMA Gosho / Shogakukan Inc.). Right: a comic strip from
“Superman” (SUPERMAN TMand c�DC Comics).

to this previous work, we propose an approach to produce stylis-
tic manga layout, which is based on flexible style models that are
learned from existing manga pages. In essence, our data-driven
approach can learn the structure and style of manga layout from
examples, thus avoiding the need to define explicit guidelines.

Our approach. To represent the unique stylistic features of manga
layout, we introduce three novel models for the spatial arrangement,
importance, and shape of the panels in a layout. First, we propose
a generative probabilistic model for layout, which can represent the
rich and widely varying arrangement of panels on the page. Second,
we introduce a panel importance classifier, which ranks the impor-
tance of the panel based on its shape. Third, we propose a paramet-
ric model for panel shape, which encodes the irregular panel shapes
found in manga. The parameters of these style models are learned
from pages of a manga series, thus allowing us to encode the style
of different manga artists.

Using these three style models, our manga layout algorithm pro-
ceeds as follows. For each input artwork, the user specifies an
importance ranking and a region of interest. Optionally, the user
can also group semantically related panels and mark images for a
“fourth wall break” effect, where the character will pop out of the
panel. Next, an initial layout is calculated that fits both the input im-
ages and the learned generative layout model, via maximum a poste-
riori (MAP) estimation. The initial layout is then refined by jointly
optimizing the geometries of the artwork and the layout, while reg-
ularizing the panels to fit the learned shape model. Finally, post-
processing effects (e.g., the “fourth wall break”) are added, and the
final layout is rendered. Note that our approach does not require
the user to determine any specific attributes of each panel (i.e., the
position, size and shape). Instead, the user simply provides a region
of interest and importance for each artwork, and the algorithm will
automatically generate a professional-looking manga layout.

Contributions. In summary, the main contributions of our paper
are as follows:

• We introduce three parametric models for representing the
unique stylistic features of manga layout, which are flexible
enough to encode the layout styles of various manga series.

• With these style models, we propose an algorithm to automat-
ically and efficiently produce manga layout from input art-
works and user-specified semantics.

In addition, we have evaluated the effectiveness of our manga lay-
out tool with a user study, which shows that the layouts by our
tool are preferred over those from a commercially-available man-
ual tool. To the best of our knowledge, we are the first to consider
a data-driven approach to manga layout, where the unique layout

style of a manga series can be learned from its own pages.

2 Related Work

General Layout Problem. The layout problem is a well-studied
problem in many engineering fields. A large body of computa-
tional methods has been reported for architectural, product, and
circuit layouts (see [Cagan et al. 2002; Lok and Feiner 2001] for
a survey). For this type of problem, metaheuristic algorithms such
as simulated annealing (SA) and the genetic algorithm (GA) are
often used to search a large solution space for an optimal layout
configuration. Yu et al. [2011] developed a fully-automatic furni-
ture layout system, where the cost function is optimized using SA.
However, SA has a high computational cost, while in our setting,
we prefer a near real-time performance in order to support interac-
tive refinement. Merrell et al. [2011] generated furniture layouts by
sampling a density function with a set of interior design guidelines
as its terms. However, such guidelines for manga layout design are
not available, and hence the method is not directly applicable. Re-
cently, Merrell et al. [2010] employed real-world data to generate
plausible residential layouts. While similar in motivation in adopt-
ing a data-driven formulation, our approach handles manga layout
whose problem domain is ill-studied and quite different from build-
ing layout design. Therefore, their domain-specific approach can-
not be easily extended to accommodate our problem.

Comic Layout. Previous works on automatically transforming a
sequence of images into comics aim to synthesize comic-like lay-
out [Kurlander et al. 1996; Shamir et al. 2006; Tobita 2010; Dur-
rant et al. 2011]. However, all these methods employ either simple
heuristic rules or pre-defined templates, thus limiting their ability to
produce rich and distinctive styles. In contrast, our approach takes
advantage of styles learned from manga examples to drive layout
generation, thereby readily reproducing a variety of manga layout
styles. Preu et al. [2007] and Ryu et al. [2008] generated comic
pages from a movie, but did not handle the page layout problem,
leaving the panels to be arranged manually.

Layout in Video Summarization. Video summarization tech-
niques focus on the visual composition of video frames. Taniguchi
et al. [1997] sequentially placed frames, with the goal to effectively
utilize space. Uchihashi et al. [1999] and Girgensohn et al. [2003]
used a combinatorial-based algorithm to pack keyframes. Calic et
al. [2007] optimized a layout of keyframes using dynamic program-
ming, where the optimal solution is a complete layout that best fits
a predefined template. Several recent works have attempted to de-
velop various seamless and multi-scale video representation, for the
purpose of better video summary and navigation [Goldman et al.
2006; Barnes et al. 2010]. Unlike these methods, our end goal is
to achieve a layout that most resembles what manga artists create,
rather than a compact or coherent video summary.

Photo or Document Layout. Several methods have been proposed
for photo and document layout. Recursive spatial division was used
by [Atkins 2004] to produce an adaptive photo layout. A rule-based
optimization scheme was adopted in [Geigel and Loui 2003; Purvis
et al. 2003]. Jacobs et al. [2003] developed an adaptive grid-based
document layout system. Photo collages can also be constructed
from photo collections by soft-blending neighboring salient image
patches [Rother et al. 2006]. However, none of these techniques
aim to reproduce the layout styles unique to manga, which is our
focus in this work.

