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Modeling Noisy Annotations for
Point-wise Supervision

Jia Wan, Qiangqiang Wu, and Antoni B. Chan

Abstract—Point-wise supervision is widely adopted in computer vision tasks such as crowd counting and human pose estimation. In
practice, the noise in point annotations may affect the performance and robustness of algorithm significantly. In this paper, we
investigate the effect of annotation noise in point-wise supervision and propose a series of robust loss functions for different tasks. In
particular, the point annotation noise includes spatial-shift noise, missing-point noise, and duplicate-point noise. The spatial-shift noise
is the most common one, and exists in crowd counting, pose estimation, visual tracking, etc, while the missing-point and duplicate-point
noises usually appear in dense annotations, such as crowd counting. In this paper, we first consider the shift noise by modeling the real
locations as random variables and the annotated points as noisy observations. The probability density function of the intermediate
representation (a smooth heat map generated from dot annotations) is derived and the negative log likelihood is used as the loss
function to naturally model the shift uncertainty in the intermediate representation. The missing and duplicate noise are further
modeled by an empirical way with the assumption that the noise appears at high density region with a high probability. We apply the
method to crowd counting, human pose estimation and visual tracking, propose robust loss functions for those tasks, and achieve
superior performance and robustness on widely used datasets.

Index Terms—Noisy point annotations, crowd counting, object counting, tracking, pose estimation, deep learning
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1 INTRODUCTION

Point annotations are widely used in computer vision tasks such as
crowd counting [1, 2] and human pose estimation [3, 4]. In crowd
counting, a coordinate is annotated to roughly indicate the location
of a person. Although we care more about the total number of
persons in an image instead of their precise locations, the rough
location provides important information for the distribution of
the crowd. Then, the model is trained to predict the total count
in a given image, typically through predicting an intermediate
representation (crowd density map) based on the point annotations
[5]. In human pose estimation, the human joints are annotated by a
set of points and the model is trained to locate those joints. Then,
human pose can be inferred based on the locations of the detected
joints locations [4]. For other applications such as visual tracking
and object detection, an object is represented by a location and a
scale. Therefore, the location of an object/part plays central role
in computer vision.

Unfortunately, the location of an object/part is ambiguous due
to a variety of reasons, such as occlusion and human labeling error.
Therefore, noise commonly exists in point annotations and may
affect the performance and robustness of algorithms significantly.
In crowd counting, there are potentially thousands of people to be
annotated in one image, which makes it easy to make a mistake
during labeling. Moreover, people in the crowd are occluded by
each other, which makes it even harder to locate a person during
labeling. Thus, annotation noise is common for all crowd counting
datasets. In human pose estimation, the annotation noise mainly
comes from the definition of the joints and the occlusion by
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clothes (e.g., loose clothing will obscure the actual joint location).
For visual tracking and object detection, the center location of
an object is usually defined by the center of the bounding box.
However, it is not always accurate since the object shape varies.

Since the definition and annotation of locations are ambiguous
and noisy, typical methods predict an intermediate result instead
of the annotation coordinates directly, which provides better su-
pervision for neural networks. In those methods, an intermediate
representation is first generated by convolving the dot map with a
unit ball/Gaussian kernel, resulting in a density map or heat map.
Then, the model is learned to predict the intermediate representa-
tion which is smoother and easier to predict. Typical loss function
used to train the model is Mean Squared Error (MSE) which
assumes isotropic Gaussian per-pixel noise in the density/heat
intermediate maps. However, this assumption is erroneous since
the pixels in the intermediate map are correlated due to the
convolution operation. Therefore, traditional loss functions suffer
from the problems caused by mismatch between the assumed per-
pixel noise and the actual annotation noise. First, the model is
easy to overfit without a proper representation of annotation noise.
Second, in the presence of large amounts of annotation noise, the
model tends to predict smooth maps which are not suitable for
localization.

To address this issue, we first propose to explicitly model the
point-wise shift noise and derive the distribution of the intermedi-
ate representation. By using the negative log likelihood as the loss
function, the uncertainty of annotation noise is naturally modeled.
In particular, the real location is considered as a random variable
and the annotation is treated as the noisy observation of the true
location. By assuming the spatial annotation noise as Gaussian, the
probability density function (pdf) of the pixels in the intermediate
representation is derived, but lacks a closed-form solution. Hence,
we approximate the pdf as a multivariate Gaussian by deriving the
mean, variance and covariance between pixels in the intermediate
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representations. To decrease the computation cost, a low-rank
approximation to the covariance matrix is proposed. Once the
pdf of the intermediate representation is obtained, the negative
log likelihood is used as the loss function which decomposes
into a weighted MSE term and a correlation term. The weighted
MSE term pays less attention to the uncertain regions, and the
uncertainty is correlated to the k nearest distances to the anno-
tation points. Motivated by this observation, we further model
the missing-point and duplicate-point noise by a combination of
a weighted pixel and a weighted point loss function, where the
weight is determined by the k nearest distances to the annotation
points. The weighted point loss assumes that the summation of
density around a person is a distribution. If several points are
missing in a region, the pixel prediction and the point prediction in
this region should be larger. The proposed loss function is effective
in modeling the three types of noise in point annotations.

