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Gradient-based Instance-Specific Visual
Explanations for Object Specification and Object

Discrimination
Chenyang Zhao, Janet H. Hsiao, and Antoni B. Chan

Abstract—We propose the gradient-weighted Object Detector Activation Maps (ODAM), a visual explanation technique for interpreting
the predictions of object detectors. Utilizing the gradients of detector targets flowing into the intermediate feature maps, ODAM
produces heat maps that show the influence of regions on the detector’s decision for each predicted attribute. Compared to previous
works on classification activation maps (CAM), ODAM generates instance-specific explanations rather than class-specific ones. We
show that ODAM is applicable to one-stage, two-stage, and transformer-based detectors with different types of detector backbones and
heads, and produces higher-quality visual explanations than the state-of-the-art in terms of both effectiveness and efficiency. We
discuss two explanation tasks for object detection: 1) object specification: what is the important region for the prediction? 2) object
discrimination: which object is detected? Aiming at these two aspects, we present a detailed analysis of the visual explanations of
detectors and carry out extensive experiments to validate the effectiveness of the proposed ODAM. Furthermore, we investigate user
trust on the explanation maps, how well the visual explanations of object detectors agrees with human explanations, as measured
through human eye gaze, and whether this agreement is related with user trust. Finally, we also propose two applications, ODAM-KD
and ODAM-NMS, based on these two abilities of ODAM. ODAM-KD utilizes the object specification of ODAM to generate top-down
attention for key predictions and instruct the knowledge distillation of object detection. ODAM-NMS considers the location of the
model’s explanation for each prediction to distinguish the duplicate detected objects. A training scheme, ODAM-Train, is proposed to
improve the quality on object discrimination, and help with ODAM-NMS. The code of ODAM is available:
https://github.com/Cyang-Zhao/ODAM.

Index Terms—gradient-based explanation, instance-level explanation, object specification, object discrimination, explaining object
detection, human eye gaze, explainable AI, non-maximum suppression, knowledge distillation, deep learning

✦

1 INTRODUCTION

Significant breakthroughs have been made in object detection and
other computer vision tasks due to the development of deep neural
networks (DNN) [1]. However, the unintuitive and opaque process
of DNNs makes them hard to interpret. As spatial convolution is
a frequent component of state-of-the-art models for vision tasks,
class-specific attention has emerged to interpret CNNs, which has
been used to identify failure modes [2, 3], debug models [4] and
establish appropriate users’ confidence about models [5]. These
explanation approaches produce heat maps locating the regions
in the input images that the model looked at, representing the
influence of different pixels on the model’s decision. Gradient
visualization [6], Perturbation [7], and Class Activation Map
(CAM) [8] are three widely adopted methods to generate the visual
explanation map. However, these methods have primarily focused
on image classification [9, 10, 5, 11, 12, 13], or its variants, e.g.,
visual question answering [14], video captioning [15, 16], and
video activity recognition [16].

Generating explanation heat maps for object detectors is an
under-explored area. The first work in this area is D-RISE [17],
which extends RISE [9] for explaining image classifiers to object
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detectors. As a perturbation-based approach, D-RISE first ran-
domly generates a large number of binary masks, resizes them
to the image size, and then perturbs the original input to observe
the change in the model’s prediction. However, the large num-
ber of inference calculations makes the D-RISE computationally
intensive, and the quality of the heat maps is influenced by the
dataset type and mask resolution (e.g., see the 4th row of Fig. 1).
Furthermore, D-RISE only generates an overall heat map for the
predicted object, which is unable to show the influence of regions
on the specific attributes of a prediction, e.g., class probability and
regressed bounding box corner coordinates.

The popular CAM-based methods for image classification are
not directly applicable to object detectors. CAM methods generate
heat maps for classification via a linear combination of the weights
and the activation maps, such as the popular Grad-CAM [5] and
its variants. However, for object detection task, Grad-CAM and
Grad-CAM++ generate explanation maps with poor localization
ability and tend to provide class-specific explanations. As a result,
Grad-CAM produces heat maps that highlight multiple objects of
a category instead of explaining a single detection (e.g., see the
2nd and 3rd rows of Fig. 1). For object detection, the explanations
should be instance-specific rather than class-specific, so as to dis-
criminate each individual object. Exploring the spatial importance
of different objects can help interpret the models’ decision and
show the important area in the feature maps for each prediction.

Considering that direct application of existing CAM methods
to object detectors is infeasible and the drawbacks of the current
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Fig. 1: Comparison of heat maps from Grad-CAM [5], Grad-CAM++ [11] D-RISE [17] and our ODAM for interpreting predictions from the
FCOS [18] detector. Visual explanations are provided for predicted instances of different classes on MS COCO val set and single person class
on CrowdHuman val set, and the blue boxes show the corresponding detected objects. Grad-CAM and Grad-CAM++ generate low-quality
explanations for object detection and tend to highlight multiple objects of the same category instead of the specific object instance. D-RISE
maps have noisy backgrounds and its effectiveness depends on the mask size; In the examples, with the 16x16 mask it performs better for
smaller objects (such as “bottle” and “cell phone”) than larger objects (such as “bird” and “truck”). Moreover, D-RISE has poor performance
on the CrowdHuman dataset with one-class crowded scenes. In the last row, our ODAM generalizes well on different scenes, and generates
instance-specific heat maps with less noise and is robust to object size.

state-of-the-art D-RISE, we propose gradient-weighted Object
Detector Activation Maps (ODAM). ODAM adopts a similar
assumption as Grad-CAM that feature maps correlate with some
concept for making the final outputs. Thus ODAM uses the gradi-
ents w.r.t. each pixel in the feature map to obtain the explanation
heat map for each attribute of the object prediction. Compared
with the perturbation-based D-RISE, ODAM is more efficient and
generates less noisy heat maps (see the 5th row of Fig. 1), while
also explaining each prediction separately.

Object detectors are different from image classifiers in that
detectors perform classification and localization of multiple object
instances within the image, whereas image classifiers only predict
the class of the main (usually single) object. Thus for object
detectors, we consider two types of explanation tasks: 1) “object
specification”; 2) “object discrimination”. Object specification is
the traditional explanation task, which aims to answer “what con-
text/features are important for the prediction?”, via a heat map that
highlights the important regions for the final prediction. Object
discrimination is an explanation task to answer “which object was
actually detected?”, which is a unique task for object detection
where there are multiple classified objects. For the discrimination
task, the explanation map is expected to show which instance was
considered when the model made the prediction.

In the experiments, we consider both qualitative evaluation by
visualization of explanation maps and quantitative evaluation of
ODAM on both object specification and object discrimination, and
demonstrate that ODAM outperforms current methods. Moreover,
we carry out user trust studies with visual explanations on both

object specification and discrimination. In particular, we collect
human eye gaze data (i.e., human attention data) during an object
explanation task, and investigate how well the visual explanations
of object detectors agrees with human explanations, and whether
this agreement is related with user trust of the detector. Our
experiments show that ODAM generates heat maps that are more
similar to human attention, while also being more trustworthy.

Finally, in this paper, we also provide insight into how to
use the visual explanation of object specification and object dis-
crimination to boost detection performance in particular regimes.
For object specification, we propose ODAM-based knowledge
distillation (ODAM-KD) for object detection, which distills on
the crucial regions emphasized by the ODAM maps of the key
predictions, and a key prediction selection module is designed for
choosing the important instances. For object discrimination, we
propose ODAM-NMS, which uses the instance-level heat maps
from ODAM to aid the non-maximum suppression (NMS) process
of removing duplicate and preserving overlapped predictions in the
crowded scenarios. To guide the explanation map more towards
object discrimination, we propose a training scheme, ODAM-
Train, which introduces consistency and separation losses to
encourage the model to produce consistent heat maps for the same
object, and distinctive heat maps for different objects, thus making
the heat map more discriminative. Experiments show that both
ODAM-KD and ODAM-NMS are effective.

In summary, the contributions of this paper are:
1) We investigate ODAM, a gradient-based visual explanation

approach to produce instance-specific heat maps for explain-
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ing prediction attributes of object detectors, which is more
efficient and robust than the current state-of-the-art.

2) We demonstrate the generalizability of ODAM by exhibiting
explanations on one-stage, two-stage, and transformer detec-
tors with different types of backbones and detector heads.

3) Besides the traditional explanation task, object specification,
we explore a unique explanation task for detector, object
discrimination, for explaining which object was detected.
Comprehensive experiments are conducted to verify the abil-
ity of ODAM on both the two tasks.

4) We conduct user trust studies on visual explanations, and in-
vestigate how well the visual explanations of object detectors
agrees with human explanations, via human eye gaze.

5) Based on the object specification ability of ODAM, We
propose ODAM-KD, where the student detector learns fea-
tures from the teacher detector based on the attention map
generated by ODAM with the selected key instances.

6) Based on the object discrimination ability of ODAM, we
propose ODAM-NMS, which uses the instance-level heat
maps generated by ODAM with ODAM-Train to remove
duplicate and preserve overlapped predictions during NMS.

A preliminary version of ODAM appears in [19]. The exten-
sions over the conference version are as the follows. First, by
conducting user trust studies and investigating the similarity be-
tween human attention and XAI heat maps, we discover that XAI
heat maps that are more trustworthy also have higher similarity to
human attention. Second, we enrich and complete the qualitative
evaluation of ODAM by adding: (1) the visualization of ODAM
with different feature map layers; (2) the analysis of error modes
using ODAM; (3) a comparison with the attention maps of DETR;
(4) application on the multi-modal visual grounding model GLIP.
Finally, we propose a new application of ODAM, ODAM-KD,
which applies the object specification ability of ODAM to the
knowledge distillation task on object detection.

The remainder of this paper is organized as follows. The
related works of object detection, explanation by visualization,
knowledge distillation, and advanced NMS are briefly reviewed in
§2. ODAM is introduced in §3, and the experiment results and
analysis of ODAM are presented in §4. We then introduce two
applications: ODAM-KD with object specification in §5; ODAM-
NMS and ODAM-Train with object discrimination in §6.