Computational Manga. Computational manga is an emerging re-
search direction in recent years. Several techniques have been de-
veloped to facilitate manga creation, such as manga coloring [Qu
et al. 2008] and screening [Qu et al. 2006]. Our approach addresses
one area of this new research field, namely, manga layout.
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Figure 3: An illustrative description of recursive spatial division
(left) and its division tree (right) for a single manga page from “De-
tective Conan” ( c�AYOYAMA Gosho / Shogakukan Inc.). First, the
entire page (root node) is split into three rows (red internal nodes
R1,R2,R3). Each row is then split into the corresponding columns
(blue nodes). Finally, the second column in the first row is further
split into two rows (red leaf nodes).

3 Style Models

Our first challenge is to identify and model the patterns that char-
acterize manga layout. We observe that each manga layout can be
stylistically specified by a number of fundamental factors, includ-
ing the layout structure (i.e., spatial arrangement of panels) and the
geometric properties of the panels (i.e., size and shape). In this sec-
tion, we propose three models for representing these factors, which
can be learned from example manga pages.

3.1 Manga Database Creation

As our style models are learned from example manga pages, we first
build a database of annotated manga pages. Our database contains
approximately 4,000 scanned manga pages from two manga series,
“Fairy Tail” and “Detective Conan”, and a Western comic, “Super-
man”. The panel vertices in each manga page were labeled manu-
ally. In addition, for each manga series, we group the manga pages
by the number of panels per page. The style models are learned
from each of these groups of pages.

3.2 Generative Model for Layout Structure

When drawing a manga page, artists begin by sketching an initial
layout (i.e., layout structure), where the size and position of each
panel are roughly determined. To mimic this process, we propose
a generative model for layout structure, which can extrapolate the
common layout patterns of an artist using a probabilistic model.

Recursive Spatial Division. Our observation is that a basic lay-
out structure can be generated by recursively splitting a page into
a number of rows and columns. To describe this generative pro-
cess, we define two types of spatial division, row division and col-
umn division, which correspond to splitting a column into rows, and
splitting a row into columns, respectively. In this way, a particular
layout structure can be described by a spatial division tree, where
each node represents a row or column formed by a series of spatial
divisions. An example of such a tree is depicted in Figure 3.

We define the process of splitting a particular row or column as
a spatial division instance (SDI). Each SDI has a label of the form
L = Root−Ra−Cb−· · ·−{R,C}, where Root−Ra−Cb−· · · is
the path to the current node in the spatial division tree, and {R,C}

denotes row or column division. For example, Root − R1 − C
represents the splitting of the first row into columns. Each SDI is
associated with a scalar N , which is the number of rows (columns)
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Figure 4: Distribution of SDIs across 6-panel pages from “Fairy
Tail”. Each bar corresponds to a particular SDI, with colors indi-
cating the number of rows/columns formed.
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Figure 5: Layout structures sampled from our generative layout
model. Note that our generative model both reproduces layout
structure (b) of a training example (a) and extrapolates stylistically
plausible variants ((c) and (d)), which are similar to (b) but not in
the training set.

resulting from the split, and a N -dimensional vector X, which is the
splitting configuration, i.e., the normalized heights (widths) of the
resulting rows (columns). The distribution of SDIs across manga
pages generally indicates the preference of the artist in drafting a
layout. For example, Figure 4 shows the distribution of SDIs across
6-panel pages from “Fairy Tail”. In this case, the distribution of N
for Root − R suggests that the artist favors layout structure with
three rows when arranging 6 panels on one page.

Generative Model. We next propose a generative model for lay-
out structures, which is based on the probability distribution of
SDIs and the generative process discussed above. Starting with
L = Root−R, we first sample N (the number of rows or columns
formed by splitting) from a probability distribution P (N |L), which
represents the frequency that a particular N occurs for each L.
Next, given N and L, we sample the splitting configuration X,
which determines the geometry of each row or column result-
ing from the split, from a Dirichlet distribution P (X|N,L). The
Dirichlet distribution is defined over the unit (K − 1)-simplex, i.e.,
{(x1, . . . , xK)|xi ∈ [0, 1],

�K
i xi = 1}. Therefore, a splitting

configuration can be naturally regarded as a sample from this dis-
tribution. The process repeats recursively for each new L gener-
ated from the splitting process, until the desired number of panels
is reached. The parameters of the distributions are estimated from
a set of labeled manga pages, thus allowing the model to learn the
layout structures of various manga artists. In contrast to [Calic et al.
2007], which uses a fixed number of layout templates, our gener-
ative model can extrapolate an infinite number of plausible layout
structures, thus improving the richness of the possible layouts. Fig-
ure 5 shows several layout structures sampled from our generative
model that was trained on 6-panel pages from “Fairy Tail”.

Parameter Estimation. The parameters of the generative model
are learned from a set of labeled manga pages, from which the SDIs
are automatically obtained (see supplementary). For each SDI of
label Li, we extract the corresponding number of rows/columns
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Figure 6: Panel clustering in 2D feature space. All the panels
are extracted from 6-panel manga pages, and are clustered into
3 classes. Each circle denotes an individual panel, and its color
indicates cluster membership.