The contributions of this paper are summarized as follows:
1) We propose to model the true ground-truth point locations as

random variables and point annotations as noisy observations
of the true locations. The uncertainty of the spatial noise is
effectively considered during training, which improves the
robustness of algorithms.

2) We derive a parametric-based robust loss function that is
a generalization of the popular MSE to model the spatial
shift noise. The correlation between pixels in the intermediate
representation is naturally considered.

3) We further model the missing-point and duplicate-point noise
by an empirical robust loss function based on the analysis of
the parametric-based robust loss.

4) We analyze the effectiveness of the proposed loss function
for different tasks under different noise levels. The proposed
robust loss significantly outperforms the traditional loss func-
tion when learning from noisy annotations.

A preliminary version of our work appears in our conference
paper [1]. The main differences between the preliminary confer-
ence version and this paper are three-fold. First, we introduce
a new model for the missing-point and duplicate noise-point,
which works in conjunction with the model for shift noise from
[1]. Second, we propose a new empirical approximation to our
loss function to accelerate its efficiency. Finally, we include new
experiments on visual tracking and human pose estimation, as well
as crowd counting with missing/duplicate noise.

The remainder of the paper is organized as follows. The
relevant works are reviewed in Section 2. Then, the proposed
methods are described in Section 3. Afterwards, the experimental
results are presented and discussed in Section 4, we conclude the
paper in Section 5.

2 RELATED WORKS

In this section, we briefly review the relevant works of crowd
counting, human pose estimation, visual tracking, and methods
for modeling label noise.

2.1 Crowd Counting

Traditional crowd counting algorithms detect human bodies [6]
or body parts [7], and count the number of the bounding boxes.
However, these methods are not capable of handing severe occlu-
sions in crowd scenes. Therefore, direct regression methods are
proposed to predict the count directly from low-level features [8],

such as texture [9] and color [10]. The performance is still limited
due to the large variation of scale and scenes.

In recent years, deep learning based approaches are proposed
and achieve superior performance. Different network architectures
[5, 11] are proposed to extract multi-scale features due to the scale
variation caused by perspective transformation in crowd images.
Kang and Chan [12] propose to use a image pyramid to handle
scale variations. To further improve the quality of the prediction,
refinement based methods are proposed. Context information are
exploited by Sindagi and Patel [13], Xiong et al. [14] to improve
the counting performance. To improve the generalization ability
of the trained model, Zhang et al. [15] propose a cross-scene
fine-tuning method, while Wang et al. [16] propose a synthetic
dataset. The correlation information is also utilized to improve the
generalization ability [17, 18]. However, those methods rely on
the quality of intermediate representation ground-truths.

To learn better intermediate representation, Wan and Chan
[19] propose an end-to-end learning algorithm to adaptively learn
density map ground-truth from dot annotations. An individual
kernel learning method is then proposed by Wan et al. [20].
Wang et al. [2], Wan et al. [21] propose to directly utilize point
annotations as the supervision. Song et al. [22] propose a purely
point-based framework that measures the difference between the
predicted points and the ground-truth for both crowd counting and
localization. However, most of these methods do not explicitly
consider the annotation noise while our loss can model the
fundamental annotation noise according to a generative process.

Semi-supervised crowd counting methods are proposed to
relieve the annotation burden. Loy et al. [23] propose to utilize the
abundant unlabeled data in videos, while Meng et al. [24] propose
to exploit the spatial uncertainty for semi-supervised counting. Xu
et al. [25] propose to use partial annotations in images for training.
These methods mainly consider the uncertainty of the prediction,
while here we focus on the annotation uncertainty.

Finally, more recently, the transformer-based models are pro-
posed to improve the performance of crowd counting [26] and
localization [27]. Yang et al. [28] propose an overlapped patching
method, while Liang et al. [27] propose an end-to-end crowd
localization method, which directly matches the predicted and
the ground-truth points. Shu et al. [29] propose a new loss
function derived in the frequency domain, while Liu et al. [30]
leverage self-supervised learning to improve the performance of
cross-domain crowd counting. Zhang and Chan [31] propose a
calibration free multi-view crowd counting algorithm.

2.2 Human Pose Estimation

Human pose estimation algorithms predict different heat maps for
the corresponding joints, and the maximum response in a map
indicates the location of the joint [3]. These methods can be
divided into to two categories: top-down and bottom-up.