2 RELATED WORKS

We first briefly review main stream object detectors, and then
discuss related visual explanation algorithms. Finally, the related
methods for knowledge distillation and NMS are introduced.

2.1 Object detection
Object detectors are generally composed of a backbone, neck and
head. Based on the type of head, detectors can be mainly divided
into one-stage and two-stage methods. Two-stage approaches
perform two steps: generating region candidates (proposals) and
then using RoI (Region of Interest) features for the subsequent
object classification and location regression. The representative
two-stage works are the R-CNN family, including R-CNN [20],
Fast R-CNN [21], Faster-RCNN [22], and Mask R-CNN [23].
One-stage methods remove the RoI feature extraction and directly
perform classification and regression on the entire feature map,
and typical methods are YOLO [24], RetinaNet [25], and FCOS
[18]. Recently transformers are successfully applied to the detector

structure, being utilized as a backbone to extract features from
image (e.g. pyramid vision transformer (PVT) [26]) or as the
detector head (e.g. DETR [27]). Our ODAM can generate heat
maps for both one- and two-stage detectors with no limitation
of the types of backbones and heads, as well as transformer-
based detectors. We mainly adopt Faster R-CNN and FCOS in
our experiments.

2.2 Explanation by visualization

Since visualizing the importance of input features is a straight-
forward approach to interpret a model, many works visualize the
internal representations of image classifier CNNs with heat maps.
Gradient visualization methods [6] backpropagate the gradient of
a target class score to the input image to highlight the “important”
pixels, and other works [28, 29, 30, 31, 32] manipulate this
gradient or use a set of purposely designed propagation rules
[33, 34] to improve the results qualitatively. These visualizations
are fine-grained but not class-specific. [35] propose a new back-
propagation scheme for generating task-specific attention maps.
[36] proposed a novel way to compute relevancy for Transformer
networks specifically.

Perturbation-based methods [9, 7, 37, 38, 39, 10, 40, 41] per-
turb the original input and observe the changes in output scores to
determine the importance of regions. Most black-box methods are
intuitive and highly generalizable, but computationally intensive.
Furthermore, the type or resolution of the perturbation greatly
influences the quality of visualization results.

CAM-based explanations, e.g. CAM [8], Grad-CAM [5],
Grad-CAM++ [11], and related works [42, 43, 44] produce a heat
map from a selected intermediate layer by linearly combining its
feature activation maps with weights that indicate each feature’s
importance. For example, Grad-CAM defines the weights as
the global average pooling of the corresponding gradient map,
computed using back-propagation. Some gradient-free CAMs
[45, 12, 13] adopt the perturbation to generate weights from class
score changes.

Although Grad-CAM has been adopted to study adversarial
context patches in single-shot object detectors [46], the explana-
tions are still category-specific. [17] describes the reasons that
make direct application of existing classifier explanation methods
infeasible for object detector, and then proposes D-RISE [9], a
black-box perturbation-based method. Hence, D-RISE inherits the
pros and cons of RISE: high-generalizability due to the black-
box nature, but time-consuming and noisy due to the inference
procedure. To explore white-box explanations of detectors, we
propose ODAM, which uses gradient information to generate
importance heat map for instance-specific detector explanations.

2.3 Knowledge Distillation

Knowledge distillation is first proposed by Hinton et al. [47]
for the classification task. As an effective method for model
compression and accuracy boosting, KD has also been applied
to image classification [48, 49], as well as semantic segmentation
[50], face recognition [51], pretrained language model [52], etc.

KD for object detection has also be considered recently.
Chen et al. [53] first propose distillation on all components of
detector (the neck feature, classification and regression heads),
but treating all features and proposals equally introduces much
noise and leads to a suboptimal result. Thus previous methods
aim to select and weigh the important regions on a feature map,
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Fig. 2: ODAM framework. ODAM generates instance-specific heat
maps for explaining attributes in predictions of an object detector.

which may highly influence the distillation effect. Li et al. [54]
choose the features sampled from RPN, and GID [55] distills
the areas where generate distinctive predictions. Wang et al. [56]
and Sun et al. [57] both utilize designed region masks generated
from ground-truth bounding boxes for distillation. Guo et al. [58]
decouple the foreground and background and distill them with
different attentions. FKD [59] and FGD [60] utilize the bottom-
up attentions as mask to guide the distillation, and add Non-local
Module [61] and GcBlock [62] to distill the relation of pixels.

Compared with the attention mask designs in previous works,
we propose ODAM-KD, which utilizes ODAM to generate top-
down feature attention based on the student and teacher predictions
during training. The key predictions that cause the performance
gap between student and teacher are selected, and their ODAM
explanation maps are generated as the distillation attention mask.

2.4 Advanced NMS

Classic NMS assumes that multiple instances rarely overlap, and
thus high IoU (intersection over union) of two bounding boxes
indicates duplicate detections. However, high IoU will occur
between objects in crowded scenes, resulting in erroneous removal
of instances. Thus, more advanced NMS methods are proposed to
mitigate the over-dependence on IoU. SoftNMS [63] decreases
the scores of duplicates according to the IoU instead of removing
overlapping predictions. AdaptiveNMS [64] adjusts the NMS
threshold based on the predicted local object density for each
prediction. Relation Network [65] adds a relation module to the
detection network and uses it to learn NMS inside the network.
These methods either use extra predicted cues, but still assume
that high IoU correspond to duplicate detections, or modify the
detectors to be more complex. Relying on IoU is not enough
in crowded scenes where objects partially occlude each other,
and thus their IoUs are naturally large. In these cases, internal
information about the predictions is required. FeatureNMS [66]
encodes features for predictions, and trains their distances between
the same object to be smaller than those of different objects. In
contrast, we propose ODAM-NMS, which uses the correlations
between instance-level explanation maps and the their box IoUs
to remove duplicate proposals of the same object. Compared
with [66], our ODAM-NMS is more stable and can also be
interpreted to explain which objects were detected (i.e., object
discrimination).

3 ODAM: OBJECT DETECTION ACTIVATION MAP

Given an image I , the detector model outputs multiple predictions,
with each prediction p consisting of the class score s

(p)
c and

bounding box B(p) = (x
(p)
1 , y

(p)
1 , x

(p)
2 , y

(p)
2 ). Our goal is to

generate heat maps to indicate the important regions that have
a positive influence on the output of each prediction.

In Grad-CAM [5] and its generalization Grad-CAM++ [11],
the final score for a particular class Yc is predicted from the whole
image and the algorithm ignores distinguishing object instances
within. Their explanation starts from the assumption that the
score to be interpreted can be written as a linear combination of
its global pooled last convolutional layer feature maps {Ak}k,
Yc =

∑
k w

c
k

∑
ij Aijk =

∑
ij

∑
k w

c
kAijk, where Aijk in-

dexes location (i, j) of Ak. Thus, the class-specific heat map
Hc

ij =
∑

k w
c
kAijk summarizes the feature maps with wc

k captur-
ing the importance of the k-th feature. To obtain the importance of
each feature channel, Grad-CAM estimates wc

k by global average
pooling the gradient map ∂Yc/∂Ak, while Grad-CAM++ uses
a weighted global pooling. However, both methods are limited
to class-specific explanations, due to computing a channel-wise
importance, which ignores the spatial information that is essential
for interpreting different object instances.

Based on the above analysis, we assume that any predicted
object attribute scalar Y (p) of a particular instance p can be written
as a linear element-wise weighted combination of the feature map,
and then the instance-specified by summarizing the feature maps
with weight w(p)

ijk that captures the importance of each pixel and
each channel,

Y (p) =
∑

k

∑
ij
w

(p)
ijkAijk, H

(p)
ij =

∑
k
w

(p)
ijkAijk. (1)

Here Y (p) could be the classification score or a predicted bounding
box coordinate, depending on the desired explanation.

Previous gradient-based works [6, 28, 5, 11] have shown
that the partial derivative w.r.t. Aijk can reflect the influence
of the k-th feature at (i, j) on the final output. Thus, we set
the importance weight map W

(p)
k = [W

(p)
ijk ]ij according to the

gradient map ∂Y (p)/∂Ak after a local smoothing operation Φ,
and the corresponding heat map for scalar output Y (p) is obtained
through a pixel-weighted mechanism:

W
(p)
k = Φ

(
∂Y (p)

∂Ak

)
, H(p) = ReLU

(∑
k
W

(p)
k ◦Ak

)
, (2)

where ◦ is element-wise multiplication. In the qualitative experi-
ments to produce better visualizations, we adopt convolution with
a Gaussian kernel as the smoothing operation Φ, and adaptively
decide the size of the kernel based on the size of the predicted
object in the feature map. In the quantitative experiments, the local
smoothing is not used, i.e., Φ is the identity function, in order to
maintain the best spatial accuracy. Finally, we note that Grad-
CAM is a special case of ODAM when the smoothing function Φ
is set to the global average pooling operation. Fig. 2 shows our
ODAM framework.

When the scalar output Y (p) is a class score, ODAM highlights
the important feature regions used by the detector to classify the
instance p. Note that Y (p) could be any differentiable attribute of
the predictions. For example, in our experiments we also examine
the heat maps related to the predicted coordinates of the regressed
bounding box (see Fig. 3).

Our work is the first analysis and successful attempt to use
a white-box method to generate instance-level explanations for
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Fig. 3: Heat map explanations computed from different detectors with ResNet50 and pyramid vision transformer (PVT) [26] as backbones.
(left) The heat maps explain important regions for each predicted attribute (class score sc and bbox coordinates x1, y1, x2, y2) from FCOS. In
FCOS, the bbox coordinates are relative to the anchor center, with positive values indicating a larger box, and thus the highlighted regions for
the bbox coordinates are important for expanding the bbox. (right) The combined heat maps for the entire predictions for one-stage RetinaNet,
FCOS, the two-stage Faster R-CNN, and transformer-based DETR [27]. Features from the last stage of ResNet50 are used to explain DETR
because there is no detector neck, while features from Feature Pyramid Network (FPN) [69], the detector neck, are used for other methods.

object detector predictions, rather than only class-level expla-
nations. Using PyTorch, gradients of any scalar targets w.r.t.
intermediate features can be calculated automatically [67]. In this
way, generating an ODAM explanation for one prediction takes
about 2ms, which is much faster than the perturbation-based D-
RISE, where using 5000 masks requires ∼3 minutes to process
one image with FCOS.

