
Pacific Graphics 2015
N. J. Mitra, J. Stam, and K. Xu
(Guest Editors)

Volume 34 (2015), Number 7

FlexyFont: Learning Transferring Rules
for Flexible Typeface Synthesis

H. Q. Phan1 and H. Fu1 and A. B. Chan2

1School of Creative Media, City University of Hong Kong
2Department of Computer Science, City University of Hong Kong

Abstract

Maintaining consistent styles across glyphs is an arduous task in typeface design. In this work we introduce Flexy-
Font, a flexible tool for synthesizing a complete typeface that has a consistent style with a given small set of glyphs.
Motivated by a key fact that typeface designers often maintain a library of glyph parts to achieve a consistent type-
face, we intend to learn part consistency between glyphs of different characters across typefaces. We take a part
assembling approach by firstly decomposing the given glyphs into semantic parts and then assembling them ac-
cording to learned sets of transferring rules to reconstruct the missing glyphs. To maintain style consistency, we
represent the style of a font as a vector of pairwise part similarities. By learning a distribution over these feature
vectors, we are able to predict the style of a novel typeface given only a few examples. We utilize a popular ma-
chine learning method as well as retrieval-based methods to quantitatively assess the performance of our feature
vector, resulting in favorable results. We also present an intuitive interface that allows users to interactively create
novel typefaces with ease. The synthesized fonts can be directly used in real-world design.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Typeface design is an initial stage in font design, where indi-
vidual glyphs are created and put together under a typeface.
It requires dedicated skills and is still a laborious process
even for professionals. One of the difficulties is to main-
tain consistent styles across glyphs. Because the number
of glyphs is large even for a minimalist alphabetic system
like Latin alphabet, which is the focus of our work, it often
takes weeks to design a complete consistent typeface from
scratch. During the design process, designers are encouraged
to maintain a library of glyph parts, which can be reused to
achieve consistency within a typeface and between typefaces
in the same family [Bos12]. See an example of such parts in
Fig. 1. Hence, a glyph can be naturally represented as a com-
position of a small number of properly arranged parts.

Recently, the interest in font research has increased
in computer graphics communities. A common approach
is to perform outline interpolation from exemplar glyphs
of the same characters. For example, Suveeranont and
Igarashi [SI10] automatically generate complete typefaces
from a single example by computing blending weights for
interpolating between glyphs of the same characters in an

Figure 1: Maintaining a library of parts helps keep the con-
sistency in typefaces [Bos12].

existing font library. The “blending weights” can be consid-
ered as a representation of typographic style. Similarly, the
work of [CK14] achieves outline interpolation by embedding
a few input glyphs, which should be similar to the fonts in
the dataset, into a low-dimensional latent space learnt from
the corresponding glyph outlines of the same characters and
then projecting back to the original space to get a complete
typeface. The assumption that a glyph is an average of other
same-character glyphs is restrictive, and does not allow for
glyph styles that are very different from those present in the
font library. A natural limitation of those approaches is that

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Figure 2: Varieties of font styles, which are characterized by
the repetitions of caps (Top) and/or brush types (Bottom).

they do not take into account the style intended by the de-
signer, e.g., by providing several designed glyphs.

We observed that the repetitive and consistent usage of
parts among glyphs, especially for decorative fonts that do
not conform to a standard typographical rule, can be consid-
ered as the “style” for a specific typeface. For example, Fig.
2 shows varieties of font styles, which are mainly charac-
terized by the repetitive use of parts in different characters.
Fig. 2 (Top) shows the “serif” styles while the bottom part
exhibits the “stroke” styles. Note the differences in part rep-
etition in each font. For instance, the “Playball” and “Super-
mercado” fonts only have serifs on top of the glyphs while
“Cherry Swash” has them on both top and bottom. Standard
fonts like “Times” have the same type of serif across glyphs,
while “Cherry Swash” has 2 types of serifs, one for the left
side and the other for the right side. Similarly, there are dif-
ferences in stroke types for the fonts at the bottom of Fig.
2. It is important to note that, “styles” or part repetitions
are sometimes mixed together. For instance, the “Limelight”
stroke style is a mix of “Cinzel Deco.” and “Geostar Fill”.
These observations suggest that using a fixed set of corre-
spondences between parts and glyphs is insufficient to rep-
resent the wide variety of styles of decorative fonts.

In this paper we propose a framework that, given one
or more outline-based glyphs of several characters as in-
put, produces a complete typeface which bears a similar
style to the inputs, as illustrated in Fig. 3. Unlike previous
interpolation-based approaches [SI10, CK14], our method
takes a part assembly approach by first decomposing the in-
put glyphs into semantic parts and then inferring the trans-
ferring rules for the complete typeface from these parts. The
missing glyphs are then reconstructed by assembling the
parts according to the predicted rules. The advantage of our
approach is that the style given by the designer is well pre-
served while the transferring rules help keep consistency in
style across the synthesized typeface.

Specifically, we represent typographic style as the simi-
larities between glyph parts of different characters in a type-
face. This problem has not been studied before. To this end,
we first decompose input glyphs into semantic parts (Fig. 3
(left)). A glyph part is represented as a brush stroke that fol-
lows a certain skeleton. The brush stroke itself has a brush
type and two optional caps at the terminals. Thus, the word
“style” can refer to the brush, cap or skeleton style. This rep-

Figure 3: Given a few input glyphs, our part-assembly ap-
proach infers transferring rules using a pre-learned statisti-
cal model from a font database, and then synthesizes missing
glyphs by assembling the parts of the given input glyphs us-
ing the inferred transferring rules.

resentation makes it convenient to reuse the given parts for
reconstructing the missing glyphs. Next, the pairwise simi-
larities between all parts of a font are computed and stored
in a single vector, which we call the Part-Similarity Vec-
tor (PSV). All the PSVs extracted from a font dataset are
used for learning and interpolating typographic styles. We
use a popular distribution modelling method called Bayesian
Gaussian Process Latent Variable Model (BGPLVM) as well
as simple retrieval based methods to assess the performance
of our font style representation. Additionally, we also design
an intuitive user interface for font design that allows a de-
signer to interactively incrementally design a complete type-
face from scratch. Both qualitative and quantitative results
are shown in Sections 5 and 6, respectively.