Ni, and the splitting configuration Xi, resulting in a set of SDI
samples {Ni,Xi}. Then, P (N |Li) is estimated using the relative
frequency of {Ni}, and for each Ni, the Dirichlet parameter vector
α of P (X|Ni,Li) is learned using maximum likelihood estimation
[Naryanan 1991] on the corresponding {Xi}. When only a few
SDI samples are available for a particular Ni, we set α = 1, which
reduces to a uniform distribution over splitting configurations.

3.3 Panel Importance

In manga layout, the sizes of the panels vary throughout the page,
with larger panels typically for more important events. To rep-
resent this concept, we define the panel importance, denoted as
m ∈ {1, 2, 3}, which indicates the importance ranking of a panel,
with m = 1 being the most important (largest), and m = 3 being
the least important (smallest).

To automatically discover the panel importance present in a manga
dataset, we use unsupervised clustering to analyze the geometric
properties of the panels. As the panel size also depends on the
number of panels on the page, we separately analyze each group of
layouts with the same number of panels. First, we represent each
panel with a 2D feature (nw, nh), where nw and nh are the width
and height of the panel’s bounding box, normalized w.r.t the page
width and height. Next, we group the panels into 5 clusters using a
Gaussian mixture model trained with the expectation maximization
algorithm [Bishop 2006]. The clusters are then sorted in descending
order by the L2 norm of the cluster centers. Assuming that there are
more panels with normal importance (m = 2) than those that are of
most or least importance (m = 1 or m = 3), we finally designate
the first cluster (largest panels) and last cluster (smallest panels) as
m = 1 and m = 3, while grouping all intermediate clusters into
the cluster of m = 2.

An example panel clustering appears in Figure 6. The clustering
algorithm finds that the panel width consistently increases with its
importance, while the variations in height are similar across all im-
portance ranks. This suggests a relationship between the impor-
tance and shape of the panels in existing manga pages. In particular,
important panels are wide rectangles that fill the entire row of the
page, whereas less important panels are vertical rectangles, which
leave space for other panels in the row. Finally, we define a panel
importance classifier, which takes the normalized width and height
of an input panel and outputs the importance of its closest cluster
center. The variation of the panel shape for each importance cluster
is learned by fitting a parametric shape model, as discussed next.

3.4 Panel Shape Variation Model

In contrast to western comics, panels in manga layouts are charac-
terized by their irregular shapes. To capture this shape variability,
we exploit a method analogous to the active shape model (ASM)

[Cootes et al. 1995]. Given a set of panels with a particular im-
portance, we first perform Procrustes analysis to align them into
a common coordinate system, and then describe each panel by a
shape vector si = (x1, y1, ..., x4, y4)

T
∈ R8, where (xj , yj) is

the coordinate of j-th vertex, normalized w.r.t. the page width and
height. Using principal component analysis and retaining the top 3
principal components, we build a shape variation model as:

s = s+Uβ, (1)
where s ∈ R8 is the mean of all shape vectors, U ∈ R8×3 is the
eigenvector matrix, and β ∈ R3 is the shape parameter vector. For
a new shape snew, the best fitting shape allowable by the model is
given by β = UT (snew − s). To ensure that panel shapes deform
in a reasonable way, we enforce constraints on the parameter vector,

−
√
λi ≤ βi ≤

√
λi, i = 1, 2, 3, (2)

where βi is the i-th parameter in β, and λi is the eigenvalue asso-
ciated with the i-th eigenvector. The shape variation model will be
used in both the constrained editing UI of the layout tool, and in the
final layout optimization to regularize the shapes of the panels.

4 Manga Layout Approach

Figure 7 presents an overview of our approach, which consists of
two main components, offline learning of the style models and on-
line layout generation. In the offline stage, the style models are
learned from a training set of labeled manga pages, as discussed in
Section 3. In the online stage, given a set of input artworks, the user
begins by specifying the semantics, including the region of interest
(red or green rectangle on top of each artwork), importance-ranking
(the numbers) as well as semantically related panels (connected by
a red line), via our constrained editing UI. Next, an initial layout
is found that best fits the the user-specified semantics and the gen-
erative layout model, using MAP estimation. The final layout is
calculated by solving an energy minimization problem using an ef-
ficient alternating optimizer that is regularized by the learned shape
variation model. The automatically generated layout can be further
edited by the user, with the optimizer re-solving for the final layout
while treating the user’s changes as additional constraints.

One key advantage of our layout algorithm is its flexibility, with the
style of the layouts produced by the algorithm depending entirely
on the training set used to learn the style models in the offline stage.
By using different training sets, we can reproduce the layout styles
specific to different manga series (see results in Section 5).

4.1 Constrained Editing Interface

We provide a constrained editing interface, which allows the user to
rapidly specify pertinent semantics of the input artworks, including
importance, region of interest (ROI), and inter-panel relationship. A
demonstration of our interface appears in the accompanying video.