4 EXPERIMENTS WITH ODAM
In this section we conduct experiments on ODAM to: 1) evaluate
its visual explanations qualitatively (Sec. 4.1) and quantitatively
(Sec. 4.2), and compare with the current state-of-the-art methods;
2) evaluate the object specification and discrimination ability
through user trust experiments, and also investigate how well
the visual explanations of object detectors agrees with human
explanations, as measured through eye gaze, and whether this
agreement is related with user trust of the detector (Sec. 4.3). We
mainly conduct the experiments with one-stage detector FCOS
[18] and two-stage detector Faster R-CNN, [22] using ResNet-
50 [68] as the backbone and FPN [69] as the neck. Two datasets
are adopted for evaluation: MS COCO [70], a standard object
detection dataset, and CrowdHuman [71], containing scenes with
heavily overlapped objects. Experiments are performed using
PyTorch and an RTX 3090 GPU. The training and testing hy-
perparameters are the same as those of the baseline detectors.

4.1 Qualitative evaluation of visual explanations
4.1.1 Comparison of different explanation methods
We compare the visualizations of Grad-CAM, Grad-CAM++, D-
RISE and our ODAM in Fig. 1. The results are all generated with
FCOS using FPN features on both the MS COCO val and Crowd-
Human val sets. Grad-CAM, Grad-CAM++ and ODAM use class
score targets, while D-RISE uses the same mask settings as [17]
to find the attention area of predictions. Our ODAM demonstrates
a strong ability of generating clear and distinct instance-specific

heat maps, and generalizes well on normal/crowded scenes, and
multiple-/single-class datasets. In contrast, Grad-CAM and Grad-
CAM++ are class-specific (highlighting multiple objects with
the same target class), and D-RISE contains “speckles” in the
background due to its random masking mechanism. Comparisons
with BBAM [41] are presented in the supplemental.

4.1.2 Different prediction attributes and detectors.
To verify the interpretability of visualizations, we generate ex-
planations for different prediction attributes (class score, bbox
regression values) of two specific instances using various detec-
tor architectures with the two types of backbones. To obtain a
holistic view of the explanations generated by different models,
we compute a combined heat map based on element-wise max-
imum of heat maps for the predicted class and bbox regression,
Hcomb = max(Hclass, Hx1

, Hy1
, Hx2

, Hy2
). Example results are

presented in Fig. 3 (left), and we have the following observations
from examining many such examples: 1) When predicting the
object class, the model attends to the central areas of the object;
2) when regressing the bbox, the model focuses on the extent of
the object, 3) For the same target, models from different detectors
show attention on different regions, even though they all detect the
same instance with a high confidence. Thus, developers can have
an intuitive judgment about the model through explanation maps.

4.1.3 Different feature map layers.
In Fig. 4, we visualize and compare the heat maps generated from
different feature layers. The feature maps Ak are selected from
the output feature maps of the ResNet backbone (resnet p3-p5),
which are also the inputs of Feature Pyramid Network (FPN)
with P3-P5 level, the FPN ouput, or the RoI pooling output.
Note that the heat map for the RoI Pooling layer is obtained by
bilinear interpolation and inserting the original map of 7 × 7 to
the image plane. For the same target, higher-level layers (e.g. FPN
and RoI pooling) show more concentrated attention and generate
smoother heat maps. In contrast, for the lower-level layers, the heat
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Fig. 4: Heat maps computed from different feature maps of one-stage
FCOS and two-stage Faster R-CNN, when interpreting the class score
and the regression of the top extent (y1 in bounding box), respectively.

True positive prediction of “surfboard” Mislocalized predictions of “surfboard”

Classified as “laptop” Classified as “keyboard”

Classified as “toilet” Classified as “sink”

Fig. 5: Explanations of the predicted right extents (x2 in bounding
boxes) for different predictions of “surfboard”. The heat maps for the
mislocalized predictions highlight the visual features that induced the
wrong predictions (e.g., the leg on the right, and the sea horizon).

maps show the individual feature locations that were important.
Moreover, for this specific person in the image, when regressing
y1 (i.e., the top of the bbox), the head and upper body gets higher
response than the legs, and thus we infer that both FCOS and
Faster R-CNN concentrate mainly on the top extent of the object
here. Note that the heat map of Faster R-CNN also highlights
the person’s feet, while FCOS does not. This reflects that the
calculation of y1 in Faster R-CNN is related to both the y-axis
bias to the center and the ratio of the anchor height. In contrast, y1
in FCOS is only related to the distance from the top to the center.

4.1.4 Analyzing error modes of the detector
Next we use ODAM to analyze the error modes of a detector.
For the high confidence but poorly localized cases, we generate
explanations of the wrong predicted extents and compare them
with the correct localization results. As shown in Fig. 5, the model
highlights that the wrong extents were misled by the leg of the
person and the sea horizon.

To analyze classification decisions of the model, we generate
explanations of the class scores. In Fig. 6(a), the model correctly
classifies the “bed” object when seeing the cushion of the bed,
but also mistakenly predicts “bench” based on a long metal bed
frame at the end of the bed. In In Fig. 6(b), a person is fixing a
wheel on the ground, and two motorcycles are parked nearby. The
detector correctly finds the person, but also mistakenly detects a
motorcycle on top of the person, by combining the features from
the two motorcycles. This shows a failure mode of the detector,
where sometimes the context feature (a person next to unrelated
motorcycle parts) may negatively influence the detection result.

4.1.5 Comparison with attention maps of DETR.
The self-attention of the transformer architecture is a bottom-up at-
tention process. Thus, visualizing the self-attention of transformer-
based detectors, e.g. DETR, can show what features the detector
was focusing on. In Fig. 7, we visualize the heat map explanations
for DETR using ODAM, which is a top-down visual explanation,
and the DETR transformer’s self-attention, which is a bottom-up
saliency map. For the encoder transformer, the self-attention will
sometimes focus mainly on the object (e.g., 1st and 2nd rows of
Fig. 7a), but also sometimes look at context features (e.g., in 3rd

True positive prediction of “surfboard” Mislocalized predictions of “surfboard”

Classified as “bed” Classified as “bench”

Classified as “toilet” Classified as “sink”

Classified as “person” Classified as “motorcycle”

(b)

(a)

Fig. 6: Explanations of the class scores of different predictions. (a)
The model predicts “bench” when it puts attention on only the frame
at the end of the bed. (b) The model is negatively influenced by the
context features and misclassifies a “motorcycle” on a “person”.

and 4th rows of Fig. 7a, the bed surrounding the cat and the remote
control). For the decoder transformer shown in Fig. 7b, the self-
attention will look at the extremities of the object, i.e, the points
along the predicted bounding box.

The ODAM heat maps for individual attributes are shown in
Fig. 7(d) with the combo maps shown in the final column. The
ODAM heat map for the class score is mostly consistent with
the encoder self-attention maps. However in some cases (e.g., the
remote control in the 4th row), ODAM shows that less context
information is actually used compared to what is indicated by the
encoder self-attention map. The ODAM combo maps highlight
information consistent with the Generic Attention-model Explain-
ability (GAME) [72], which is a visual interpretation method
designed specifically for attention layer based models. However, in
contrast to GAME, ODAM is also able to highlight the important
regions for predicting each coordinate of the bounding box, e.g.,
both the rear and the back legs of the zebra are important for
predicting the right box coordinate x2. In contrast, the decoder
self-attention highlights all extremities of the zebra, so the self-
attention itself cannot disentangle the important regions for indi-
vidual outputs, like each coordinate of the bbox. From the self-
attention and ODAM visualizations, we may hypothesize how
DETR performs detection: the DETR encoder mainly aims to
discover the object classes in the image through aggregation of
class-related features, while the DETR decoder mainly aims to
generate the bounding box prediction from the discovered objects
by focusing on the extremities of the objects.

The transformer self-attention map is a bottom-up attention
map, i.e., generally showing which features are interesting and
correlated with the query. For example, in the transformer encoder,
with the feature itself as query, heat maps highlight the attention
w.r.t. each location on the feature map. In the decoder, with the
query corresponding to each prediction, the attention map shows
the regions that are highly correlated with the query. In contrast,
the ODAM generates a top-down attention map, i.e, which features
are important for the output prediction. It should be noted that for
bottom-up attention, even if a feature is highlighted in the attention
map, there is no guarantee that the feature is actually used in
the subsequent output prediction. In contrast, for the top-down
attention, by design, all highlighted features should be important
for generating the prediction.

4.1.6 Applying ODAM on GLIP and CLIP

Recently, several works on multi-modal representations [73, 74,
75, 76] have been developed to learn representations at the
interaction of computer vision and natural language processing.
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(a) Encoder attentions (b) Decoder attentions

𝑆𝑐

(d) ODAM w.r.t the predictions with using backbone features

left (𝑥1) top (𝑦1) right (𝑥2) bottom (𝑦2) Comb.

(c) GAME

Fig. 7: Visualizations of self-attention maps in DETR and heat map explanations using ODAM. (a) The locations for querying the self-attention
in the encoder, and the encoder self-attention weights at the positions specified; (b) The predictions of the detector, and the decoder self-
attention weights of the predictions; (c) The interpretation generated by Generic Attention-model Explainability (GAME); (d) The ODAM
heat maps of the prediction attributes using the backbone features, including maps for class score Sc, coordinates of the bounding box, and the
combined (Comb.) map.

Detected

object

ODAM

Grad-CAM

GLIP

Fig. 8: Comparison of heat maps from our ODAM and Grad-CAM for
interpreting predictions from the GLIP detector. Visual explanations
are provided for predicted “bottle” and “banana” instances, and the
blue boxes show the corresponding detected objects.

ODAM

Grad-CAM

ViT-B-16

“bottle”

RN50x4 ViT-B-16

“banana”

RN50x4

Fig. 9: Comparison of heat maps from our ODAM and Grad-CAM
for interpreting image-text cosine similarity score from CLIP model.