Terminology In the following sections we refer to glyph as
a concrete design of a character. One character may have
multiple glyphs in different fonts. A typeface is a collection
of glyphs which usually has a consistent look and feel. A
font is a medium to store typefaces in computer. We use font
and typeface interchangeably in this paper. We also use the
word stroke to refer to a polygon created by drawing a brush
along a trajectory. A stroke may have caps which reside at
the two terminals of the trajectory. Part is used to refer to
both stroke and cap.

2. Related Work

Font Synthesis. Many efforts have been put into designing
methods for font synthesization. Early works utilized para-
metric approaches which parameterize glyphs with a fixed
number of parameters, thus allowing users to create vari-
ations of an existing font by changing these parameters.
Donald Knuth was the first to introduce a working para-
metric font system and is still being used in modern font
design [Knu79]. Shamir and Rappoport [SR98] proposed
a higher-level font parametrization method. Well-defined
glyph parts and their constraints are taken into account, al-
lowing users to change the appearances of individual parts.
The definition of parts in this work is similar to ours in

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Figure 4: Overview of our technique.

the sense that glyph parts have semantic interpretation. In
contrast, the work of Hu and Hersch [HH01] focuses more
on shape-based parts instead of semantic parts. Parametric
methods are useful to create shape variations of an existing
font. However, it is difficult to use them for typeface design
from scratch.

The idea of interpolating parameters from examples was
initially introduced by Knuth [Knu79] and later extended to
Chinese characters by Xu and colleagues [XLCP05]. More
discussions on Knuth’s works on font systems can be found
in Hofstadter’s book [Hof85]. Lau [Lau09] introduced a
parametric model in which parameters are also computed
from examples. However, the learning method and the pa-
rameters are rigid and allow limited ways of customization
like stroke weight or glyph size. In contrast, our model is
designed to be flexible, allowing generation of novel typo-
graphic styles by mixing the learned transferring styles in-
stead of the examples.

Suveeranont and Igarashi [SI10] extended Xu et al.’s
method [XLCP05] to automatically generate Latin glyphs
from a single glyph of a character (e.g., ‘A’). The input glyph
is used to compute mixing weights, which tell how much a
certain font in the database contributes to the given glyph.
The weights are then used to synthesize the glyphs of other
characters (e.g., ‘B’, ‘C’) by interpolating between the out-
lines of the same characters in different database fonts. Their
objective is very similar to ours. However, we take a very dif-
ferent approach, including glyph representation and synthe-
sization methods. While their implementation also involves
parts, such parts are mainly used as intermediate represen-
tation for glyph interpolation, instead of part assembly in
our approach. A natural limitation of outline-based interpo-
lation methods is that the quality of synthesized results de-
pends heavily on the font database, since their synthesized
results are essentially averaged database typefaces. In an ex-
treme case where there is only one typeface in the database,
interpolation-based methods could not produce any varia-
tion, while a part-assembly approach is still able to produce
different results with respect to different input glyphs even
using a fixed set of transferring rules extracted from the sin-
gle database typeface. Fig. 10 (top) demonstrates this idea.

Campbell and Kautz [CK14] recently introduced a new
outline-based interpolation method for font synthesis by
learning a low-dimensional glyph outline manifold from
data. This manifold is useful for font exploration and sam-
pling of smooth in-between glyphs. However, the sampled
fonts are not actually “new” fonts, since their approach has
very limited ability to extrapolate new fonts from this man-
ifold, as admitted by the authors. In addition, the learning
method depends heavily on point-wise correspondences be-
tween glyphs of the same characters in different fonts, mak-
ing their interpolation-based method only work with stan-
dard fonts. Our part assembly method, however, is designed
to work with exotic fonts and is able to construct com-
pletely novel-looking fonts respecting the user-designed in-
put glyphs. O’Donovan et al. [OLAH14] introduced an in-
teresting interface for font browsing and retrieval.

Stroke Extraction and Stylization. Another field related to
our work is stroke extraction and stylization. Zitnick [Zit13]
tackled the task of handwriting beautification by firstly
decomposing and matching strokes across glyphs, and
then obtaining smooth strokes by averaging corresponding
strokes (i.e., an interpolation-based approach). Their match-
ing method based on curvature is similar to our skeleton seg-
mentation part in spirit. However, our method does not use
any temporal information, and works with typefaces rather
than handwriting.

A more generic work of [LYFD12] introduced an efficient
way to stylize users’ strokes with similar strokes retrieved
from a high quality database. Input strokes are also broken
into smaller parts which match with strokes in the database.
After matching, both strokes and trajectories can be adjusted
to have better appearance. The idea of querying and match-
ing strokes is a common point with our work. Nevertheless,
simply taking strokes from database does not work for the
case of typeface synthesis, since stroke composition in our
problem must follow certain typographic rules. Besides, our
focus is on semi-professional designers who have their own
ideas but have little experience of typeface design. The idea
of part assembly has been explored extensively for 3D mod-
eling (e.g., [KLM∗13, KCKK12]). Our method can be cate-
gorized into this approach, though we only consider the spe-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Figure 5: Stroke-based glyph representation.

cific domain of font synthesis. Ma and colleagues [MHS∗14]
introduced an interesting approach to 3D style transfer by
analogizing shapes from source to target.