Top-down algorithms first detect each individual in an image
and then predict the joint locations for the individual. A simple
baseline method is proposed by Xiao et al. [4]. Newell et al. [32]
propose stacked hourglass networks for human pose estimation.
These methods rely on the quality of detection results, and thus
Fang et al. [33] propose a regional-based framework to handle
inaccurate bounding boxes of the detector.

Bottom-up algorithms first detect all joints in the image and
then group those joints into multiple persons [34]. Pishchulin et al.
[35] propose to solve the detection and association jointly using
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integer linear programming. Geng et al. [36] propose to use a
pixel-wise spatial transformer to regress joint locations. The anno-
tation noise is seldom considered in human pose estimation, while
here we investigate the performance of different loss functions for
noisy data.

2.3 Visual Tracking
In visual object tracking, deep learning-based trackers are dom-
inant methods that achieve competitive performance on existing
tracking benchmarks [37, 38, 39]. The deep correlation filter (CF)
trackers [40, 41, 42, 43, 44, 45] are the first to use deep features
for deep tracking. Inspired by the great potential of deep learning,
many Siamese network-based trackers [46, 47] are proposed in
recent years. The improvements of these methods include tracking
network design [48, 49, 50, 51] and online target appearance
modeling [52, 53, 54, 55]. However, the noisy bounding box
annotations in existing large-scale training datasets [38, 39] may
severely degrade the learning of these end-to-end trainable deep
trackers. To handle noisy annotated bounding boxes, PUL [56]
proposes a noisy robust binary-cross entropy (BCE) loss by inte-
grating out the label noise in the likelihood estimation. PrDiMP
[57] trains a tracking model to minimize the KL divergence be-
tween the generated target response and the ground-truth Gaussian
conditional distribution derived from label noise. Different from
these methods, our method explicitly models annotation noise as
a random variable with Gaussian distributions, and we confirm
its effectiveness in learning robust tracking representations from
noisy annotations.

2.4 Modeling Label Noise
Previous works mainly focus on classification task with class label
noise. Robust loss functions are proposed by Wang et al. [58],
while label cleaning [59] and sample selection [60] are proposed
to filter noisy annotations in classification. Yang et al. [61] propose
to deal with the noisy segmentation boundary. Natarajan et al. [62]
theoretically study binary classification with random classification
noise. A few recent works consider filtering out noisy samples;
Wang et al. [63] propose a statistical sample selection framework
to identify noisy data, while FINE [64] is proposed to filter
noisy samples based on their eigenvectors, and Bai et al. [65]
exploit early stopping with noisy labels. Other recent approaches
are proposed in specific domain areas: Liang et al. [66] propose
a few-shot learning method with noisy labels by leveraging an
attention mechanism; Fu et al. [67] propose a large-scale pre-
training method with noisy labels for person re-identification; Liu
et al. [68] propose a correction mechanism for segmentation with
noisy annotations.

In crowd counting, the annotation noise is yet not fully-
exploited. Bai et al. [69] propose the correct the annotation noise
from the prediction, but may be prone to degenerate solutions.
In contrast, we consider the annotation noise in a probabilistic
way and model the transformation of noise from annotation
points to the intermediate representation, which is able to handle
large annotation noise as shown in our experiments. Similar to
crowd counting, the annotation noise in human pose estimation is
seldom considered. Kato et al. [70] propose to correct the missing
annotations caused by occlusion, but the spatial shift noise is not
considered. In this paper, we investigate the shift noise in the point
annotations in a probabilistic fashion, which is demonstrated to be
more robust to large noise. We also take the missing and duplicate
noise into consideration.

3 METHODOLOGY

In this section, we first review the traditional method for gen-
erating the intermediate representations. Then, we propose a
parametric modeling for shift noise in point annotations and an
efficient approximation is proposed for practical training. Finally,
the missing-point and duplicate-point noise are modeled based on
an empirical approach.

3.1 Intermediate Representation Generation
In general, the point annotations are not directly used as the
ground-truth during training because they are noisy and easy to
overfit. An intermediate representation (i.e. a smooth heat map)
is generated by convolving the dot map with a Gaussian kernel,
which is equivalent to placing a Gaussian kernel at each annotation
point. Given an input image I , there are N annotation points
{D̃i}Ni=1, where each point indicates the location of a person in
the image. The value y at the 2D location x in the corresponding
intermediate representation is defined as:

y(x) =
N∑
i=1

N (x|D̃i, βI) =
∑
i

1

2πβ
e−

1
2 ||x−D̃i||2βI , (1)

where β is the squared bandwidth of the Gaussian kernel and
N (x|µ,Σ) is the pdf of a multivariate Gaussian with µ as the
mean and Σ as the covariance matrix. The values of y(x) for all
locations x in the image form an intermediate representation. This
representation is usually called a density map in crowd counting
[5], or a heat map or response map in human pose estimation [3]
and visual tracking [56].