The resulting pre-trained multi-modal models have good results
on various down-stream tasks. Grounded Language-Image Pre-
training (GLIP) [74] is a multi-modal model pre-training method
for visual grounding, which has similar function as object de-
tection. Thus, we implemented our ODAM on GLIP, and show
explanation maps for the grounded results in Fig. 8. ODAM can
generate explanation maps for each specific detected “bottle” and
“banana”, while the Grad-CAM fails to show a meaningful result.
When aligning the region features and the corresponding object
text prompts, GLIP also learns the region-aware representations
besides the whole image feature. Therefore, ODAM is capable
with GLIP to generate instance-specific explanation results.

For comparison, we also attempted to use ODAM and Grad-
CAM to interpret the popular multi-modal pre-training model
CLIP [73]. Specifically, we generate explanation maps on CLIP
with the cosine similarity of the image and the corresponding text
(“bottle” or “banana”) as target. The gradient is calculated using

the target w.r.t. the feature maps from ViT or ResNet50x4 layer.
The results are shown in Fig. 9. Both the gradient-based methods
Grad-CAM and ODAM perform poorly at explaining the multi-
modal pre-trained model, with the possible reasons: (1) ODAM
is sensitive to spatial information provided on the feature map,
while CLIP learns the visual representation for the whole image
and lacks of supervision for region-aware and localization ability;
(2) For the whole image representation, special design may be
required for explaining attention layer based aggregation, which is
different from the CNN-based architectures.

4.2 Quantitative evaluation of visual explanations

We next perform quantitative evaluation of the ODAM visual
explanations. We evaluate the ability of object specification (i.e,
explanation faithfulness) using Deletion, Insertion [77, 11, 12,
13, 17] and visual explanation accuracy [78]. For evaluating
localization, we adopt Pointing Games (PG) [35]. Meanwhile, we
propose an object discrimination index (ODI) for measuring the
interpretation ability of object discrimination.

For comparison, we implement D-RISE using 5000 masks
with resolution of 16×16 as in [17]. FCOS is used as baseline
model and the features from FPN are adopted to generate heat
maps. The best matched predictions of the well-detected objects
(IoU > 0.9) in the evaluation dataset are interpreted by each
explanation method. The confidence scores of predictions are
used as the explanation targets in ODAM, Grad-CAM and Grad-
CAM++. Besides the MS COCO val set, results of PG and ODI
are also reported on CrowdHuman validation sets.

4.2.1 Deletion and Insertion

A faithful heat map should highlight the important context on the
image, which shows the ability of object specification. Deletion
replaces input image pixels by random values step-by-step using
the ordering of the heatmap (most important first), then measures
the score drop of the predicted confidence (in percentage). Inser-
tion is the reverse operation of Deletion, and adds image pixels
to an empty image in each step (based on heatmap importance)
and records the average score increase. Since the object sizes vary
a lot, we consider each step as 1% of the bounding box area and
record results in each step. For each step, each well-detected object
is processed separately, and the scores are averaged.
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(b)

(a) Target object (d) Ours(b) Grad-CAM (c) D-RISE

Del.

Insertion

(a)

(c)

(b) (c)

Fig. 10: Average prediction score vs. (a) Deletion steps and (b) Insertion
steps. (c) The IoU between the ground truth object mask and thresholded
explanation heat map.

TABLE 1: Evaluation of faithfulness on MS COCO val
set: AUC for Deletion, Insertion and Visual Explanation
Accuracy (VEA) curves in Fig. 10.

Method Deletion↓ Insertion↑ VEA ↑
Grad-CAM 92.79 36.78 0.039
Grad-CAM++ 92.52 36.18 0.027
D-RISE 73.35 43.35 0.157
ODAM 72.68 50.33 0.163

The average prediction score curves are presented in Fig. 10(a-
b), and Tab. 1 reports the area under the curve (AUC). Lower
Deletion AUC means steeper drops in score, while higher Insertion
AUC means larger increase in score with each step. Our meth-
ods have the fastest performance drop and largest performance
increase for Deletion and Insertion, which shows that the regions
highlighted in our heat maps have larger effects on the detector
predictions, as compared to other methods. Note that instance-
specific explanations (ours and D-RISE) significantly surpass the
explanation designed for image classification (Grad-CAM, Grad-
CAM++), which are not instance-specific.

4.2.2 Visual explanation accuracy (VEA)

VEA measures the IoU between the ground-truth (GT) and the
explanation heat map thresholded at different values. We use the
MS COCO GT object masks for this evaluation, and results are
presented in Fig. 10(c). Our method obtains the highest IoU when
the threshold is small (T < 0.4), and the IoUs decrease as the
threshold increases. This indicates that our heat map energy is
almost all inside the object (consistent with energy PG results in
Tab. 2). In contrast, the low IoUs of the previous methods at a
small threshold indicate that their heatmaps contains significant
amounts of energy outside the object mask. For Grad-CAM(++),
this is because they are not instance-specific. In contrast, for D-
RISE, the low initial IoU is caused by the mask sampling process.
As the threshold increases, the IoU of D-RISE also increases,
which indicates that the heat map values inside the object mask
are larger than those outside the mask. Overall, our method has
better IoU (0.421 at T=0.1) compared to D-RISE (0.249 at T=0.7),
which is also confirmed by the VEA AUC in Tab. 1.

4.2.3 Pointing Game (PG)

We next quantitatively evaluate the localization ability of the
ODAM explanations using the PG metric. To compute PG, the
maximum point in the instance-level heat map is extracted and a
hit is scored if the point lies within the GT object region (either
bbox or instance mask). Then the PG accuracy is measured by
averaging over the test objects. Since PG only considers the max-
imum point, but not the spread of the heat map, we also adopt the
energy-based PG [12], which calculates the proportion of heat map
energy within the GT object bbox or mask (versus the whole map).
Finally, to show the compactness of the heat map, we calculate
the weighted standard deviation of heat-map pixels, relative to the
maximum point: Comp. =

(
1∑
x Sx

∑
x

Sx||x−x̂||2
1
4 (h

2+w2)

) 1
2 , where Sx

is the heat map value at location x, x̂ is the maximum point of the
heat map, and (w, h) are the width and height of the GT box. The
denominator normalizes the distance w.r.t. the object size. Smaller
compactness values indicate the heat map is more concentrated
around its maximum.

The PG results are presented in Tab. 2. Grad-CAM and Grad-
CAM++ perform poorly since they do not generate instance-
specific heat maps. ODAM yields significant improvements over
D-RISE on all the metrics. Specifically, D-RISE cannot work well
on CrowdHuman, which only contains one object category. D-
RISE uses the similarities between predictions of masked images
and the original image to decide the mask weights, but for datasets
with few object categories, the predicted class probabilities pro-
vide less useful information when calculating the weights.

4.2.4 Object Discrimination
To evaluate the object discrimination ability of the heat maps, we
propose the object discrimination index (ODI), which measures
the amount of heat map energy that leaks to other objects.
Specifically, for a given target object, the ODI is the proportion
of heat map energy inside all other objects’ bboxes (regardless
of class) w.r.t. the total heat map energy inside all objects in the
image (i.e., ignoring background regions). Lower ODI indicates
less heat map energy on other objects, and therefore better ability
to discriminatively explain the detected object. ODI can also be
computed using segmentation masks instead of bounding boxes.

The average ODIs are presented in Tab. 3. ODAM consistently
shows the least energy leaking out to other objects, i.e., better
object discrimination ability. Note that when using the tighter
GT mask on MSCOCO, ODAM obtains the largest proportion
of decrease, which indicates that the heat map can better focus on
the explained target, even if its bbox overlaps with other objects.

4.3 User trust and human attention studies
In this section, we conduct user trust studies to investigate how
well the interpretability of ODAM explanation maps can induce
user trust in detectors. We also conduct a study to compare the
visual explanations of the detector with human attention, and see
whether it is correlated with user trust.

4.3.1 User trust study on object specification
For object specification, the interpretability of visual explanations
is evaluated through the following user trust test. Heat maps are
generated by D-RISE, Grad-CAM, Grad-CAM++, and ODAM
for 120 correctly-detected objects out of 80 classes from the
MSCOCO val set (1-2 instances for each class). For each object,
users are asked to rank the maps from the four methods by the
order of “which map gives more reasonable insight about how
the target object was detected”. We collect 10 responses for each
object from a total number of 40 users (30 objects per user),
totaling 1200 responses. The form of the questionnare and some
samples are shown in Fig. 11 (left).

The results are presented in Tab. 4. ODAM is ranked 1st place
in 53.8% of trials and 2nd place in 35.4% of trials, which is sig-
nificantly better than D-RISE (χ2 test, p<0.001). Overall, ODAM
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TABLE 2: Comparison of Pointing Game (PG) accuracy with ground-truth bounding boxes or segmentation masks, energy-based PG (en-PG)
with box or mask, and Heat Map Compactness (Comp.).

MS COCO CrowdHuman
PG(box)↑ PG(mask)↑ enPG(box) ↑ enPG(mask) ↑ Comp.↓ PG(box)↑ enPG(box) ↑ Comp.↓

Grad-CAM 26.7 22.5 20.7 15.0 4.34 15.7 9.7 3.99
Grad-CAM++ 26.6 20.2 20.0 14.8 4.91 15.4 11.4 3.84
D-RISE 82.6 68.0 17.4 12.0 5.17 1.5 1.7 3.53
Ours 91.9 82.6 73.1 57.1 1.36 95.5 79.5 1.04

TABLE 4: User trust on object specification:
(left) percentage of rankings for each method;
(right) average rank (AR).

Method 1st 2nd 3rd 4th AR
Grad-CAM 3.9 12.9 30.5 52.7 3.3
Grad-CAM++ 7.3 22.2 43.1 27.5 2.9
D-RISE 35.1 29.5 17.5 17.9 2.2
ODAM 53.8 35.4 8.9 1.9 1.6

TABLE 5: User trust on object discrimination: (left) the percentage of each confidence
level of user responses; (right) the average confidence, and the accuracy for correct
object discrimination.