Given a sequence of input artworks, the user first selects the number
of panels N in one page. Then, for each artwork, the user assigns
a panel importance value (Section 3.3) to indicate its importance
ranking, and selects the ROI by dragging a deformable rectangular
mask (DRM) in the artwork. Our interface will automatically center
the DRM around the most salient region in the artwork. To achieve
this, we first generate a saliency map by taking the product of a low-
level saliency map by [Itti et al. 1998] and high-level face detection
map by [Viola and Jones 2004]. Next, the optimal window center
and scale are determined by finding the window in the saliency map
with the largest Gaussian-weighted sum of saliency values.

The user can manipulate the DRM by translating or deforming this
mask, in order to accurately select the intended ROI. In this step,
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we aim to offer the user the flexibility to freely choose any region,
as well as useful suggestions about what field-of-view an artist is
likely to use to capture interesting objects. To achieve this, the ge-
ometry of the DRM is allowed to be scaled and translated arbitrar-
ily, but only deformed within the allowable deformation space of
the panel shape variation model of the selected importance. In or-
der to ensure the DRM to be rectangular, the panels are represented
by their bounding boxes when used to learn the deformation model.
Once the ROI is selected for an artwork, we treat its shape as the
image geometry of the artwork in subsequent processing.

In addition, we also allow the user to optionally group semantically
related panels by drawing a line across a set of panels. In this case,
our algorithm will take into account inter-panel semantics during
the initial layout generation step as will be discussed next.

4.2 Initial Layout Generation

Given the input artworks and the user-specified semantics, the first
step of our layout algorithm is to generate an initial layout. On
the one hand, the initial layout should exhibit the style expressed
by a manga artist, while on the other hand, it should adapt well
to the user-specified semantics. One simple solution is to retrieve
the best-fitting layout from our database of labeled manga pages,
by evaluating the compatibility between the input artworks and the
existing layouts. However, since we allow the user to specify an ar-
bitrary importance value and image geometry for each artwork, di-
rect retrieval will fail to find a proper initial layout when the user’s
specifications do not well match any of the labeled manga pages
(Figure 8(b)). This may lead to an unsatisfying layout, as exempli-
fied in Figure 8(c), where more important panels are erroneously
made smaller than less important ones.

Instead of using a fixed database of layouts, we employ a gener-
ative probabilistic framework, where our generative model from
Section 3.2 serves as the prior distribution over possible initial lay-
outs. Our goal is to find the optimal initial layout that fits both the
generative model and the user-specified semantics. In essence, our
generative model has the ability to extrapolate an infinite number of
valid initial layouts, which conform to the learned layout style.

Formally, let L be the initial layout and I be input artworks with
user-specified semantics. We assume a prior distribution on the
layout, L ∼ p(L), which takes the form of the generative layout
model. The prior distribution essentially scores all possible lay-
outs, with higher scores given to layouts that exhibit characteristics
similar to those in the training set. The problem of finding the best
layout L to a given I can now be solved using MAP estimation,

L∗ = argmax
L

p(L|I) = argmax
L

log p(I|L)
� �� �
likelihood term

+ log p(L)
� �� �

prior term

. (3)

The prior term is computed directly from the generative model,
p(L) ∝

�r
i=1 p(Xi|Ni,Li)p(Ni|Li). The likelihood term p(I|L)

(c) (e)(d)(b)

8(2)7(3)6(3)5(3)4(2)3(2)2(2)1(2)

(a)

Figure 8: Comparison to simple retrieval method for initial layout
generation. (a) Input artworks (“Bugs Bunny: The Wabbit Who
Came to Supper”(1942) in the public domain). (b) Best initial lay-
out retrieved by matching the input artworks with the candidates
from our database of labeled manga pages, using the single-panel
likelihood function in Section 4.2. (c) Final layout generated based
on (b). (d) Best initial layout by our model-based approach. (e)
Final layout generated based on (d).

measures how well the initial layout matches the input artworks and
user-semantics. In our formulation, there are two types of seman-
tics, i.e., single-panel semantics (importance and image geometry),
and inter-panel semantics (groups of semantically related panels).
Hence, the likelihood term consists of two independent terms:

log p(I|L) ∝ ωEsingle(I, L) + (1− ω)Einter(I, L). (4)
where Esingle(I, L) and Einter(I, L) are the single-panel and
inter-panel likelihood terms, respectively. ω is a weighting param-
eter that is set to 0.5 in our implementation.

Single-panel Likelihood Term. Esingle(I, L) measures the fitness
between the input artworks and the layout. Assuming conditional
independence, we define Esingle(I, L) = log

�n
j=1 p(Ij |Pj),

where Ij and Pj are the j-th artwork and its panel, respectively. Let
MIj be the user-specified importance of the j-th artwork, and MPj

be the importance of corresponding panel determined by panel im-
portance classifier (Section 3.3). We define p(Ij |Pj) as:

p(Ij |Pj) ∝

�
�, if MIj ∈ {1, 3} and MIj �= MPj

e
−1
2σ2 �xIj

−xPj
�2
, otherwise

(5)
where � is a small value (set to e−10 in our implementation), and
xIj and xPj are the geometric feature vectors of Ij and Pj . Al-
though a wide range of geometric features (e.g., aspect ratio, nor-
malized pixel area, etc.) could be used, we have found that the
aspect ratio alone works well in practice. Note that the � term will
greatly penalize the layouts where the perceptual contrast (relative
size) between the smallest and largest panels is small, thus sup-
pressing the layouts that are likely to be functionally erroneous.