3. System Overview

Our method takes one or more vector-based glyph outlines
as input, which implicitly define a designer’s intended style.
It then produces a complete typeface, which bears the same
style as the input. To achieve this, we first decompose the
input glyphs into semantic parts, and then assemble them
according to some “copying rules” predicted from the input.
Figure 4 gives an overview of our framework, which is di-
vided into three steps:

1. Pre-processing: The goal of the pre-processing step is
to transform an outline-based glyph into a representa-
tion suitable for font synthesis and feature extraction. The
pre-processing step is applied to both the fonts used for
training, as well as the user’s input glyphs for synthesiza-
tion. For each glyph, the outline-based representation is
converted to simple polygons. Next, the glyphs are de-
composed into semantic parts. The glyphs are then rep-
resented as stroke collection, which contains “brushes”,
“caps” and “skeletons”.

2. Learning and Inference: The purpose of the learning
step is to capture the glyph composition rules and to pre-
dict new transferring rules for the typeface to be synthe-
sized. For each font in the dataset, part-similarity vectors
(PSVs) for “brush”, “cap” and “skeleton” are constructed
to represent the style of the font. The distribution of PSVs
can then be learned using generative probabilistic mod-
els, such as LDA, GPLVM, or GMM. Fig. 6 gives an
overview of our style learning process. The goal of the
inference step is to correctly infer the style for the entire
typeface. Partially-observed PSVs are extracted from the
input glyphs, and the missing elements of the vectors are
inferred using the learned probabilistic model.

3. Synthesization: Given the complete PSVs, the missing
glyphs are synthesized by picking appropriate elements
from the vectors, and then assembling the parts of the
input glyphs accordingly. The synthesization step is car-
ried out heuristically by first copying the thickness values
along a skeleton from the source to the destination, and
then arranging the “caps” accordingly. The skeleton itself
can be obtained through retrieval and/or template defor-
mation.

4. Methodology

Now we give the details of each step.

4.1. Pre-processing

Stroke-based Glyph Representation. To prepare for the
synthesization and learning steps, we first represent glyphs
as compositions of brush strokes painted along some skele-
tons. This type of stroke-based glyph representation (SBR)
has been used to represent Chinese logograms as they
are natural compositions of well defined strokes [XLCP05,
JPF06]. Although Latin characters were originally com-
posed by brush strokes, the development of printing tech-
nologies resulted in typefaces in which it is more difficult to
identify the strokes. Bold typefaces, for instance, have rela-
tively vague stroke borders. However, SBR is very compact
and has great flexibility, which suits well to our purpose. We
adopt a stroke-based representation similar to stylized stroke
fonts [JPF06]. The main difference is we use a pair of para-
metric curves to represent the two sides of a brush, thus af-
fording richer brush shapes. Our SBR consists of brushes
and caps. As illustrated in Fig. 5 for a simple glyph (‘I’), a
brush defines the shape of a stroke by specifying the thick-
ness along its skeleton, while a cap is a rigid polygon, which
is stationed at a stroke’s terminals.

As most of the available fonts are outline-based [JPF06],
we need to convert a glyph from an outline-based represen-
tation to SBR. The stroke extraction process is performed
once over the training fonts and is used again at test time
when novel input glyphs are given. We first convert glyphs
to polygons and extract curve-skeletons of the polygons by
using a skeletonization technique [AAAG96]. We (for the
database fonts) or a user (for the input glyphs) then manu-
ally annotates the two terminals of the body (“trunk”) of each
desired stroke in each glyph, by clicking on two vertices on
the extracted curve-skeleton (blue dotted line in Fig.5). Each
pair of such terminals determines a path and thus the trajec-
tory/skeleton of a stroke. Given each trajectory path, we use
a simple cross-section heuristic to find the associated ver-
tices on the glyph outline and use these vertices to define the
body of a stroke. Once all the stroke trunks are determined,
we identify the remaining portions of the curve-skeleton as
caps.

Brush Reconstruction. The motivation of using brushes to
synthesize glyphs is that they are flexible and can be eas-
ily stretched to fit different skeletons. From each extracted
trunk segment, we reconstruct a brush by estimating a pair
of thickness functions (C1(t),C2(t)) (Fig.5) that fit the thick-
ness values along each side of a skeletal path. In the learning
step, this brush representation provides a convenient way to
extract features, such as thickness and curvature.

4.2. Learning and Inference

The objective of the learning step is to model the part simi-
larities, which imply typographic styles across typefaces. As

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Figure 6: Overview of our learning stage.

representing typographic styles with fixed sets of rules is in-
sufficient, we therefore seek for data-driven methods that al-
low style mixing and inference. In this section, we first intro-
duce our part-similarity vector (PSV), which implicitly en-
codes the rules for reconstructing a complete typeface from
its parts. The parts are compared using appropriate similar-
ity and distance metrics, and collected into the PSVs. We
then learn a distribution over PSVs using Bayesian Gaussian
Process Latent Variable Model (BGPLVM). This distribu-
tion can be finally used to infer a compete PSV (a novel set
of styles) from the partial PSV calculated from the user’s
input glyphs. Fig. 6 gives an overview of this step.

Intermediate Feature Vectors and Distance Metrics. Be-
fore we can proceed to extract the PSVs, we need to intro-
duce a set of intermediate features, which are used for com-
paring brushes, skeletons and caps. The similarities between
these elements are used to establish the PSVs and to quanti-
tatively evaluate our model (Sec. 6). For brushes, we sample
each of the parametric curves C1,C2 at {ti} to get the cur-
vature and thickness pairs {(ci,di)}, where ci is the curva-
ture and di is the thickness. Similarly, we use the curvatures
({ci}) of the trajectory paired with the angular differences
(denoted as {di} as well for simplicity) between the tangents
at a point on the trajectory and the horizontal axis to rep-
resent skeletons. We then measure the similarities between
these pairs by using a weighted Euclidean distance metric,

d = ∑
i
(wc|ci− c′i |2 +wd |di−d′i |2)1/2,

where wc,wd are the weights controlling the contributions
for curvature versus thickness (for brushes) or curvature ver-
sus angle (for skeletons). For stroke outlines, we used wd = 1
for thickness and wc = 0.1 for curvature. For skeletons, we
used wd = 1 for angle and wc = 0.2 for curvature. It is worth
mentioning that the curvature values were mapped to the
range [−1,1] prior to the similarity measurement. For caps,
their similarities are computed directly on the outline points
using a modified Hausdorff distance (MHD) [DJ94] and then
also normalized. Specifically, the MHD is defined as follow:

max(d(X ,Y),d(Y,X)),

where d(X ,Y) = 1
|X| ∑xi∈X d(xi,Y) with d(xi,Y) =

miny j∈Y ‖xi − y j‖, and xi and y j are the locations of the
sampled outline points.