Method 1 (least) 2 3 4 5 (most) avg. conf. accuracy
Grad-CAM 53.38 30.41 10.14 5.41 0.68 1.70 14.19
Grad-CAM++ 63.76 24.16 6.71 4.70 0.67 1.54 18.79
D-RISE 20.67 36.67 26.01 11.98 4.68 2.43 60.67
ODAM 0 0.67 7.33 21.34 70.68 4.62 94.00

TABLE 3: Comparison of Object Discrimination Index (%) using GT
bbox or mask.

MS COCO CrowdHuman
box ↓ mask ↓ box ↓

Grad-CAM 77.0 72.7 91.4
Grad-CAM++ 77.3 73.2 92.0
D-RISE 71.0 66.3 95.3
ODAM 34.8 19.5 56.9

Q: The robot has detected the object inside the blue bounding box,
and gives four attention heat maps to explain why the robot found
the object. Please rank the Explanation A to Explanation D by the
order of the most reasonable to the most unreasonable.

Detected Object A B C D

Detected Object

Detected Object

A B C D

A B C D

Examples of Questionnaire 1 Examples of Questionnaire 2

Detected Object Robot 1 Robot 2

Detected Object Robot 1 Robot 2

Detected Object Robot 1 Robot 2

Q: Two robots have detected the object inside
the blue bounding box, and give us the
attention heat maps to explain why they found
the object. Please choose the robot that has a
more reasonable explanation.

Fig. 11: User trust studies for object specification: (left) In the first
questionnaire, the user needs to rank the heat maps from four methods:
D-RISE, Grad-CAM, Grad-CAM++ and ODAM (ours). (right) In the
second questionnaire, the user is asked to choose the more reasonable
heat map from the two explanations, which are generated from
detectors with different performance (36.6% mAP and 42.3% mAP).
The labels for each option are assigned randomly for each question.

has significantly better average rank of 1.6 compared to other
methods (Wilcoxon signed-rank test, p<0.001). The significantly
higher human trust of ODAM demonstrate its superior instance-
level interpretability for object detection.

From another aspect, previous studies evaluated trust between
humans and DNNs by seeing if better models had better explana-
tion maps according to humans. Following [5, 17], ODAM maps
are generated for 120 objects that are correctly detected by two
FCOS-ResNet50 models with different performance (36.6% mAP
and 42.3% mAP). Some samples of this questionnaire are shown
in Fig. 11 (right). Excluding samples where users thought the
explanations were similar quality, the better model (42.3% mAP)
received significantly more responses that its explanations were
more trustworthy (38.2% vs. 28.6%; χ2(1)=8.10, p=0.004). Thus
the ODAM visualizations provide evidence that more accurate
models can induce more trust in humans.

4.3.2 User trust study on object discrimination

The previous section conducts the user study to evaluate the
explanations for faithfulness, which shows how reasonable the
heat maps explain the object class predictions. Here, we further
conduct a user study on object discrimination ability. In this
test, users are asked to draw a bounding box on the image to
annotate which object they think the AI has detected, based on
the shown heat map. Meanwhile, the users also need to provide
their confidence level from least certain (1) to most certain (5)
when making the choice. For each method (D-RISE, Grad-CAM,
Grad-CAM++ and ODAM), 150 samples are sent out to 10 users
with one user annotating on 15 images. Since the purpose is to
test whether the heat maps can effectively show which object
was detected, especially in the crowded scene, we choose the
samples from the CrowdHuman validation set. Since users will
have different ways to draw the box around the object, a separate
marker manually inspected the user’s boxes to see if they align
with the GT object box in order to determine correctness. During
this process, the marker does not know which explanation method
was used for each image.

Tab. 5 presents the number of examples (in percentage) under
each confidence level and the accuracy of users’ decisions (the
ratio of users’ correct choices) based on heat maps of each method.
The results show that the user can obtain a much higher accu-
racy (χ2 test, p<.0001) and higher confidence (t-test, p<.0001)
with heat maps from ODAM, which demonstrates that ODAM
explanations are superior on object discrimination ability, inducing
higher user trust. These results are consistent with the quantitative
evalution with ODI in Sec. 4.2. Some incorrect and correct user’s
choices are displayed in Fig. 12.

4.3.3 Similarity with human attention

Since ODAM achieves the highest human trust in the above user
studies, we further investigate how well the visual explanations
of object detectors agree with human attention, and whether this
agreement is related with user trust of the detector. The human
attention data is collected using an explanation task, where the
user describes a specific object in an image using a text expla-
nation, and meanwhile their eye fixations are recorded using a
hardware eye tracker1. Here we use an explanation task, where the
participant must describe the discriminative features of the object,

1. The experiment has been approved by the Human Research Ethics
Committee at the University of Hong Kong (Reference number : EA210386)
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ODAM

Confidence:3Confidence:3

D-RISE

Grad-CAM

Confidence:3 Confidence:3

Grad-CAM++

(a) Examples of user’s incorrect choice

Grad-CAM

Confidence:4 Confidence:2

Grad-CAM++

D-RISE

Confidence:4 Confidence:4

ODAM

(b) Examples of user’s correct choice

Fig. 12: User trust studies for object discrimination. Examples of (a) user’s incorrect choices and (b) user’s correct choices with heat maps
of Grad-CAM, Grad-CAM++, D-RISE and ODAM, respectively. In the user trust test on object discrimination, users are asked to draw the
bounding box of the object which was detected based on the given heat map. Blue boxes are those drawn by users, while red boxes are those of
the ground truth objects. Note that in CrowdHuman, the ground-truth boxes are for the full person, even when the person is partially occluded.
The user’s confidences when choosing the objects are also displayed.

Grad-CAM++D-RISEODAM Grad-CAMHumanImage

Human explanations: “4 wheels at the bottom to slide, board on top”, “wheels and the board above”, “horizontal wooden board with 
wheels underneath”

Human explanations: “4 legs, wooden, for sitting”, “to sit on with 4 legs”, “4 legs, for people to sit, made of wood”, “four legs. Can be 
used for sitting.”

skateboard

chair

Fig. 13: Examples of human attention maps and corresponding text
explanations, and XAI visual explanation heat maps for the FCOS
detector using ODAM, D-RISE, Grad-CAM and Grad-CAM++.

TABLE 6: Quantitative comparison of human attention maps
and XAI visual explanations for FCOS using: cosine similarity
(Cos.), correlation (Corr.), optimal transport distance (OTD), and
Jensen-Shannon divergence (JSD).

Method Cos.↑ Corr. (×10−3)↑ OTD↓ JSD↓
Grad-CAM 0.1802 0.467 0.2483 0.5216
Grad-CAM++ 0.2242 0.674 0.2225 0.5051
D-RISE 0.4142 0.438 0.1315 0.3902
ODAM 0.4627 2.876 0.0653 0.3180

Fig. 14: Relationship between user trust of an ODAM visual explana-
tion maps and its similarity to human attention maps. The user trust
is the average rank of the ODAM maps obtained in the user study in
Fig. 11 left. The similarity/distance between the visual explanation the
human attention map is measured with cosine similarity, OT (optimal
transport) distance, correlation and JS (Jensen-Shannon) divergence
between ODAM maps and human attention maps.

rather than a recognition task, where the participant just names the
object, because previous studies [79, 80] have shown that human
attention during explanation is more similar to XAI heat maps
for image classification. In contrast to [14, 81] that use a manual
pointing/reveal task to collect the human attention, collecting eye

fixations is a more direct measurement of top-down attention while
the user performs explanation tasks.

In detail, two example objects with high detection confidence
were selected from each class in the MS COCO val set, totaling
160 objects. We collected eye fixation data during an explanation
task of the query object’s class (80 classes) from 10 participants.
All participants had normal or corrected-to-normal vision. In
each trial, the participant viewed an image with the query object
annotated by a bounding box. All the images are displayed on a
1280x1024 screen, and images are scaled so that all query objects
are similar sized and large enough to discriminate eye fixations
on object parts. Specifically, each image is resized and padded
such that the query object has the minimum side length of 10° of
visual angle (v.a.) or ∼230 pixels. Meanwhile, the object area is
limited to 4402 pixels to prevent some stick-shaped objects from
becoming too big. The participant was then asked to explain why
this object is a particular class, and at the same time, the eye
fixation locations and durations are recorded using an EyeLink
1000 hardware eye tracker. For each image, the eye fixations of
the ten participants were combined, and an overall human attention
map was computed by convolving the eye fixation map with a 2D
Gaussian kernel with bandwidth 23 pixels (equivalent to 1° v.a.).
Finally the eye gaze maps are transformed back to the original
image size for visualization and comparison with XAI heat maps.

Fig. 13 presents two examples of the human attention maps
and XAI heat maps generated for the FCOS detector. The similar-
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Fig. 15: ODAM-based knowledge distillation (KD). Left: An example
comparing (a) bottom-up attention and (b) top-down attention (ODAM
explanation map) of the teacher model (RetinaNet-Resnet101) and
student model (RetinaNet-Resnet50). The top-down attention is gen-
erated using ODAM w.r.t the key prediction in the lower scale
(skateboard) and the higher scale (person), respectively. Right: our
proposed framework of KD using ODAM explanation maps.

ity between the human attention maps and the XAI heat maps is
computed using 4 similarities/distances: cosine similarity, correla-
tion, optimal transport distance (OTD), and Jensen-Shannon diver-
gence (JSD). The average results are shown in Tab. 6. Compared
to other XAI explanation maps, ODAM achieves higher similarity
(Cosine, Correlation) with and smaller distance (OTD, JSD) to
human attention maps. Since ODAM obtains higher confidence in
the user trust study as well, the consistent results give a promising
insight on the relationship between user trust of explainable AI
and the similarity with human attention. We further investigate
this relationship by plotting the similarity (distance) with human
attention vs. the average rank in the user trust study for each
visual explanation map. The scatter plots in Fig. 14 also show a
statistically-significant trend (red line) that visual explanations that
induce higher confidence (better ranking) in the user trust study
have higher similarity (smaller distance) with human attention.