After the intermediate representation y is generated, a re-
gressor f(I) is learned to predict y from the input image I
with the L2 loss function, L(y, f(I)) = ||y − f(I)||2, where
y is the intermediate map evaluated at the output locations of
f(I). This traditional framework is illustrated by the orange and
green arrows in Fig. 1. A standard result [71] shows that L2
loss assumes i.i.d Gaussian noise between the observations y
and the underlying function output f(I), which is erroneous here
since the observation noise (in the intermediate representation) is
induced from the uncertainty in the annotation via a non-linear
transformation as in (1).

3.2 Modeling Shift Noise
We consider the annotations {D̃i}Ni=1 as the noisy observation
of people’s true locations in image I as shown in Fig 1. Let
the true location of the i-th person be a random variable (r.v.)
Di, where Di = D̃i + εi and εi is the spatial annotation
noise, and we assume εi is i.i.d multivariate Gaussian noise,
εi ∼ N (0, αI), where α is the variance of the Gaussian. Then,
the intermediate representation can be generated using the true
locations. Specifically, at location x, the density value Φ(x) is

Φ(x) =
N∑
i=1

N (x|Di, βI) =
N∑
i=1

N (x|D̃i + εi, βI)

=
N∑
i=1

N (qx
i |εi, βI) ,

∑
i

φi(x), (2)

where φi(x) indicates the term for each individual annotation, and
qx
i = x−D̃i is the difference between the i-th annotation location

and x. Since εi is a random variable, the density value Φ(x) at a
location x is also a random variable.
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Fig. 1. Our framework for modeling noisy annotations. Blue arrows
represent our model, and orange arrows are the traditional intermediate
representation-based method. Note that we use crowd counting as an
example.

Let {x(η)}Pη=1 be the P locations in the image, and Φ(η) ,
Φ(x(η)) be their corresponding density value random variables.
Then the vectorized density map Ψ = [Φ(1), · · · ,Φ(P )] is a
multivariate r.v. whose individual entries are from (2). Note that
the density values Ψ are related through a spatial convolution op-
eration, and thus the values in neighboring locations are correlated.

As the multivariate r.v. Ψ is complex, we first derive its
marginal distribution Φ(x) and an efficient Gaussian approxima-
tion of Φ. Then, we propose to approximate the joint distribution
of Ψ with a m.v. Gaussian.

3.2.1 Probability distribution of Φ(x)

We now consider the marginal of Ψ, which corresponds to the
pdf of Φ(x) at locations x. First, the pdf of Φ(x) can be derived
by passing the r.v.s {εi}i through the non-linear transformation
defined in (2). The individual term φi(x) = 1

2πβ exp(− 1
2 ||q

x
i −

εi||2βI) consists of a series of transformations: squared L2 norm,
negative exponential, and scaling. Note that the squared L2 norm
of a m.v. Gaussian random variable with non-zero mean is a non-
central χ2 distribution. Then, the density of φi(x) is obtained by
applying formulas for the transformation of a random variable (see
Supp. for derivation) as

φi(x) ∼ pi(φi|x) = δ
he
−λ

x
i
2

(
φi
h

)δ−1
I0(
√
−2δλx

i log φi
h ),

(3)

where h = (2πβ)−1 denotes the maximum value of the Gaussian
kernel, δ = β/α, and I0(x) indicates a modified Bessel function
of the 1st kind of order 0. λx

i = 1
α ||q

x
i ||2 is the non-centrality

parameter of a non-central χ2 r.v., which depends on x. Second,
since we assume the noise εi for each annotation are independent,
the resulting individual terms φi(x) are also independent r.v.s.
Thus, the pdf of the sum Φ(x) =

∑
i φi(x) is the convolution of

the pdfs of the individual terms,

Φ(x) ∼ p(Φ|x) = p1(Φ|x) ∗ p2(Φ|x) ∗ · · · ∗ pN (Φ|x), (4)

where ∗ is the convolution operation. Unfortunately, this convolu-
tion is intractable to compute in closed form.

3.2.2 Gaussian approximation to Φ(x)

Since (4) is intractable, we approximate the distribution of Φ(x)
using a Gaussian, p̂(Φ|x) = N (Φ|µx, υx), where µx and υx are
mean and variance of the distribution for location x. The mean of
Φ is calculated as (see detailed derivation in Supp.)