Part-Similarity Vector. A part-similarity vector (PSV)
comprises all pairwise similarities between all the parts of
all the glyphs in a typeface. Consider a typeface consisting
of N glyphs where each glyph has ni parts. The total number
of parts is Np = ∑

N
i=1 ni. The PSV is defined as[

d(p0, p1), . . . ,d(pi, p j), . . . ,d(pNp−1 , pNp)
]
,

where (pi, p j) is a unique unordered pair of glyph parts and
d(·) is a distance. The details about the feature vectors and
the distances are mentioned previously. The total length of
a PSV is Np ∗ (Np− 1)/2. We calculate a separate PSV for
brush, cap, and skeleton, and hence the style of each font is
represented by a set of 3 PSVs. Each element in the PSV is
considered as a possible “copying rule” from pi to p j and
vice versa. When the parts’ orientation (e.g. the order of a
brush’s thickness values) is taken into account, we also add
the distances between the flipped versions of the parts into
the feature vector.

BGPLVM. In our work, the PSV distributions are learned
using Bayesian Gaussian Process Latent Variable Model
(BGPLVM), a method that has shown great performance
in manifold learning as well as data completion. A mix-
ture density model with latent variables (e.g., BGPLVM) as-
sumes that the data is generated from multiple components,
with each component explaining a part of the observations.
This suits our purpose well, since we want to model different
design styles hidden in each typeface. Moreover, we prefer
a generative model over discriminative ones since we would
like to draw a set of novel styles for synthesization.

BGPLVM [TL10] is a variant of Gaussian Process La-
tent Variable Model (GPLVM) [Law04] that uses variational
methods for model learning and inference. BGPLVM and
GPLVM are dimensionality reduction methods with several
advantages, including the ability to model nonlinear map-
pings from latent to observed space using kernels, and ro-
bustness on small datasets with large dimensionality due to
its usage of Gaussian Processes. The kernel used in our im-
plementation is the Radial Basis Function (RBF) kernel. To
perform style prediction with BGPLVM, an incomplete PSV
is first calculated from the input glyphs by comparing the
parts extracted from them (Section 4.1). Next, we search the
low-dimensional latent space induced by BGPLVM for the
latent point that yields the highest likelihood of the incom-
plete PSV. To speed up the search process for the optimal

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

latent point, we initialize the search using the latent point of
the most similar complete PSV from the dataset. Finally, the
optimal latent point is projected back to the PSV space to
obtain the full PSV. The above steps are performed indepen-
dently for brush, cap and skeleton.

4.3. Synthesization

After the inference step, we obtain 3 complete PSVs (for
brush, cap and skeleton) which tell how much a part is sim-
ilar to another in the final typeface. The transferring rule for
a part is extracted from these PSVs by picking the optimal
vector element that is related to this part. Formally, to recon-
struct part pi, we select an element that minimizes:

argmin
j

xi, j,

where xi, j is an element of a PSV, which measures the sim-
ilarity between parts pi and p j. To reconstruct a glyph, we
first need to obtain the transferring rules for skeleton, brush
and cap separately, and then transfer the parts accordingly.
The details of the transferring algorithms are given below.

Skeleton Retrieval and Deformation. Skeletons tend to
be universal across typefaces for individual glyphs (as the
skeleton represents the semantic meaning of the glyph).
Thus we could simply retrieve from the database a set of
skeletons similar to the skeletons of the input glyphs. The
score function for skeleton retrieval is defined as follows:

argmin
f∈F

N

∑
i=1

mind(gi,g
f
i),

where F is a set of fonts in the database, N is the number of
input glyphs, gi is the feature vector (concatenated locations
of outline vertices) of the i-th input glyph, and g f

i is the fea-
ture vector of the corresponding glyph in the database. The
minimum distance d is taken over rigid transformations of
the glyph, and in our implementation we use a standard Itera-
tive Closest Point (ICP) method [RL01] with d(·) as the sum
of distances of corresponding points found by ICP (Fig. 7
(bottom)). Since the retrieved skeletons do not always match
well with the input skeletons, we take a further step and de-
form individual parts of the template skeletons. Given the
transferring rules extracted from the PSV for skeleton, we
first calculate the vectors between the corresponding points
on the template part and the input part, and then add the same
vectors to a relevant template part according to the rules. The
deformed skeleton part is then smoothed by fitting a smooth
curve over it if necessary.

Stroke Body Synthesization. As we represent a brush as
a pair of thickness functions (C1(t),C2(t)), to synthesize a
stroke body given a skeleton S(t) we reconstruct the out-
line by sampling thickness values from C1(t) and C2(t).
The coordinates of a pair of points on the outline at t = ti
are calculated as pti = n(S(ti))×C1(ti) + S(ti) and p′ti =
−n(S(ti))×C2(ti)+ S(ti), where n(S(ti)) is the unit normal
vector at S(ti).

Figure 7: ICP fitting is used to transform the given cap or
skeleton to the reference one.

Figure 8: Our part merging method. (a) simple case, where
we extend the body and take the intersection with the cap.
(b) a case when simple extension (dotted black lines) and
intersection do not work. We use convex hull to fill in the
gap.