Inter-panel Likelihood Term. Considering the semantic relation-
ship between panels (e.g., panel-to-panel transition) may improve



the storytelling ability of the generated layouts [McCloud 1994;
McCloud 2006]. The principle is to arrange consecutive panels,
which are semantically related, along a smooth path, such that the
readers can mentally assemble these fragments as a whole easily.
Furthermore, it is also advantageous to have semantically related
panels span the entire row or column, in order to align the shot tran-
sitions with the row or column boundary. Therefore, we allow the
user to optionally specify inter-panel semantics by grouping sev-
eral consecutive panels, and design the inter-panel likelihood term
Einter(I, L) to accommodate such constraints.

Formally, let S = {G} be set of panel groups selected by the user.
We formulate the inter-panel likelihood term as:

Einter(I, L) = log
�

G∈S

Es(G, L) + Ep(G, L)
2|S|

, (6)

where Es(G, L) measures the smoothness of the path among the
panels, and Ep(G, L) encourages the panel group to span the entire
row or column, thus aligning shot transitions with the row or col-
umn boundaries. For a group G, let pk, k = 1, · · · , |G|− 1, be the
vector (path) from the center of the k-th panel to the center of the
(k + 1)-th panel in the group. We define Es(G, L) as,

Es(G, L) =

�
cos(4θ(pk,e1))+1

2 , |G| = 2
1

|G|−1

�|G|−2
k=1

cos(θ(pk,pk+1))+1

2 , |G| > 2
. (7)

When there are two panels in the group, θ(pk, e1) is the angle be-
tween pk and the horizontal axis e1, and the term encourages the
two panels to align horizontally or vertically. When there are more
than 2 panels, θ(pk,pk+1) is the angle between consecutive paths
pk and pk+1, and the term measures the smoothness of the en-
tire path, with the highest value obtained when all the panels are
collinear. Finally, Ep(G, L) is a penalty term, which equals 1 when
the first panel in G is at the beginning of a row/column and the last
panel is at the end of a row/column, and 0 otherwise.

Optimal Initial Layout Estimation. There is no closed-form so-
lution to the MAP optimization problem in (3). Although a solu-
tion could be found using iterative algorithms, such as determin-
istic annealing [Geman and Geman 1984] or variational approx-
imations [Bishop 2006], they are computationally expensive and
thus unsuitable for an interactive application. Instead, we solve
(3) by sampling a set of layouts O from our generative model,
L ∼ p(L), and selecting the one that maximizes the MAP score,
log p(I|L) + log p(L). In general, this strategy will not find the
global optimum exactly, but will give a close solution when there
are enough samples. This is sufficient for our purpose, since in
this stage we only need an initial layout to roughly specify the spa-
tial arrangement of the artworks; the initial layout will be further
refined in the next stage. To achieve a tradeoff between computa-
tional efficiency and solution quality, we empirically set |O| to 500.
Furthermore, instead of maintaining a fixed set of sampled layouts,
we sample a new collection of layouts whenever our algorithm is
run. This dynamic updating improves the variability of the initial
layouts, and allows us to explore the full sample space.

Figure 8 exemplifies the advantage of our model-based approach
over a simple retrieval-based method. Due to the diverse set of
candidates extrapolated by the generative process, our method is
more likely to produce a higher-quality initial layout, and thus a
better final layout that is functionally correct and visually pleasing.

4.3 Layout Optimization

Given the initial layout, the goal is to produce a final layout where
the images fit well into their corresponding panels, while repro-
ducing the variability in panel shapes, which is a characteristic of
manga. We formulate this refinement procedure as a joint optimiza-

(a) Unop!mized (b) Op!mized (c) Deformed layout mesh

Figure 9: Layout optimization example. (a) Initial placement of the
image geometries (red) and layout mesh (green). (b) Configuration
after optimization. (c) Deformed layout mesh after optimization
(blue) and the initial layout mesh (green).

tion problem over the layout mesh and image geometries.

Let V = (v1, . . . ,vm)T be a 2m-dimensional vector of vertex po-
sitions of the layout mesh, where vi is 2D coordinate vector and
m is the number of the vertices. The images are initially placed in
the layout by centering each image in its panel, and enlarging the
image to completely cover the panel (if necessary), e.g., see Fig-
ure 9 (a). Next, this initial arrangement is further refined to fulfill
our objective above. Assuming that each image geometry will un-
dergo a geometric transformation Ti, we formulate the refinement
procedure as an optimization problem over V and T = {Ti}

n
i=1,

and develop an efficient solver using a two-step alternating mini-
mization scheme, which rapidly converges to the global optimum.
Finally, the optimal V and T are used to render the final layout.
Figure 9 illustrates our layout optimization.