µx = E[Φ|x] = E
[∑

i

N (qx
i |εi, βI)

∣∣∣x]
=
∑
i

N (qx
i |0, (α+ β)I) ,

∑
i

µx
i , (5)

where µx
i indicates the mean for the individual term φi(x), and

the variance is

υx = var(Φ|x) = E[Φ2|x]− E[Φ|x]2

=
∑
i

1

4πβ
N (qx

i |0, (β/2 + α)I)−
∑
i

(µx
i )2. (6)

Figure 2 (a-c) shows an example with three annotation points and
the corresponding marginal distributions of Φ(x) for two spatial
locations.

We use a Gaussian approximation because it is tractable and
can be estimated from the 1st and 2nd moments of Φ(x). Exten-
sions of the central limit theorem prove that sums of independent
non-identical r.v.s converge to Gaussian. As shown in Fig. 2 (c),
the distribution is tending to Gaussian with just 3 annotations,
and we observe that this tendency becomes stronger with more
annotations. We have also tried Gamma distributions for the
approximation, but the results are worse (MAE is 89.7 on UCF-
QNRF compared to 85.8 for the Gaussian approximation).

To further demonstrate the suitability of the Gaussian approx-
imation for high-density regions, we run a simulation experiment.
First, we randomly select an image and its corresponding GT
dot map from the training set, and generate samples from Φ(x)
for each location x. Then, we run D‘Agostino and Pearson’s
normality-test [72] on the samples at each location x. Fig. 3
(left) shows an example density map and the corresponding
regions where the normality test indicates a Gaussian distribution
of Φ(x).1 The locations with high density values (i.e., closer
to the ground-truth dots) are more likely to follow a Gaussian
distribution. Fig. 3 (right) shows a histogram of the percentage of
Gaussian-distributed locations versus average density value bins.
Over 80% of the locations with average density values over 0.31
are Gaussian distributed. Since these locations most affect the
density map and count, it is better to use a Gaussian approximation
in these regions. Using Gamma distribution will only potentially
fit better to the sparse regions (with small count), at the expense
of poorly fitting the important regions with larger density.

3.2.3 Gaussian approximation to joint likelihood of Ψ

The previous derivation independently approximates each spatial
location x. We next consider the correlation between locations via
a m.v. Gaussian approximation to the joint likelihood Ψ. Given
the spatial locations x(η), where η ∈ {1, · · · , P}, let q

(η)
i =

x(η) − D̃i be the difference between the i-th annotation and the
pixel location x(η). From (2), the density value r.v. Φ(η) at pixel
location x(η) is

Φ(η) =
N∑
i=1

N (q
(η)
i |εi, βI) ,

∑
i

φ
(η)
i . (7)

1. Specifically, the null hypothesis that the samples are from a Gaussian
distribution cannot be rejected, p > 0.05.
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Fig. 2. Example of probability distributions of density values at two
locations: (a) three annotations are shown in green, where the circles
represent 2 standard deviations of the noise; (b) marginal distribution of
density values at x(1) and (c) x(0); (d) the joint distribution of density val-
ues (Φ(1),Φ(0)). The histograms in (b-d) are obtained using sampling,
and the red lines represent the Gaussian approximations.
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Fig. 3. Suitability of the Gaussian approximation in high-density regions:
(left-top) Density map and (left-bottom) yellow regions show pixels that
are Gaussian distributed according to a normality test. (right) Normality
test results vs. average density value bins. In the normality test, the null
hypothesis is that the pixel is Gaussian distributed.

Here the superscript (η) indicates evaluating/conditioning on the
location x(η). Note that εi is the same r.v. across all Φ(η).

We propose a Gaussian approximation to the distribution of
Ψ, i.e., p̂(Ψ) = N (Ψ|µ,Σ), where µ ∈ RP is the mean vector
and Σ ∈ RP×P is the covariance matrix. From the previous
derivation, the entries in µ are µ(η) = E[Φ(η)] =

∑
i µ

(η)
i , which

can be computed with (5). The diagonal of the covariance matrix is
Ση,η = var(Φ(η)), which is computed from (6). The covariance
terms are derived as (see Supp. for derivation),

Ση,ρ = cov(Φ(η),Φ(ρ)) =
∑
i

ω
(η,ρ)
i −

∑
i

µ
(η)
i µ

(ρ)
i , (8)

where

ω
(η,ρ)
i = E[φ

(η)
i φ

(ρ)
i ] (9)

= N (x(η)|x(ρ), 2βI)N (
1

2
(q

(η)
i + q

(ρ)
i )|0, (β/2 + α)I).

Fig. 2 (d) shows an example of the joint distribution Ψ and its
Gaussian approximation for two spatial locations, while Fig. 4
(top) shows an example on a small image.