Cap Synthesization. To synthesize the cap, we transform
the cap part outline to match the corresponding skeletal part
of the new glyph. To do this, as illustrated in Fig. 7 (top),
we rely on ICP to match path Pi from the source skeleton
to path Pj in the destination skeleton. We then transform the
source outline with the transformation matrix A returned by
the ICP algorithm. Although this method seems naive, it can
produce very reasonable results. Another solution might be
to encode the direction of transferring into the PSV as well
by adding the similarities of the flipped versions of a part. In
our system, this approach is implemented.

Merging and Smoothing Parts. To smoothly merge the
parts together, we first find the joints between parts. The
terminals of a part are assigned “head” or “tail” labels fol-
lowing the predefined rules such as left-to-right and top-
to-down. We also use “mid” to refer to a point in between
“head” and “tail”. Given 2 parts, we define 5 types of joints:
head-head (HH), head-tail (HT), tail-tail (TT), head-mid
(HM) and tail-mid (TM). For {HH, TT, HT} we extend the
parts along the tangent vector at the ending vertices and take
the intersection. Note that only joints between two stroke
bodies can have HH and TT labels. For HM and TM cases,
we only extend the head/tail part before taking the intersec-
tion. While taking a simple intersection between extended
parts works in easy cases, it can fail in difficult cases like
(b) in Fig. 8, where parts’ sizes are too different. We address
this by finding the intersection first, and then calculating the
convex hull of the points on the contour of the intersection
and the points near the merging areas (red line in the first
figure). Additional local smoothing operations can be car-
ried out afterwards to remove small artifacts near the joints.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Char Q W E R T Y U I O P A S D F G H J K L Z X C V B N M

All 4 9 9 6 5 6 4 3 2 4 6 3 4 7 5 7 3 7 5 7 7 3 5 5 7 9

Body 3 4 4 3 2 3 2 1 2 2 3 1 2 3 2 3 1 3 2 3 3 1 2 3 3 4

Char q w e r t y u i o p a s d f g h j k l z x c v b n m

All 4 9 4 5 4 6 5 4 2 4 4 3 4 4 5 5 4 7 3 7 7 3 5 4 5 7

Body 2 4 3 2 2 3 2 1 2 2 2 1 2 2 4 2 1 3 1 3 3 1 2 2 2 3

Table 1: Number of parts for each glyph. “All” and “Body”
are the numbers of parts (bodies plus caps) and bodies only,
respectively.

5. Qualitative Results

In the experiments, we focused on upper-case characters of
Latin characters. Results on lower-case characters were also
shown for reference. The number of parts for each character
is summarized in Table 1. For special cases like “O” and
“Q”, we vertically split the main circles into two halves.
Our dataset contains 88 training fonts for upper case and
57 training fonts for lower case selected from a public font
dataset [Goo]. We provided both qualitative (this section)
and quantitative evaluations (Sec. 6).

We evaluated our method qualitatively with 3 experi-
ments: typeface reconstruction (Sec. 5.2), novel typeface
synthesization (Sec. 5.3) and edit propagation (Sec. 5.4). In
the first test, we visually examined how well our method can
reconstruct an existing font. The results are shown along
with ground truth typeface for comparison. In the second
test, we synthesized novel typefaces from user-designed in-
put glyphs. In the third test, we demonstrated the editing
capability of our system. To compare with the method of
[SI10], we show our outputs given the input taken from the
“failed case” in their paper. Additionally, we demonstrate
how novel transferring rules can be drawn from the part-
similarity distribution and how a fixed rule did not fit to all
cases.

5.1. Learning versus Retrieval

We compared our novel transferring rules produced by BG-
PLVM with two methods that simply retrieve the rules from
the most similar fonts. One retrieval based method used our
PSV feature while the other used intermediate features de-
tailed in Section 4.2 for retrieving similar transferring rules.
The Euclidean distance was used for retrieval. Fig. 9 shows
differences in transferring rules produced by 3 different
methods, namely BGPLVM with PSV, retrieval with PSV,
and retrieval with intermediate features.The usual thick-and-
thin style was slightly modified in the given glyphs {F, M,
O}. The pink and yellow parts of ‘F’ were thicker than the
purple part. Similarly, the thickness of parts in ‘M’ was
changed. Retrieval with intermediate features tended to pro-
duce rather “random” rules of transferring. This is because
it only matches the appearances of fonts. In this case, a font
with single brush type was obtained for reference, resulting
in vague transferring rules. In contrast, the rules inferred by
BGPLVM exhibited mixtures of different styles. The style of

‘F’ was successfully transferred to ‘E’, ‘H’, and ‘K’, while
the style of ‘M’ appeared in ‘N’ and ‘W’. The rules retrieved
with PSV gave fairly reasonable results as they rely on part-
similarity instead of glyph appearance.

It is interesting to see if a fixed set of rules drawn directly
from a training sample would work on different inputs. Fig.
10 shows such results of using a fixed set of rules, extracted
from a reference font. The given glyphs were {H,C} for the
top figure, {F,M,O} for bottom. Fig. 10 (top) shows varia-
tions of the reference font with different inputs. Notice how
a single set of rules produced very different looking type-
faces. Fig. 10 (bottom) shows two comparisons of fixed rules
versus predicted rules. In the comparison, the bottom part
of ‘M’ was slightly deviated from the standard thick-and-
thin rule. This change was not reflected in ‘N’ and ‘U’ for
the case of fixed rules as these glyphs are out of rhythm
with ‘M’. More seriously, since the reference font only has
straight strokes, the orientations of glyphs were completely
ignored. Thus, the results with fixed rules had rather ran-
dom stroke orientations. In contrast, the learning method
produced correct stroke orientations and nicely transferred
the style of ‘M’ to ‘N’ and ‘U’. Similarly, in the second com-
parison, with the fixed rules the trunks of {B, D, H, I, J, K, L,
R, P} were all transferred from the right-most part of ‘M’,
which made them look inharmonious to the given glyphs.
There was no such problem with our learning method.