5 APPLICATION OF OBJECT SPECIFICATION:
ODAM-BASED KNOWLEDGE DISTILLATION

For the explanation task of “object specification”, the heat map
highlights the important regions for the specific prediction, and
providing an interpretation about “what context/features are im-
portant for the prediction?”. ODAM is able to generate instance-
level explainable maps, which shows the top-down attention of
the detector for a specific prediction. Therefore, we propose an
application for the object specification ability of ODAM: ODAM-
based knowledge distillation (KD) for object detection. With the
top-down attention provided by ODAM, a student detector is
expected to learn better from the teacher detector.

5.1 Brief introduction of KD for object detection
Larger backbones are usually needed to obtain higher-accuracy
from deep learning based models, which thus consume more
computing resources and inference time. Knowledge distillation
(KD) [47] was proposed to transfer the learned information from
a large teacher model to a lightweight student network. By mim-
icking the predictions or features of the teacher, the student can
achieve higher performance with lower memory requirements and
inference time. The KD methods [82, 48, 83, 84, 85, 86, 87, 88]
designed for image classification show less effectiveness when
directly migrated to an object detection model, since there are

multiple proposals comprising an extremely unbalanced ratio of
positive and negative instances in the detection task. Therefore,
for KD in object detection, a key issue is to select the imitation
region and decide the importance in features or predictions.

The state-of-the-art FGD [60] distills object regions and back-
ground regions separately, with using the bottom-up attention map
as the weight of feature distillation. Since a Feature Pyramid Net-
work (FPN) [69] is typically used in detectors to extract features
of different scales, KD generally occurs on each level of FPN.
For each level, the teacher’s feature map is utilized to generate
the bottom-up attention as: Mbu = C · softmax( 1

K

∑
k |A

(T )
k |),

where A
(T )
k is the feature map of the k-th channel of the

teacher network, and C is the spatial area (number of pixels)
of the feature map. Since the foreground and background are
distilled separately, a normalization mask N is defined to nor-
malize separately with respect to the object or background area:
Nij = 1

Cobj
if location (i, j) is in an object, or Nij = 1

Cbg

otherwise, where Cobj and Cbg are the areas of the object and
the background respectively. Finally, the feature distillation loss is
a weighted distance of the features between teacher and student:
Loss =

∑
ij N ◦ Mbu ◦

∑
k L2(A

(T ), A(S)), where L2 is the
pixel-wise L2 between feature vectors, the summation of k is
over channels, the summation over ij is over space, and ◦ is the
element-wise product.

5.2 ODAM-based knowledge distillation
We next propose using ODAM to generate top-down attention for
knowledge distillation. In order to explore the important features
for predictions on each scale and the differences between students
and teachers, we visualized the bottom-up attention Mbu and
the top-down attention generated from ODAM in Fig. 15(left).
The bottom-up attention (Fig. 15 left(a)) shows the magnitude
of feature values on each location where higher values indicate
larger feature responses. The top-down attentions (Fig. 15 left(b))
are generated with ODAM and show which features are actually
important for the detector to make a specific prediction. For
different feature scales, when predicting objects in various sizes,
not all foreground features contribute to the final predictions
(e.g. the small object “skateboard” predicted with lower scale
feature is not used to predict the large object “person” with higher
scale feature). Therefore, we propose an ODAM-based KD that
first selects the key predictions in each feature level, and then
uses ODAM to indicate the focused region of the foreground.
The focused region and unfocused region may lead to different
difficulties and effectiveness in knowledge distillation.

The framework of our ODAM-KD is shown in Fig. 15 (right),
which uses FGD as the baseline. The key prediction selection
(KPS) module selects the key outputs of the teacher and student
models, which are passed as input to ODAM to generate the top-
down attention map. We consider two aspects in the selection,
teacher’s strengths and student’s weakness, which should influence
the performance gap between student and teacher, so that a teacher
can make effective and precise knowledge transmission.

For the teacher model, after the anchor assignment process2

the top 10 best matched predictions for each ground truth object
(GT) are selected and checked, then those whose IoU with their
GT box is larger than 0.5 are regarded as the key instances. For
the student model, we regard the current false positive predictions

2. During detector training, anchor assignment will choose positive predic-
tions for each ground truth object based on the matching quality.
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as key instances, since they could cause negative influence to
the student’s performance. Therefore, the student predictions are
selected to satisfy high classification confidence (over 0.1), which
makes it survive at inference, and bad IoU with its assigned
GT (below 0.5), which means a mislocalization. We record the
corresponding anchor locations of both the selected teacher’s high-
quality and student’s low-quality predictions in the set P , and
denote the object confidence outputs for prediction p as y(T )

p and
y
(S)
p for the teacher model and student model, respectively. Their

corresponding GT objects are marked as focused objects in the
specific feature level.

The gradients of predictions in P w.r.t. the feature map are
calculated, and their weighted average is computed. Here the
weights are the absolute difference of yp in order to focus on
predictions with large mismatch between teacher and student.
Based on the weighted average gradients of teacher and student,
we obtain attention maps M (T )

td with the features of teacher A(T ),
and M

(S)
td with the student’s feature A(S) in the form of ODAM:

M
(T )
td = ReLU

(∑
k

A
(T )
k ◦

∑
p∈P

∣∣∣y(T )
p − y(S)

p

∣∣∣ ∂y(T )
p

∂A
(T )
k

)
, (3)

M
(S)
td = ReLU

(∑
k

A
(S)
k ◦

∑
p∈P

∣∣∣y(T )
p − y(S)

p

∣∣∣ ∂y(S)
p

∂A
(S)
k

)
, (4)

Mtd = C · softmax(max(M
(T )
td ,M

(S)
td )), (5)

where the combined map Mtd is obtained with a softmax function
is over the whole map.

Finally, with the bottom-up and top-down ODAM attention,
we define the loss attention mask and feature distillation loss,

Matt = Mbu ◦Mtd, (6)

Loss =
∑
ij

N ◦Matt ◦
∑
k

L2(A
(T ), A(S)), (7)

where N is the normalization mask defined in Sec. 5.1, while
using the focused objects (not all GT objects) in its calculation.

5.3 Experiments with ODAM-KD
In these experiments we use ODAM explanation maps for knowl-
edge distillation of detectors.

5.3.1 Ablation study
We first conduct an ablation study on ODAM-KD. The baseline
distills all objects region as foreground on each level equally,
while in contrast our method selects the focused GTs via KPS
and only regards the locations inside their boxes as foreground.
In the ablation study, we explore the contribution of focused and
other GTs region to distillation. Here the other objects outside the
KPS selection results are denoted as unfocused GT objects. After
KPS selects the focused GT objects on each feature level based on
the PT and PS , we conduct the experiments that use focused and
unfocused GTs regions separately or together as the foreground
with Nij = 1

Cobj
if location (i, j) is in foreground, otherwise

Nij = 0 for background, with Cobj denotes the object area.
As shown in Tab. 7, using the standard bottom-up attention,

distillation on the features of focused regions brings the main
effect to the performance (row 2 vs. row 1; mAP 39.5 focused
vs. 39.1 unfocused), while distilling both parts together equally
brings no improvement. Using our proposed attention map, which
incorporates top-down ODAM attention to stress the important
locations of the selected key instances (focused), the performance
is further improved (row 4). These results demonstrate that the

TABLE 7: Ablation study for ODAM-KD: comparison of knowledge
distillation in cases of: using focused, unfocused GTs region sepa-
rately or together as foreground (FG); with or without distillation on
background (BG); replacing the top-down attention with Grad-CAM.
RetinaNet [24] FG BG Attention mAP mAR
ResNet101(T) - - - 38.9 54.8
ResNet50(S) - - - 37.4 53.9

(1) unfocused bottom-up 39.1 55.3
(2) focused bottom-up 39.5 56.1

Distillation (3) together (baseline) bottom-up 39.5 55.9
(ResNet50) (4) focused (ours) Eq. 6 w. ODAM 39.8 56.3

(5) together (baseline)
√

bottom-up 39.7 56.1
(6) focused (ours)

√
Eq. 6 w. ODAM 40.1 56.5

(7) focused
√

Eq. 6 w. Grad-CAM 39.5 56.2

(a) Bottom-up (b) Top-down (c) Combination Focused Objects

Sheep 
(low-level)

Person
(high-level)

fork, spoon, cup
(low-level)

pizza, bottle
(high-level)

Fig. 16: Examples of bottom-up Mbu and top-down attention Mtd and
their combination Matt for different feature levels (spatial scales).

designed KPS module selects the discriminative and representative
instances and corresponding GTs on each feature level, and the
ODAM heat map of key instances helps to generate better attention
for feature distillation. When also involving distillation on the
background (row 6), our method further improves the performance
(mAP 40.1 vs. 39.7 baseline, mAR 56.5 vs. 56.1 baseline).

We further conduct an ablation study that replaces the ODAM
top-down attention map used in (6) with Grad-CAM. Note that D-
RISE is infeasible here since it is too inefficient to be calculated
in every batch. The mAP using Grad-CAM (row 7) is lower than
the baseline, which demonstrates that the regions highlighted by
Grad-CAM are less appropriate for distillation. This also confirms
that ODAM has superior object specification ability on detection.

Fig. 16 visualizes the bottom-up (Mbu), top-down (Mtd),
and combined (Matt) attention maps for 2 example images. The
locations of foreground objects show higher magnitude of values
on bottom-up attention (Fig. 16a), while not all the significant
features have effects on the final predictions as seen in the
corresponding top-down attention (Fig. 16b). For different feature
levels, the KPS module is utilized to find the focused GT objects
and key predictions, which are the inputs to ODAM to generate
the top-down attention (Fig. 16b). By applying the “object spec-
ification” ability of ODAM, the top-down attention indicates the
regions that are important for the model to replicate the selected
representative predictions. Finally, Fig. 16c shows the combined
attention maps, which consider both the significant feature areas
and stresses the important areas for the key predictions.

5.3.2 Comparison with baseline method
In the experiment, FGD [60] is adopted as the baseline. We
modify the attention map used in feature distillation of FGD
to be generated by the designed KPS and ODAM. All other
modules, including global distillation and training settings, follow
the baseline. We implement the knowledge distillation on FCOS
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TABLE 8: Comparison of knowledge distillation methods on MS
COCO validation set.