Given the (µ,Σ) calculated from the annotations for an image
I , the negative log-likelihood function is used as the loss function
for supervising the prediction Ψ = f(I) of the density-map
regressor,

L = − log p(Ψ) = − logN (Ψ|µ,Ψ) (10)

∝ ||Ψ− µ||2Σ = (Ψ− µ)TΣ−1(Ψ− µ). (11)

Note that µ has entries from (5), which is equivalent to a density
map generated with squared-bandwidth α + β, i.e., sum of the
spatial noise variance and the original squared-bandwidth. Hence
the loss in (11) is a generalization of the standard L2 (MSE) loss,
except now the correlation between pixel locations is considered
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Fig. 4. (top) Example of Gaussian approximation to Ψ: (a) mean vector
(reshaped to 32×32); (b) covariance matrix; (c-e) covariance map for
the spatial locations (marked as red x), corresponding to one row in
the covariance matrix in (b) reshaped to 32×32. (bottom) low-rank
approximation using the indices in the mask (bottom-a).

via the covariance matrix Σ. As seen in (8) and (9), this correlation
still exists, even if there is no spatial noise, i.e., α = 0, since the
pixels are correlated through the spatial convolution operation.

3.2.4 Low-rank approximation to covariance matrix

The covariance matrix Σ ∈ RP×P does not scale well in
computation and storage for large images. However, in Σ, most of
the off-diagonal elements in a column or row are close to zero if
that spatial location is far from annotations. Therefore, Σ can be
approximated by those rows/columns with significant covariance
values (see full derivation in Supp.).

Let M = {m1, · · · ,mM} be the set of indices of spatial
locations x(mi) that we select for the approximate covariance ma-
trix. The approximation to Σ only uses the off-diagonal elements
corresponding toM,

Σ ≈ Σ̂ = V + MAMMT , (12)

where V = diag(diag(Σ)) is the diagonal matrix of the diagonal
of Σ, M is a permutation matrix with i-th column [M]i = emi ,
and the selected off-diagonal entries are

[AM]ij =

{
0, i = j,

cov(Φ(mi),Φ(mj)), i 6= j.
(13)

Using the matrix inversion lemma, we obtain the approximate
inverse covariance matrix,

Σ̂
−1

= V−1 −MBMMT , (14)

BM = (VMA−1MVM + VM)−1, VM = MTVM. (15)

Finally, the approximate loss function is the negative log-
likelihood function using the approximate covariance,

L̂ = − log p̂(Ψ) = − logN (Ψ|µ, Σ̂) ∝ ||Ψ− µ||2
Σ̂

= Ψ̄
T
V−1Ψ̄− Ψ̄

T
MBMMT Ψ̄, (16)

where Ψ̄ = Ψ − µ. Since V is diagonal, the first term in
(16) is equivalent to the sum over the negative log-marginals of
Φ (i.e., a diagonal covariance matrix). The second term is the
correlation term, based on the M selected entries MT Ψ̄. The
storage/computational complexity for one training example using
the low-rank approximation is O(M2 +N) compared to O(N2)
for the full covariance.
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3.2.5 Point-wise regularizer
We further use a point-wise regularization, inspired by Ma et al.
[73], to encourage that the predicted density map near to each
annotation will sum to 1. For the i-th annotation point, we first
define the point-wise density γ̂i as the total density in the predicted
density map that is “assigned” to the i-th annotation. Specifically,
γ̂i is the weighted sum over all density values weighted by the
posterior probability that the location x(η) is “assigned” to the
i-th annotation,

γ̂i =
∑
η

Ψ(η) N (x(η)|D̃i, βI)∑N
k=1N (x(η)|D̃k, βI)

, (17)

where Ψ(η) is the η-th entry of the predicted density map Ψ.
The total density for each annotation should be 1, and thus the
point-wise regularizer is defined as Lri = |γ̂i − 1|.

However, this regularizer assumes there are no missing-point
or duplicate-point noise in annotations. Hence, we further improve
the regularization by also explicitly considering noise caused by
missing and duplicate annotations.

3.3 Missing and Duplicate Noise
In this section, we consider the missing and duplicate annotations
by assuming the density of each annotation as a random variable
instead of one. Our model is based on two assumptions about
crowd scenes: 1) missing noise: since the missing annotated person
is usually partially occluded by an existing person next to it, we
assume that the missing annotation will appear next to an existing
annotation; 2) duplicate noise: each annotation can possibly be
a duplicate annotation. Under these assumptions, we derive the
distribution of each point-wise prediction γi, which is generated
from density map according to (17). Finally, the negative log
likelihood is used as the point-wise loss function.

3.3.1 Probability distribution of γi
We assume that each annotation can be a duplicate annotation,
and that one person close to it is potentially missing. If the j-th
annotation is a duplicate annotation and no density is predicted
over its location, the point-wise density of nearby annotation γi
will decrease since part of its density will be assigned to this
duplicate j-th annotation when computing (17). Similarly, if there
is a missing annotation near to the j-th annotation and density is
predicted there, then the point-wise density γi of the nearby i-th
annotation will increase since the extra predicted density will be
assigned to it. The visualization is shown in Fig. 5.