Energy Function. We denote the i-th panel geometry in the lay-
out mesh by its four vertices {vγ(i,j)}

4
j=1 where γ is a function to

index the j-th vertex of the i-th panel in V, and the image geom-
etry of the artwork associated with i-th panel by its four corners
{uij}

4
j=1. Furthermore, to maintain the aspect ratio of the artwork,

we assume each image geometry can only undergo a rigid trans-
formation, composed of a uniform scaling and a translation, i.e.,
Ti = {si, ti}, where si is a scaling factor and ti a translation vec-
tor. We measure the fitness between the i-th image geometry and
its corresponding panel via a discrepancy energy:

Di = wi

4�

j=1

�vγ(i,j) − (siuij + ti)�
2 + λ�ti�

2, (8)

where �ti�2 is a regularization term weighted by λ (empirically set
to 3). Notice that this energy formulation will encourage the im-
age geometry to lay around the center of the panel geometry, which
implicitly encodes the constraint that salient objects should appear
in the central part of the panel in manga [McCloud 2006]. We also
include a weighting coefficient wi on each energy term, in order to
further constrain the transformation of image geometries. In partic-
ular, we use wi = 1

1+exp(−t) , where t is the ratio of the pixel area
of detected faces to that of the image geometry, and normalize the
weights to sum to 1. An image with a large face region will have a
higher weight, and therefore a higher penalty on its transformation,
thereby well preserving the face region in the panel.

The total energy function is defined by summing the individual dis-
crepancy energy terms,

E = α
n�

i=1

Di + β�V −V0�
2, (9)

where the second term keeps the layout from deforming too far
from the initial layout V0, and α and β are weights (empirically
set to 10 and 1, respectively).

Boundary and Collinearity Constraints. We introduce a set of
constraints on the layout vertices in order to achieve valid results in
the context of manga layout. To guarantee that a rectangular layout



mesh is obtained after optimization, we constrain the vertices at the
four corners of the page to be fixed, and the vertices on the bound-
aries of the page to only slide along their respective boundaries.
Formally, let v0

γ(i,j) be the initial value of vγ(i,j). The boundary
constraints are written as:

vγ(i,j) = v0
γ(i,j), if v0

γ(i,j) is at a page corner ,

vγ(i,j),x =

�
1 if v0

γ(i,j) is on the left boundary
w if v0

γ(i,j) is on the right boundary
,

vγ(i,j),y =

�
1 if v0

γ(i,j) is on the top boundary
h if v0

γ(i,j) is on the bottom boundary
.

(10)

The boundary constraints can be written compactly as a set of linear
equality constraints on V,

mT
i V = bi, i = 1, . . . , l, (11)

where bi ∈ {1, w, h}. mi ∈ R
2m is a vector whose element equals

1 if Vi ∈ {1, w, h}, and 0 otherwise.

In most manga layouts, the edges of neighboring panels in the same
row or column are typically aligned together. Thus, we introduce a
collinearity constraint, by imposing that two collinear edges in the
initial layout should still be collinear after optimization. While it is
feasible to devise an analytic formulation of collinearity to directly
incorporate into our optimization framework, the collinearity con-
straints must be expressed as quadratic equality constraints, which
precludes convexity of the optimization problem. Instead, we en-
force the collinearity conditions by directly modifying the layout
geometry V. Specifically, vertices that should be collinear in the
layout mesh are projected onto their best fitting straight line. We
have found that this simple strategy works well in practice. Com-
pared with directly introducing quadratic constraints, our strategy
allows us to derive an efficient alternating solver, which yields high-
quality solutions and fast convergence.

Alternating Solver. With the energy function and the boundary
constraints defined above, the optimal T = {Ti}

n
i=1 and V can

be found by solving a constrained optimization problem,
{T̂ , V̂} = argmin

T ,V
E, s.t. mT

i V = bi, i = 1, . . . , l. (12)

Since both T and V are unknown and correlated with each other,
we find their optimal values using an alternating minimization
scheme, which alternates between the estimation of T with V
known, and the estimation of V given T , until convergence.

Our alternating solver begins by estimating the spatial transforma-
tion Ti = {si, ti} for each image geometry, while assuming that
the layout V is known. Note that when V is a constant, the in-
dividual discrepancy energy terms are independent of each other.
Hence, {Ti} can be be solved separately in a standard least-squares
manner.

Next, we assume T is known and calculate the optimal V. Rewrit-
ing (9) as a function of V and ignoring additive constants, we solve
for V by minimizing E with the boundary constraints in (11),

V̂ = argmin
V

α�AV − c�2 + β�V −V0�
2

s.t. mT
i V = bi, i = 1, . . . , l.

(13)

(13) is a convex quadratic problem with linear equality constraints,
and a closed-form solution can be derived using Lagrange multipli-
ers [Strang 1986] (see details in the supplementary).

Shape Variation Constraint. After each iteration of the alternat-
ing minimization procedure, we regularize the deformation of each
panel, such that the panel shape changes only within the allowable
space defined by the learned shape variation model. For each panel
vi, we first minimize the fitting energy function w.r.t. βi,

F = 1
2�s̄i +Uiβi − vi�

2 + ψ
2 β

T
i Λ

−1
i βi, (14)

where {s̄i,Ui} are the parameters of the shape variation model for

importance MPi , and Λi ∈ R
3×3 is a diagonal matrix containing

the corresponding eigenvalues. The first term in (14) encourages
the new shape to be close to the current shape, while the second
term is a regularization term weighted by ψ (empirically set to 0.5).
The optimal shape parameter β̂i is obtained by minimizing (14):

β̂i = (I + ψΛ−1)−1UT
i (vi − s̄i). (15)

We then clamp β̂i using (2), and recover the new shape of the i-th
panel with (1). Finally, the new V is obtained using the new ge-
ometries of all panels. For a vertex shared by more than one panel,
its coordinates are computed as the average of all corresponding
vertices. To ensure the validity of the resulting layout mesh, we
further impose the boundary and collinearity constraints by directly
manipulating V, as described earlier.