Teacher Student Year mAP APS APM APL

RetinaNet-Res50 - 37.4 20.6 40.7 49.7
RetinaNet- FGFI [56] CVPR2019 38.6 21.4 42.5 51.5

Res101 GID [55] CVPR2021 39.1 22.8 43.1 52.3
(mAP 38.9) FGD [60] CVPR2022 39.7 22.0 43.7 53.6

Ours - 40.1 22.8 44.0 54.1
RetinaNet-Res50 - 37.4 20.6 40.7 49.7

RetinaNet- FKD [59] ICLR2020 39.6 22.7 43.3 52.5
ResNeXt101 CWD [89] ICCV2021 40.8 22.7 44.5 55.3
(mAP 41.0) FGD [60] CVPR2022 40.7 22.9 45.0 54.7

Ours - 41.0 24.0 45.3 55.0
FCOS-Res50 - 38.5 21.9 42.8 48.6

FCOS-Res101 GID [55] CVPR2021 42.0 25.6 45.8 54.3
(mAP 40.8) FGD [60] CVPR2022 42.7 27.2 46.5 55.5

Ours - 42.8 27.4 46.7 55.0

[18] and RetinaNet [25] with MS COCO dataset [70]. The student
model uses ResNet50 as backbone, and learn from the teacher
models which uses a larger backbone, ResNet101 or ResNeXt101.

Tab. 8 presents the results for KD. Comparing with the FGD,
ODAM-KD obtained consistently higher mAP with three teacher-
student combinations, but with sometimes limited improvement
(0.4 with RetinaNet-Res101, 0.3 with RetinaNet-ResNeXt101 and
0.1 with FCOS-Res101). Note that the gains on small objects are
significant; APS improves by 0.8 with RetinaNet-Res101, 1.1
with RetinaNet-ResNeXt101, and 0.2 with FCOS-Res101. The
reason why ODAM-KD improves performance on small objects
is because the ODAM top-down attention map is more focused
than the bottom-up attention map on small objects. Thus, their
combination map can highlight each specific small object. This
is illustrated in the visualization results in Fig. 16, where the
combination attention has better focus on individual small objects,
as compared to the bottom-up attention. Since ODAM-KD uses
the same framework and loss design as FGD, with the difference
being the distillation weights based on the combination attention,
it is reasonable that ODAM-KD performance is significantly
improved on APS , while obtaining slight gain on mAP . Overall,
our method outperforms the baseline FGD for a variety of teacher
backbones and detector architectures, and obtains the highest
mAP among the recent object detection KD methods. The results
further confirm the good object specification ability of ODAM
explanation heat map, which provides effective attention on the
important regions for KD.

6 APPLICATION OF OBJECT DISCRIMINATION:
ODAM-BASED NMS
We now consider the unique explanation task for object detection,
“object discrimination”. This visual explanation map is expected
to show which instance was looked at when the model made
the prediction, and make interpretation about “which object was
actually detected?” Here, we utilize the object discrimination
ability of ODAM map and propose the ODAM-NMS to aid
with duplicate removal while preserving overlapping detections of
different instances in crowded scenes, where more predictions are
likely to be mistakenly suppressed using classic NMS. In §6.1, we
first introduce a training scheme, ODAM-Train, which encourages
the model to generate heat map with better object discrimination
ability. Then, in §6.2, we introduce our ODAM-NMS.

6.1 ODAM-Train
Since the instance-specific heat maps may still “leak” onto other
neighboring objects, especially in crowded scenes, we first pro-

Consistency 
Loss

Separation 
Loss

Different GTs Same GT

IoU=0.66

Corr=0.09

IoU=0.44

Corr=0.81

DuplicatesNot Duplicates

(a) Odam-Train

(b) Odam-NMS

Fig. 17: (a) ODAM-Train uses auxiliary losses to encourage heat maps
for predictions on the same object to be consistent, and for different
objects to be distinct; (b) ODAM-NMS uses the box IoU and the
normalized correlation between heat maps to determine the duplicate
detections. The yellow bounding box shows the detection proposal
corresponding to the heat map.

pose a training method ODAM-Train for improving the heat
maps for object discrimination, to better explain which object
was being detected. In order to focus the detector to be better
localized on a specific object area, and not overlapped with other
objects, ODAM-Train encourages similar attention for different
predictions of the same object, and separate attentions for differ-
ent objects (see Fig. 17a). Specifically, we propose a heat-map
consistency loss Lcon and a separation loss Lsep as auxiliary losses
during detector training. Using the predicted confidence scores as
explanation targets, heat maps are first calculated by ODAM for
all the positive proposals, and then resized to the same size, and
vectorized. The ODAM vectors are then organized by ground-truth
(GT) object, where P(p) = {H(p)

n }n is the set of ODAM vectors
for positive predictions of the p-th GT object. For each GT object,
the best prediction H

(p)
best is selected from P(p) that has the highest

IoU with the GT box. The consistency and separation losses are:

Lcon =
∑

p∈GT

∑
n∈P(p)

− log cos(H
(p)
best , H

(p)
n ), (8)

Lsep =
∑

p∈GT

∑
m/∈P(p)

− log
(
1− cos(H

(p)
best , H

(¬p)
m )

)
, (9)

where H
(¬p)
m are ODAM vectors for proposals not corre-

sponding to the n-th GT object. The loss for detector training is
L = Ldetector + (Lcon + Lsep)/N , where N is the total number of
ODAM vector pairs in the loss calculation. Note that the proposed
ODAM-Train is a fair design because the supervision of the heat
map affects all layers of the detector via the top-down gradient
computation of ODAM. Therefore, changes in the heat maps
from learning (e.g., better localization on the object) are a result
of actual changes in the detector’s strategy (e.g., mainly using
features on the object). Thus, in this way, the detector is trained to
use a strategy that is more discriminative of object instances.

6.2 ODAM-NMS
In object detection, duplicated detections are removed in post-
processing using NMS, which is based on the following assump-
tion: two bounding boxes (bboxes) that are overlapped (high IoU)
are likely to be duplicated, and the bbox with lower-score (less
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Algorithm 1 ODAM-NMS: predictions are removed or
kept based on both the IoU and the correlation between
ODAM heat maps.

P ← GetPredictions(imageI)
P ← SORT (P )
D ← ∅
while P ̸= ∅ do

p← POP (P )
isDuplicate← false
for d ∈ D do

iou← GetIoU(p, d)

corr ← NormCorrelation(S
(p)
yc , S

(d)
yc )

if iou ≥ Tiou and corr > T l then
isDuplicate← true

else if iou < Tiou and corr > Th then
isDuplicate← true

end if
end for
if ¬isDuplicate then

PUSH(p,D)
end if

end while

confidence) should be removed. In particular, for classical NMS,
the predictions in list P are sorted by their confidence scores,
then each prediction p ∈ P is compared to the currently selected
detections d ∈ D. If the IoU between p and any d ∈ D is larger
than a threshold Tiou, p is considered a duplicate and discarded.
Otherwise p is added to D. The classical NMS has shortcomings
in crowded scenes because the key assumption does not hold when
objects are partially occluded by neighboring objects.

We propose ODAM-NMS to mitigate this problem based on
an observation that with ODAM-Train, the ODAM heat maps for
different objects can be distinctive, even though their bboxes are
heavily overlapped (see the left and center heat maps in Fig. 17b).
Meanwhile, even if the IoU of two predicted bboxes is small, their
visual explanations may be similar indicating that the same object
instance is detected. For example, in Fig. 17b, the center and right
predictions have low IoU but have heat maps with high correlation.
In other words, ODAM shows which object the model looked at
to make the prediction, which can intuitively assist NMS to better
identify duplicate object predictions.

After the inference stage of the detector, we use ODAM
to generate heat maps for each prediction with the predicted
confidence score. All the heat maps are resized to the same
size with a short edge length of 50, then vectorized. Normalized
correlation is calculated between each pair of vectors to represent
the probability that the two predictions correspond to the same
object. ODAM-NMS uses both the IoUs and heat map correlations
between p and d ∈ D when considering whether a prediction
should be removed or kept. If the IoU is large (IoU ≥ Tiou)
and the correlation is very small (corr ≤ T l), then p is not a
duplicate; If the IoU is small (IoU < Tiou) and the correlation
is very large (corr > Th), then p is a duplicate. Through
these two conditions, ODAM-NMS keeps more proposals in the
high-IoU range for detecting highly-overlapped crowded objects,
and removes more proposals in the low-IoU range for reducing
duplicates. The pseudo code for ODAM-NMS is shown in Alg. 1.

6.3 Experiments with ODAM-NMS

We first present results on how ODAM-Train can improve the
object discrimination ability of a detector. We then present results
of ODAM-NMS using an ODAM-Trained detector on crowded

IoU=0.81
Corr=0.88

IoU=0.56  
Corr=0.58

IoU=0.28
Corr=0.41

(a) Without Odam-Train 

(b) With Odam-Train 

IoU=0.74  
Corr=0.35

IoU=0.55  
Corr=0.07

IoU=0.32
Corr=0.06

Average heat map

Average heat map

Fig. 18: Comparison of heat maps from FCOS without and with
ODAM-Train. (left) The average heat map over the high-quality
predictions with confidence score over 0.1. (right) Instance-specific
heat maps of some predictions on different objects, with the IoU and
correlation between each pair of predictions displayed in the middle.

scenes, followed by an ablation study comparing ODAM-NMS
with and without ODAM-Train.

6.3.1 The effect of ODAM-Train on object discrimination

We propose ODAM-Train to encourage the model to generate
ODAM maps with better object discrimination ability. Here we
compare the heat maps from ODAM using the baseline detector
trained with and without ODAM-Train. The heat maps for each
proposal are computed by ODAM with its confidence score as
the explanation target. Although the original heat maps without
ODAM-Train (Fig. 18a) can locate the object well, the attention
may spread to its overlapping neighbors, which makes the corre-
lations between them relatively high. Using the consistency and
separation losses in (9), ODAM-Train yields well-localized heat
maps for the same object and distinctive heat maps for different
objects, which better shows which object was being detected,
improving object discrimination. As seen in Fig. 18b, different
people in the crowd can be separated by their low heat-map
correlation, even when they have high bbox IoU.