Therefore, we define the i-th point-wise density γi as:

γi = 1 +
N∑
j=1

dij = 1 +
N∑
j=1

pij∑N
k=1 pik

γ̃j , (18)

where dij is the density fluctuation of the i-th annotation caused
by missing or duplicate annotations of the j-th annotation. We
define dij =

pij∑N
k=1 pik

γ̃j , where pij = N (D̃j |D̃i, βI) is the
association between the i-th and j-th annotations. γ̃j is an indicator
random variable, which takes a value in {1, 0,−1}, indicating that
the j-th annotation has a nearby missing annotation, is a correct
annotation, or duplicate annotation, respectively. The probability
distribution of γ̃j is

p(γ̃j) =


π̃, γ̃j = 1,

1− 2π̃, γ̃j = 0,

π̃, γ̃j = −1.

(19)

true annotations

jg!
ijd

ig

missing annotations

ijd

ig
jg!

true annotations duplicate annotations

Fig. 5. The illustration of (top) missing and (bottom) duplicate annota-
tions. The annotation points are shown in blue dots. (top) density pre-
dictions over a missing annotation will be assigned to other annotations,
causing their point-wise density γi to increase. (bottom) a duplicate
annotation will have density assigned to it, which causes the point-wise
density γi of other annotations to decrease.

Here π̃ is the probability of a missing or duplicate annotation,
which is also used as the missing or duplicate noise level in the
experiments.

3.3.2 Approximation to γi
To understand the effect of our missing/duplicate annotation noise
model, we first use sampling to analyze the distribution of γ. The
distribution could be well modeled by a Laplace distribution as
shown in Fig. 6. The mean of γi is

ai = E[γi] = 1 +
N∑
j=1

pij∑N
k=1 pik

E[γ̃j ] = 1, (20)

since E[γ̃j ] = 0, and its variance (see Supp. for derivation) is

σ2
i = var(γi) =

N∑
j=1

( pij∑N
k=1 pik

)2
2π̃. (21)

Note that we assume that annotations are independent with each
other. Using these statistics, the parameters of the Laplace distri-
bution are the mean ai and the diversity bi = σi√

2
. Finally, the

negative log likelihood of γi is used as the loss function for the
point-wise densities γ̂i of the predicted density map,

Lri = − log p(γ̂i|ai, bi) ∝
|γ̂i − ai|

bi
. (22)

3.4 Empirical Approximation
One issue of using the approximate point distribution in (22) is that
the variance of points in low-density regions is close to 0, which
results in an unstable loss. A common practice is to add a small
value ξ to the variance for computational stability. However, there
still exists other problems. First, the computation of variance and
diversity in (16) and (22) is time-consuming. Second, the weight
in the background region is still too large (even when conditioned
with ξ), which hinders the learning of high density regions. To
address these issues, we propose an empirical loss function to
directly map the nearest neighbor distance to the normalized pixel-
wise and point-wise weights. In particular, we define the pixel and
point-wise loss functions as:

Lpixel = wT
1 (Ψ− µ)2, (23)

Lpoint = wT
2 |γ̂ − a|, (24)
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Fig. 6. Example of probability distribution of point-wise density with
missing/duplicate annotations. (top) three evaluated points that are
marked as red. (bottom) the distribution of point-wise density of the
corresponding points. The histogram is obtained by sampling and the
curves are the approximations. Here π̃ = 0.1.

(a) (b)

0 20 40 60 80 100 120 140
nearest annotation distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

we
ig

ht

missing/duplicate noise
data
linear
quadratic
sigmoid

0 20 40 60 80 100 120 140
nearest annotation distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

we
ig

ht

shift noise

data
linear
quadratic
sigmoid

Fig. 7. The point and pixel weight v.s. nearest neighbor distance. The
points are computed by sampling method.

where the element-wise square and absolute value are applied. The
vectors w1 and w2 are the pixel-wise and point-wise weights, for
approximating the inverse variance (precision) in (16) and inverse
diversity in (22). Note that the covariance terms in (16) are not
considered here.

For efficiency, we learn a function to directly map the near-
est neighbor distance to the pixel-wise and point-wise weights
(w1,w2). In particular, we first compute the pixel’s average
nearest distance to the annotations and the corresponding weight
(the inverse variance or inverse diversity) using training samples.
Then, a function is used to approximate the relationship between
the nearest neighbor distance and the weight. We use a sigmoid
function since it fits the sampling result better as shown in Fig. 7.
In Fig 8, we visualize the weight functions learned with different
noise levels. As the noise level increases, the learned function
becomes sharper – more annotations will be assigned low weights
since the uncertainty of the dataset is increased.