Interactive Refinement. The computational efficiency of our lay-
out optimization enables us to support interactive refinement of the
final layout. In particular, the user can edit specific artworks by
translating or scaling them in the resulting layout. With the ma-
nipulated artworks fixed, our approach will optimize the remaining
artworks and layout mesh, and immediately present the updated re-
sult to the user.

4.4 Final Layout Generation

The final layout is rendered from {T ,V} as follows. To create
white space separating adjacent panels, each panel geometry is
shrunk inward, by translating each edge along its normal direction
by a certain distance d. In our implementation, we set the hori-
zontal and vertical spacing to 10 and 5, respectively. Next, each
artwork is transformed using Ti, and clipped against its correspond-
ing panel. Since our optimizer maximizes the fitness between the
image geometry and corresponding panel geometry, this clipping
should keep important regions of each artwork within the panel,
while discarding trivial regions that fall outside.

Fourth Wall Break. The “fourth wall break” effect, where a char-
acter breaks the boundaries of its panel and leaks into the neighbor-
ing space, is often exploited by professional artists to augment the
impact of the contents [McCloud 2006]. To achieve this effect, we
extract the foreground object using an interactive image segmenta-
tion technique [Chen et al. 2012], which takes as input a box around
the foreground object. We use the same ROI selected by the user
in the constrained UI as the box input. The extracted foreground
object is then composed into the final layout. The rightmost layout
in Figure 1 and the top row in Figure 10 demonstrate this effect.

Generating Multiple Suggestions. Inspired by [Merrell et al.
2011], multiple optimized layouts are presented to the user, allow-
ing them to easily explore different layout configurations. To en-
able this functionality, we rank all the initial layout samples by their
MAP scores, and remove duplicates by comparing the splitting con-
figurations, resulting in a diversified list of candidate layouts. The
layout optimization is applied to the highest-ranking layouts, which
are then presented to the user for interactive refinement.

5 Results and Evaluation

We have implemented our manga layout algorithm as a software
tool, and run it on a PC with an Intel i7 3.1GHz CPU and 6GB
RAM. On average, the initial layouts are generated in ∼3 seconds,
and our alternating optimizer converges in ∼1 second for a single
layout. The top-5 ranked initial layouts are further optimized to
form the suggestions presented in our tool. The reading order of all
the layouts presented in this paper is from left to right and then top
to bottom, unless noted otherwise.



5.1 Layout Results for “Fairy Tail” Manga Series

We first present the layout results when the style models are trained
using the “Fairy tail” manga series, which is representative of re-
cently published manga. Figure 1 shows several layouts generated
by our tool using the “Fairy tail” style. The resulting layouts faith-
fully respect the user-specified semantics of each artwork. More
important artworks are properly magnified, while less important
ones are smaller. The clear size contrast between panels of different
importances directs the reader’s attention to semantically important
artworks. Semantically related panels identified by the user (e.g.,
the rightmost example) are arranged along a straight line and oc-
cupy the entire row, thereby easing the reader’s effort to mentally
regard them as a whole. Moreover, varying layout structures as well
as irregular panel shapes further improve the visual appeal of the
layouts. Finally, interesting contents in each artwork are also well
preserved. These layouts illustrate that our approach can properly
model and balance the important features in manga layout.

5.2 Layout Results for Other Manga Series

To demonstrate the generality of our approach, we have also trained
the style models on another manga series, “Detective Conan”. The
top row of Figure 10 presents two examples with the style of “De-
tective Conan”. In contrast to “Fairy Tail”, the “Detective Conan”
layouts more often exploits a local layout pattern consisting of three
panels spanning one row (e.g., the last three panels in the right
example), where one large panel in the first column is followed
by two smaller panels in the second column. Furthermore, we
compared the synthesized results with existing “Detective Conan”
manga pages. The comparisons are presented in Figure 11. They
show that, given a reasonable semantic specification, our approach
can synthesize layouts that are functionally and visually similar to
existing ones. Finally, Our approach can also handle the style of
traditional Western comics (see bottom row of Figure 10).

5.3 User Study

To objectively evaluate the effectiveness of our manga layout algo-
rithm, we have conducted a user study with 10 participants recruited
from the computer science department at a local university. All par-
ticipants occasionally read manga, but do not have any experience
in creating manga. The input artworks are taken from four popular
movie trailers: “Twilight: New Moon”, “Avatar”, “Madagascar”,
and “Iron Man 2”. For each trailer, we manually extracted seman-
tically important keyframes, and sequentially arranged the frames
to constitute meaningful events. An average of 19 frames were se-
lected from each movie trailer. For each trailer, the artworks were
partitioned into several contiguous sets with sizes varying from 5 to
8 frames, forming an average of 3 sets per trailer. The artworks in
one set will be arranged on one page. Finally, we assigned each art-
work a score from 1 to 3, indicating its importance. For our study,
we have trained our approach on “Fairy Tail”.