5.2. Reconstruction with Ground-truth Skeleton

We show the results of reconstructing fonts from 3 sample
glyphs taken from the original fonts. The skeletons were
both taken from the original fonts and the retrieved fonts.
The purpose is to visually test whether our method can cor-
rectly recover the styles associated with a font given only
a few example glpyhs. The two fonts in the experiment are
“Adamina” and “CherrySwash”. In Fig. 11, rows 1 and 7
highlighted in orange color are ground-truth fonts. Rows 2, 3
and 8 are the reconstruction results with ground-truth skele-
tons and synthesized outlines; glyphs in pink were those
given to the synthesizer. The glyphs were chosen because
they contain only a small set of strokes. From the results, we
can see that most of the brush strokes were correctly aligned.
For example, the curvy part of {P, R, D, C, G, Q} were trans-
ferred from ‘O’. Because of the correctly predicted trans-
ferring rules, those characters looked almost identical to the
ground-truth. ‘S’ is a special case: while it does not look
similar to ‘O’ or ‘C’ in shape, the underlying brushes are
actually the same. Moreover, the rules of using thick and
thin strokes were predicted quite nicely. For example, {A,
B, E, F, H, K, L, M, N, W, X, Y} are the characters that have
complex composition rules and were correctly reconstructed
from {I, C, V}. The only failed case in row 3 was ‘Z’. How-
ever, ‘Z’ was correct in the case of input {H, V, O} (row 2).
This suggests an interesting feature of our system: given the
newly reconstructed glyphs, users can specify which glyphs

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Figure 9: Visual comparison of three transferring rules obtained by (A) BGPLVM with PSV, (B) retrieval with PSV, and (C)
retrieval with intermediate features. Input glyphs are highlighted with red boxes. Parts bearing the same colors share the same
brushes.

Figure 10: Different outputs and inputs given a fixed set of rules extracted from a reference font “Amiri-Regular”. (Top)
variations given different glyphs of “C” and “H” as inputs. (Bottom) fixed rules versus predicted rules. The input glyphs were
{F, M, O} for both cases. Parts in the same colors were reconstructed with the same brushes or caps.

are good by simply clicking on them. The “good” glyphs are
then put back to the system to re-synthesize the “bad” ones,
which will be demonstrated in Sec. 5.3. In rows 2 and 3, ‘U’
and ‘J’ are failure cases to some extent. Since we did not
provide the system with any similar strokes (the closest one
is the left part of ‘O’), it is impossible to recover the perfect
glyph from these examples. However, since these transfer-
ring rules usually have low probabilities, we can show to
the designer which parts might need their correction. Fig. 12
demonstrates this idea where the confidences of stroke trans-
fers are visualized with a color map.

The caps were also synthesized equally well. Notice that
the top caps from ‘T’ were correctly transferred to {S, Z,
E, F, G} (row 3). One may argue that these rules are fixed
and are available in design books so we do not need learning
to predict. In fact, the result in Line 7 suggests differently.
In “CherrySwash”, a different style compared to row 2 is
observed. The tip of ‘A’ is no longer similar to the bottom of
‘V’. The caps of ‘G’ and ‘S’ are almost invisible while the
left caps of {H, K, M, N} are not the same as the right ones
as in the “Adamina” case. Our inference engine managed

to correctly predict these particular rules with few mistakes
(‘Z’ and ‘X’).

5.3. Reconstruction without Ground-truth Skeleton

Next we test whether a typeface can be reconstructed with-
out ground-truth skeletons. Given the input glyphs, we re-
trieved the skeletons using the method described in Section
4.3. We only performed skeleton transfer when the similar-
ity between two skeleton parts was greater than a threshold.
In Fig. 11, rows 5 and 10 show the synthesization results
with skeletons retrieved from fonts in rows 6 and 11. For
the case of “CherrySwash”, the results look quite similar to
the ground-truth, despite the synthesized ones being slightly
thicker. This is because the sizes of the reference skeletons
were smaller than the real ones. In practice, a user could
manually scale up the reference skeletons, thus reducing the
thickness of the synthesized glyphs. In row 10, although the
reference font (in row 11) looks completely different from
the ground-truth one (in row 7), our method still worked rel-
atively well. Note that the skeletons of ‘C’ and ‘G’ were au-
tomatically deformed according to the examples. More re-
sults for skeleton transfer can be found in Fig. 15.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Adamina

1

2

3

4

5

6

Cherry Swash

7

8

9

10

11

Figure 11: Typeface reconstruction results for fonts “Adamina” and “CherrySwash”. Glyphs in pink are the inputs. (1) and (7)
are the ground-truth fonts. (2), (3) and (8) are synthesized fonts with ground-truth skeletons from (1) and (7), respectively. (4)
and (9) are customized fonts after edit propagation. (5) and (10) are synthesized fonts with retrieved skeletons, from fonts (6)
and (11), respectively.

Figure 12: Transferring probabilities are visualized with
color mapping. The input glyphs were “C” and “H”.

In Fig. 13 we show our synthesization results given a sin-
gle example. The glyph ‘A’ was taken from a failed case of
the method in [SI10]. The first line shows initial synthesiza-
tion results, which were not very good except for the glyphs
{H, O, K, N, U, V, W, X}. As mentioned in the last subsec-
tion, it is possible to put these “good” examples back to the
system to improve the “bad” ones. In this case, the user iden-
tified ‘I’ as a good example. In row 2, we can see significant
improvements over the initial results as the brush orientation
was corrected (small to big in top-down direction). Row 3
was the result of letting a user correct the locations of the
caps of the ‘F’ glyph, resulting in the changes in {C, E, J,
S, T, Z}. This feature did not exist in [SI10] since the ap-
pearance of synthesized glyphs was totally dependant on the
input template glyph in their method.