We quantitatively compare the ODAM maps for detectors
without and with ODAM-Train in terms of localization and object
discrimination In Tab. 9, and in terms of object specification in
Tab. 11. The higher PG, Compactness and ODI results indicate
that using ODAM-Train can improve the localization quality and
object discrimination ability by generating heat maps that are
better-localized on the objects. However, there is a tradeoff with
faithfulness (see Tab. 11), since the corresponding AUC metrics
worsen slightly when using ODAM-Train.

6.3.2 Performance of ODAM-NMS with ODAM-Train

We evaluate ODAM-NMS with ODAM-Train for improving de-
tection in crowded scenes. To evaluate the performance of NMS on
heavily overlapped situations, we adopt the CrowdHuman dataset,
which contains an average 22.6 objects per image (2.4 overlapped
objects). We compare ODAM-NMS with NMS, SoftNMS, and
FeatureNMS, using both FCOS and Faster RCNN. The IoU
threshold is set to Tiou = 0.5 for both NMS and our method. Soft-
NMS uses Gaussian decay with σ = 0.5 and final threshold of
0.05. For FeatureNMS, the IoU range is set to (0.9, 0.1) following
[66]. For ODAM-Train, the detector training pipeline is totally the
same as the baseline [18, 22], which uses SGD as the optimizer
with batch-size 16, learning rate 0.2 for two-stage Faster R-CNN
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TABLE 9: Comparison of ODAM w/o and w/ ODAM-Train on the ability of localization and object discrimination, according to Pointing Game
(PG) accuracy with ground-truth bounding boxes (b) or segmentation masks (m), energy-based PG with box or mask, Heat Map Compactness
(Comp.), and Object Discrimination Index (ODI).

MS COCO CrowdHuman
PG(b)↑ PG(m)↑ enPG(b) ↑ enPG(m) ↑ Comp.↓ ODI(b)↓ ODI(m)↓ PG(b)↑ enPG(b) ↑ Comp.↓ ODI(b)↓

ODAM 91.9 82.6 73.1 57.1 1.36 34.8 19.5 95.5 79.5 1.04 56.9
w/ ODAM-Train 93.3 83.9 79.6 63.9 1.32 34.1 18.7 97.3 83.9 0.91 51.3

TABLE 10: Comparisons of NMS strategies on CrowdHuman validation set. All models are trained with the same baseline implementation.
The timing is for the whole pipeline: detector inference, heat map calculation, and NMS.

FCOS Faster RCNN
AP↑ JI↑ MR↓ Recall time (s/img) AP↑ JI↑ MR↓ Recall time (s/img)

NMS 87.8 78.4 45.5 93.2 0.114 86.9 79.5 43.2 90.3 0.092
Soft-NMS 80.8 74.9 89.0 93.0 0.470 76.5 61.9 84.8 92.3 0.284
FeatureNMS 89.3 78.1 45.6 95.4 0.145 82.0 65.7 68.8 94.9 0.120
ODAM-NMS (ours) 89.3 81.1 44.5 95.5 0.178 88.1 80.5 42.8 91.5 0.140

TABLE 11: Comparison of ODAM w/o and w/ ODAM-Train on ob-
ject specification (explanation faithfulness) using AUC for Deletion,
Insertion, and Visual explanation accuracy (VEA) curves.

Deletion↓ Insertion↑ VEA ↑
ODAM 72.68 50.33 0.163

w/ ODAM-Train 74.45 46.66 0.143

TABLE 12: Comparisons of NMS performances with and without
ODAM-Train (Od.-Tr.) on the CrowdHuman validation set for both
FCOS and Faster RCNN detectors. Th and T l are the correlation
thresholds in Alg. 1. The IoU threshold for all NMS methods is 0.5.

FCOS Faster RCNN
Od.-Tr. Th T l AP↑ JI↑ MR↓ AP↑ JI↑ MR↓

NMS - - 87.8 78.4 45.5 86.9 79.5 43.2√
- - 87.5 78.9 45.6 87.0 79.3 43.8

ODAM-NMS
0.8 0.2 87.5 78.5 54.0 88.9 78.7 44.3
0.9 0.1 88.6 80.4 45.5 89.0 79.8 43.7√
0.8 0.2 89.3 81.1 44.5 88.1 80.5 42.8

and learning rate 0.1 for FCOS. The aspect ratios of the anchors in
Faster R-CNN are set to H : W = {1, 2, 3} based on the dataset,
and other parameters are the same as in the baselines. Training
runs for 30 epochs. We use Th = 0.8, T l = 0.2, which achieves
stable performance in practice.

For comparisons, we adopt three evaluation criteria: Average
Precision (AP50); Log-Average Missing Rate (MR), which is
sensitive to false positives (FPs), and commonly used in pedestrian
detection; Jaccard Index (JI). See [90] for details. Smaller MR
indicates better results, while larger AP50 and JI are better.

Tab. 10 shows the results. Soft-NMS performs poorly in crowd
scenes, generating many false positives in high-score region (high
MR) and with a long processing time. For FCOS, AP performance
of FeatureNMS is much higher than NMS, while JI and MR are
similar. However for Faster RCNN, although FeatureNMS obtains
a high recall, the others are worse than NMS, indicating that
the feature embeddings trained with the cropped features in two-
stage detectors are not distinctive enough, and there are many
false positives in detections. Note that the learned embeddings in
FeatureNMS have no explicit meaning except the relative distance
between each pair, while ODAM-NMS directly uses heat maps
that offer explanations of the detector model. With the default
IoU threshold, our ODAM-NMS achieves better JI and MR than
NMS and FeatureNMS for both detectors. Meanwhile, ODAM-
NMS also achieves the best AP with Faster RCNN. The limitation

of ODAM-NMS is that generating heat maps for dense predictions
takes slightly longer (see §6.3.4). Overall, these results verify
the object discrimination interpretation ability of ODAM with
ODAM-Train and demonstrate that the instance-level explanation
for predictions can help improve NMS in crowd scenes.

6.3.3 Ablation Study
We next provide the ablation studies evaluating NMS and ODAM-
NMS with and without using ODAM-Train. The results are shown
in the Tab. 12. When using the classical NMS, the baseline
detector model yields similar and comparable results with and
without using ODAM-Train, which demonstrates that ODAM-
Train will have little influence on the baseline model performance
when improving the explanation ability. This is a desirable prop-
erty since we hope that providing explanations will not hinder
the detector performance. As for ODAM-NMS, ODAM-Train
brings an obvious improvement with the same parameter setting
(Th = 0.8 and Tl = 0.2) as compared to without ODAM-Train.
This shows that model can be trained to give more consistent and
separated explanations that benefit duplicate detection removal.

Furthermore, without ODAM-Train, ODAM-NMS needs the
stricter judgment conditions to make more reasonable decisions,
such as increasing Th and reducing Tl, to obtain better results.
This ablation study indicates that, since ODAM-NMS makes
decisions based on heat-map correlations, it relies on good quality
explanations, and using ODAM-Train is beneficial because it
encourages the model to produce consistent and distinctive heat
maps on detections of the same or different object.

6.3.4 Efficient calculation and inference time
Since there are many predictions from the object detector, calcu-
lating gradients of each prediction w.r.t. the feature maps one-by-
one will incur an unacceptably long time cost for ODAM-Train
and ODAM-NMS. To enable efficient ODAM-Train and ODAM-
NMS, we adopt the RoI-pool features in the two-stage detector
as Ak, since the gradients w.r.t. this layer for all predictions can
be computed in a batch with the “autograd” function in PyTorch.
As for one-stage detectors, the output features from the Feature
Pyramid Network (FPN) [69] are adopted, and their gradients are
computed in a batch through expansion of the gradient calculations
[91] into a “reversed” detector head. This substantially improves
the efficiency of ODAM-Train and ODAM-NMS.

The inference times are shown in Table 10. The inference time
of vanilla NMS is 0.114s per image (on an RTX 3090 GPU),
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while the inference time of ODAM-NMS is 0.178s. Thus, the extra
calculation of the ODAM-NMS takes about 0.064s per image.
Concretely, in the detector forward stage, 0.0072s is used for
generating ODAM maps for predictions, and the ODAM-based
NMS needs 0.0536s, compared with 0.0206s for vanilla NMS.

7 CONCLUSION

In this paper, we propose ODAM, a white-box gradient-based
instance-level visual explanation technique for interpreting the
predictions of object detectors. ODAM can produce instance-
specific heat maps for any prediction attribute, including object
class and bounding box coordinates, to show the important regions
that the model uses to make its prediction. Our method is general
and applicable to one- and two-stage and transformer-based de-
tectors with different detector backbones and heads. Qualitative
and quantitative evaluations demonstrate the advantages of our
method compared with the class-specific (Grad-CAM) or black-
box works (D-RISE), in terms of both object specification and
object discrimination. We also conduct user trust studies and
examine the similarity between human attention and XAI heat
maps, and show that XAI heat maps that are more trustworthy
also have higher similarity to human attention. Such a relationship
provides a path for improving user trust of models by making
the detector better mimic the human explanations, which will be
considered in our future work.

Leveraging the object specification and object discrimination
ability of ODAM, we propose two downstream applications for
ODAM explanations. First, exploiting the object specification
ability, we propose ODAM-KD, which performs knowledge dis-
tillation by combining the top-down attention from ODAM with
bottom-up attention. Second, exploiting the object discrimination
ability, we propose ODAM-Train and ODAM-NMS, which trains
the detector to use more discriminative strategies and uses the
visual explanations to infer duplicate detections for removal. In
experiments, both proposed methods improve on the baseline per-
formance, demonstrating the efficacy of ODAM on downstream
applications. Note that such applications using visual explanations
are not feasible with D-RISE due to its inefficiency. The success-
ful applications also verify the interpretation ability of ODAM on
detectors. By analyzing detectors with ODAM, we will continue
to explore the possible directions for boosting object detection.
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