Procedure. Each participant was asked to do the layouts in four
sessions, one for each trailer. In each session, the input artworks
were arranged by either a manual tool, which is similar to the
commercially-available MangaStudio, or our automatic tool. Us-
ing the manual tool, the participants needed to first manually split
the page into a desired number of the panels by drawing separat-
ing lines, and then manipulate each artwork to place the interesting
contents into its panel. Our tool is employed every other session,
and is used for the first session by every other user. To ensure a fair
evaluation, we disabled our “fourth wall break” effect because the
manual tool did not naturally support such functionality. Before the
study, all the participants were given a short tutorial on each tool
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Figure 12: Overall evaluation results. The vertical axis is the per-
centage of the votes aggregated across four sessions. The data sug-
gest that the evaluators consistently prefer the results produced by
our tool in terms of the three aspects. For all three aspects, such
preference is statistically significant (p < 0.05), in accordance with
chi-squared test (2 df, α = 0.05).

and a five-minute warm-up exercise using both tools. We also in-
structed the participants to allocate larger panels for more important
artworks when using the manual tool. In total, 40 sets of layouts
were generated by the participants. For each session, 5 sets were
produced via the manual tool and another 5 sets were produced by
our tool.

Timing and Usability. On average, the participants spent 1.36 min-
utes per layout using our automatic tool. In contrast, the partic-
ipants were 3 times slower using the manual tool, with an aver-
age of 4.09 minutes per layout. During the experiment, we noticed
that, when using the manual tool, all participants had a difficult
time to determine a proper layout structure; they relied on a trial-
and-error loop to achieve the desired layout, which was quite time-
consuming. In contrast, our tool only required the users to specify
simple semantic information, and the layout results could be easily
tweaked with real-time feedback. The simplicity of our interface
and quality of the resulting layouts greatly reduced the time and
effort to create the manga layouts.

Evaluation. The layouts generated were evaluated through pair-
wise comparison by a different set of 10 participants who usually
read manga and did not participate in the layout task. For each ses-
sion, layout sets created by the manual tool were paired with those
created by our tool, resulting in 100 pairs (4×5×5). The pairs were
evenly distributed among the evaluators. For each pair, the two sets
of layouts were displayed side-by-side on a computer screen in ran-
dom order, and the evaluators were asked to assess the quality of
the layouts in terms of the following three aspects:

• functionality – whether the layouts respect the semantics of
the input artworks, deliver semantically important contents,
and clearly convey understandable events.

• visual appeal – whether the layouts are visually pleasing.

• style – whether the overall impression of the layouts are simi-
lar to layouts in manga books familiar to the participants.

The evaluators indicated their preference by choosing among three
options: “left is better”, “the right is better”, “both are the same”.
The evaluation results are shown in Figure 12. Perceptual similarity
to artist-made manga layouts (i.e., style) can be quite subjective,
and is influenced by personal tastes and experiences. However, it is
interesting to note that the layouts by our tool are rated significantly
higher in all three aspects evaluated. This positively confirms that
our approach can reproduce the styles of professional manga layout,
which is recognized and appreciated by the evaluators.
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Figure 10: The layouts generated by our approach based on styles learned from two manga series, “Fairy Tail” and “Detective Conan”,
and a comic strip, “Superman”. Top row: input artworks (“Daffy: To Duck or Not to Duck”(1943) in the public domain) are arranged using
two different manga styles. Bottom row: input artworks (“Superman”(1942) in the public domain) are arranged using one comic style and
two manga styles. Note that in the bottom row, despite the regular panel shapes, the layout with the “Detective Conan” style exhibits a more
complex layout pattern with the first panel spanning two rows, which contrasts with the layout using the “Superman” style.

6 Conclusion and Discussion

We have presented a data-rich approach for automatic generation
of stylistic manga layouts. We propose several models for repre-
senting the unique styles of manga layout, which can be learned
from existing manga pages. Integrating the learned style models
with a generative probabilistic framework and an energy optimiza-
tion scheme enables our approach to rapidly produce professional-
looking manga layouts that are both functionally correct and visu-
ally pleasing. This is confirmed by our user study. Generating the
layouts with various styles learned from different manga series also
demonstrates the generality of our approach.

Our approach is subject to several limitations. First, since this work
is the first attempt to computationally reproduce layout styles of
manga, we acknowledge that the proposed style models may not be
complete enough to handle the styles of all types of manga, espe-
cially those with extremely expressive layouts. For example, shoujo
manga contains nested panels and other layout structures, which
cannot be represented by recursive splitting. Future work will ex-
plore more style models and incorporate them into our framework,
which would increase the expressiveness and generality of our ap-
proach. Second, our approach currently relies on the user to decide
the number of the panels per page. This may be cumbersome and
labor-intensive, especially when there are hundreds of panels to be
processed. How to automatically partition a sequence of artworks
into pages according to high-level user specifications, such as story
pacing, is another interesting and challenging problem that requires
further exploration. Furthermore, it would be interesting to inves-
tigate how the pacing of the story influences layout design within
individual pages or across several pages.

Finally, we envision our technique as a building block in a complete

system that is able to guide novices through the essential steps of
manga production, such as sketching, inking, layout, ballooning,
and screening, to produce professional-looking manga. We believe
that such a system would increase the accessibility of manga cre-
ation, and enable more people to enjoy the fun brought by manga.
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