5.4. Edit Propagation and Use Cases

One advantage of our approach is its editing capability.
While other systems provide very limited ways to customize
a font, editing fonts in our system is very easy and intuitive.
Rows 4 and 9 of Fig. 11 show the results of edit propaga-
tion. In Fig. 11, only 4 parts were modified to result in row
3. The novel glyphs appeared to carry well the spirit of the
input glyphs given by the designer. In Fig. 14 we also show 5
sample designs with the glyphs taken directly from the syn-
thesization results. One interesting feature of our approach
is that it adapts to changes in the inputs to produce the best
possible results. Fig. 15 demonstrates this capability. Since
the entire system works on vectors, one can expect that the
novel glyphs are in high-resolution and ready to use.

5.5. Lower Case

Although we did not show many results for lower-case char-
acters, the framework works equally well on them. Figure 16
shows the synthesization results for the lower case.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Figure 13: Font reconstruction from a single input glyph. First, ‘A’ (Red) was given to the system.(1) Initial results. (2) and (3)
Results were refined by letting the user choose/change the desired glyphs (highlighted in orange). The glyphs affected by the
change in the upper row are shown in Jade blue. (4) The final results after 3 rounds of refinement. (5) Results from [SI10] given
the same input as the case in (1).

Figure 14: Some sample designs that used our generated glyphs. “PACIFIC” was designed with the glyphs in Fig. 10. “GRAPH-
ICS” and “BEST CORN” are from rows 4 and 8 in Fig. 11. “FLY HIGH ABOVE” is from ‘H’ and ‘F’ in the same text.
“SHANGHAI” is from Fig. 13.

Figure 15: Different inputs given different transferring rules. (1st row) the template skeletons along with 2 input glyphs (red
boxes). (2nd row) synthesization results with ‘C’ and ‘H’. (3rd row) synthesization results with ‘C’, ‘H’ and ‘V’. Parts bear the
same colors as input parts are transferred from them.

Figure 16: Lower case typeface reconstruction and edit propagation for font “Alegreya-Regular”. (1st row) ground truth, (2nd
row) reconstruction result using retrieved skeleton, (3rd row) customized version where strokes were made thicker.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Results in accuracy scores
Brush Cap Skeleton

Truth 1698∗ 1862∗ 1718∗

GPLVM-PSV 1591∗ 1471∗ 1668
Retrieval-PSV 1557 1350 1656

Retrieval 1545 1375 1662

Table 2: Quantitative results. Accuracies measured by to-
tal similarities between reconstructed parts and reference
parts (higher is better). * indicates that the result in a cell
was significantly better than the cell below (t-test, p-value <
0.0001).

6. Quantitative Results

To further justify our learning approach, we also conducted
quantitative experiments to measure the performances of
BGPLVM and two other retrieval approaches by compar-
ing the total similarities between the reconstructed parts and
the reference parts, where the latter was chosen according to
some transferring rules, either retrieved or inferred. The re-
trieval methods are mentioned in Sec. 5.1. We also show the
best possible reconstructions by extracting the rules from the
ground-truth part similarities. Each method was repeated 50
times on random training-testing splits with 60% used for
training and 40% used for testing. The initial glyphs were
chosen by taking the top scoring characters from the ground-
truth results. Some best scoring character triplets were {E,
O, M}, {E, O, W}, {E, Q, M}, {E, B, W}. The same sets
of initial glyphs were given to each method in each test. The
average results for each method and pairwise t-test results
were reported below.

Table 2 shows that the learning approach was significantly
better than the retrieval-based approaches for the cases of
Cap and Brush predictions. The scores in the table were cal-
culated by summing over the ground-truth similarities be-
tween the reconstructed parts and reference parts. Higher
values mean better results. The “Truth” results were the best
possible reconstruction scores given the inputs (i.e., the best
possible transferring rules, according to the ground-truth
similarities). The performance of BGPLVM was close to the
best solutions for the Brush and Skeleton cases. It is inter-
esting to see that we did not gain much when learning on
the Skeleton data. It is because glyph skeletons appeared to
be universal among typefaces. Thus, it was sufficient to use
the template skeletons and deform them to meet the given
glyphs as shown in Sec. 4.3.

7. User Interface

We designed a simple user interface that allows users to in-
teract with our font synthesization engine. The interface has
been integrated into an open source vector drawing software
called Inkscape [Ink]. Fig. 17 shows how a user can interact
with our interface to create novel fonts from scratch. Please
see the accompanied video for more information.

Figure 17: User interface for interactive font design. (A) A
user inputs raw strokes by drawing over template skeletons.
(B) The input path is snapped to a skeletal part. (C) Finished
inputting parts for a single glyph. (D) Synthesized glyphs.
(E) Final merged and smoothed typeface. The whole process
took about 3 minutes for a user with experience in vector
drawing.

8. Conclusions and Limitations

In this paper we presented a novel framework for font syn-
thesization and customization using a part-assembly ap-
proach. The framework consists of 3 main components:
(1) stroke-based glyph representation, (2) probabilistic style
learning and inference engine, and (3) typeface synthesiza-
tion. We demonstrated the performance of our system on
different tests such as font reconstruction, novel font syn-
thesization and edit propagation. Both quantitative and qual-
itative results appeared to be promising.

However, our approach still suffers from a number of lim-
itations. First, since the skeleton deformation does not take
into account neighboring parts, smooth alignments might not
be always obtained. Fig. 18 shows two cases when the skele-
tons are not well aligned and might require user interven-
tion. In practice, manual alignments are not often needed for
stroke body since we can always find a skeleton from the
database that closely matches the input glyph, thus largely
reducing the displacements. It is more common for users to
align the caps of characters like {W,N,Z}, since the presence
or absence of the caps in these characters varies from font
to font. Second, cap alignment depends on ICP matching,
which does not always produce desired results when refer-
ence skeletons are too different from the input. A possible
solution is to encode the orientations of the caps into the
PSV, as mentioned in Sec. 4.2. Another promising future
work is to extend our part similarity approach to other ge-
ometric objects like decorative patterns.

Acknowledgements

We would like to thank the anonymous reviewers for their
help in improving the paper and the authors of GPy library
for the BGPLM code. This work was partially supported
by grants from the Research Grants Council of HKSAR,
China (Project No. CityU 113513, CityU 11204014, CityU
123212).

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Phan et al. / FlexyFont: Learning Transferring Rulesfor Flexible Typeface Synthesis

Figure 18: Failed cases when parts are not perfectly
aligned.

References

[AAAG96] AICHHOLZER O., AURENHAMMER F., ALBERTS
D., GÃĎRTNER B.: A novel type of skeleton for polygons. In
J.UCS The Journal of Universal Computer Science, Maurer H.,
Calude C., Salomaa A., (Eds.). Springer Berlin Heidelberg, 1996,
pp. 752–761. 4

[Bos12] BOSLER D.: Mastering Type: The Essential Guide to
Typography for Print and Web Design. F+W Media, 2012. 1

[CK14] CAMPBELL N. D. F., KAUTZ J.: Learning a manifold of
fonts. ACM Trans. Graph. 33, 4 (July 2014), 91:1–91:11. 1, 2, 3

[DJ94] DUBUISSON M.-P., JAIN A. K.: A modified Hausdorff
distance for object matching. In Pattern Recognition, 1994. Vol.
1-Conference A: Computer Vision and Image Processing., Pro-
ceedings of the 12th IAPR International Conference on (1994),
vol. 1, IEEE, pp. 566–568. 5

[Goo] GOOGLE I.: Google WebFonts.
https://www.google.com/fonts. 7

[HH01] HU C., HERSCH R.-D.: Parameterizable fonts based on
shape components. Computer Graphics and Applications, IEEE
21, 3 (May 2001), 70–85. 3

[Hof85] HOFSTADTER D. R.: Metamagical Themas: Questing
for the Essence of Mind and Pattern. Basic Books, Inc., New
York, NY, USA, 1985. 3

[Ink] INKSCAPE: Inkscape. https://inkscape.org/. 11

[JPF06] JAKUBIAK E. J., PERRY R. N., FRISKEN S. F.: An
improved representation for stroke-based fonts. In Proceedings
of ACM SIGGRAPH (2006). 4

[KCKK12] KALOGERAKIS E., CHAUDHURI S., KOLLER D.,
KOLTUN V.: A probabilistic model for component-based shape
synthesis. ACM Transactions on Graphics (TOG) 31, 4 (2012),
55. 3

[KLM∗13] KIM V. G., LI W., MITRA N. J., CHAUDHURI S.,
DIVERDI S., FUNKHOUSER T.: Learning part-based templates
from large collections of 3d shapes. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 70. 3

[Knu79] KNUTH D. E.: TEX and METAFONT: New Directions
in Typesetting. American Mathematical Society, Boston, MA,
USA, 1979. 2, 3

[Kru64] KRUSKAL J. B.: Multidimensional scaling by optimiz-
ing goodness of fit to a nonmetric hypothesis. Psychometrika 29,
1 (1964), 1–27.

[Lau09] LAU V. M. K.: Learning by example for parametric font
design. SIGGRAPH ASIA ’09. 3

[Law04] LAWRENCE N. D.: Gaussian process latent variable
models for visualisation of high dimensional data. Advances in
neural information processing systems 16 (2004), 329–336. 5

[LYFD12] LU J., YU F., FINKELSTEIN A., DIVERDI S.: Help-
inghand: Example-based stroke stylization. ACM Trans. Graph.
31, 4 (July 2012), 46:1–46:10. 3

[MHS∗14] MA C., HUANG H., SHEFFER A., KALOGERAKIS
E., WANG R.: Analogy-driven 3d style transfer. In Computer
Graphics Forum (2014), vol. 33, Wiley Online Library, pp. 175–
184. 4

[OLAH14] O’DONOVAN P., L ĪBEKS J., AGARWALA A.,
HERTZMANN A.: Exploratory font selection using crowdsourced
attributes. ACM Transactions on Graphics (TOG) 33, 4 (2014),
92. 3

[RL01] RUSINKIEWICZ S., LEVOY M.: Efficient variants of the
icp algorithm. In 3-D Digital Imaging and Modeling, 2001.
Proceedings. Third International Conference on (2001), IEEE,
pp. 145–152. 6

[SI10] SUVEERANONT R., IGARASHI T.: Example-based auto-
matic font generation. In Proceedings of the 10th International
Conference on Smart Graphics (2010), SG’10, pp. 127–138. 1,
2, 3, 7, 9, 10

[SR98] SHAMIR A., RAPPOPORT A.: Feature-based design of
fonts using constraints. In Electronic Publishing, Artistic Imag-
ing, and Digital Typography (1998), Hersch R., AndrÃl’ J.,
Brown H., (Eds.), vol. 1375 of Lecture Notes in Computer Sci-
ence. 2

[TL10] TITSIAS M., LAWRENCE N.: Bayesian Gaussian pro-
cess latent variable model. In Proceedings of the 13th Interna-
tional Conference on Artificial Intelligence and Statistics (AIS-
TATS) (2010). 5

[XLCP05] XU S., LAU F., CHEUNG W. K., PAN Y.: Automatic
generation of artistic chinese calligraphy. Intelligent Systems,
IEEE 20, 3 (2005), 32–39. 3, 4

[Zit13] ZITNICK C. L.: Handwriting beautification using token
means. ACM Trans. Graph. 32, 4 (July 2013), 53:1–53:8. 3

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