3.4.1 Total count loss
We further include an epsilon-insensitve loss for total counting
error, which takes the missing and duplicate annotations into
consideration. In particular, the total loss is 0 if the error is within
the assumed annotation noise,

Lcount = max(0, |sum(Ψ)−N | −Nπ̃), (25)
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Fig. 8. The relationship between average distance to nearest annota-
tions and the (a) point and (b) pixel weights for different noise levels.

where N is the ground-truth number of people.
The final loss function is the combination of pixel, point, and

count loss,

L = λ1Lpixel + λ2Lpoint + Lcount, (26)

where λ1, λ2 are balancing hyperparameters.

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed
method for different noise levels on three tasks: crowd counting,
visual tracking, and human pose estimation. In crowd counting,
shift noise, missing noise, and duplicate noise are considered. In
visual tracking and human pose estimation, we only consider shift
noise since missing and duplicate noise are rarely occur in their
annotations.

4.1 Crowd Counting
We first consider the task of crowd counting, where the annotations
may contain shift, missing, or duplicate noise.

4.1.1 Experiment Settings
Datasets: We use ShanghaiTech [5], UCF-QNRF [74], JHU-
CROWD++ [75], and NWPU-Crowd [76] as the datasets for
crowd counting. ShanghaiTech A contains 482 training and 300
testing images, and ShanghaiTech B has 716 and 400 training
and testing images. UCF-QNRF comprises 1,535 high-resolution
images (1201/334 for training and testing). JHU-CROWD++ is
a large-scale dataset that contains 4,371 images (2,722, 500,
and 1,600 images for training, validation, and testing). NWPU-
Crowd is a large-scale benchmark that has 3,109 training images,
500 validation images and 1,500 testing images. Note that the
annotations for the testing images for NWPU-Crowd are not
released for fairer comparison.

Metric: The Mean Absolute Error (MAE) and rooted Mean
Squared Error (MSE) are used as the metric:

MAE =
1

N

∑
i

|ŷi − yi|,MSE =

√
1

N

∑
i

(ŷi − yi)2, (27)

where ŷi and yi are the predicted and ground-truth counts, and N
is the number of images.

Training: Three counting networks are tested: VGG19 [73],
CSRNet [77], and MCNN [5]. VGG19 and CSRNet are pre-
trained on ImageNet, while MCNN is trained from scratch. The
implementations follow their respective papers, and we replace
the loss function for training. We train with two versions of our
proposed loss: only with shift noise [1], which is denoted as “Ours
(shift)”; with shift, missing & duplicate noise, denoted as “Ours
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Fig. 9. Comparison of density maps learned with different loss functions under different noises. (top) The first two rows show different shift noises.
First, the proposed loss function can correct the shift noise as shown in red arrows. Second, GL and BL totally miss the person in dotted circle since
the prediction is over-confident. (middle) The middle two rows show missing annotation and the noisy GT count is less than GT count. First, the
predicted counts (the white number at the top of density maps) of the proposed method are between noisy GT and the real GT while the others are
inaccurate. Second, two persons are miss annotated while the proposed method can detect them as shown in red dotted ellipse. (bottom)The last
two rows are duplicate annotations and the noisy GT count is greater than the real count. Typical duplicate annotations are shown in white ellipse.
Similarly, predictions of the proposed method are close to the real GT while the other losses tend to over-predict the counts.

(full)”. For comparison, we also train with standard L2 loss (i.e.,
MSE), Bayesian Loss [73] (BL), and the generalized loss [21]
(GeneralizedLoss, GL).

The network is trained with an Adam optimizer [78] with 1e-
5 learning rate. The weight decay is 1e-5 and all experiments
trained for 500 epochs except for MCNN. Since MCNN is trained
from scratch, we use larger learning rate (1e-4) and more training
epochs (1000). The shift noise α and missing/annotation noise π̃
is set to 8 and 0.05 respectively. We set β = 12, λ1 = 1, and
λ2 = 1 according to the ablation experiment shown in Fig. 11.
A larger β works better because a sharp density map (small β)
will enhance the effect of annotation noise. Small λ1 and λ2 do
not work well since the pixel-wise and point-wise supervisions
provide important information about the density arrangement. In
addition, large λ1 and λ2 do not work well since the total count
loss is needed to ensure the total count is accurate.

4.1.2 Robustness to shift noise

We first evaluate the robustness to shift noise for different loss
functions on UCF-QNRF [74]. The noisy datasets are generated
by randomly moving annotated locations by {4, 8, 16, 32, 64}
pixels. Note that the average head size is around 33 pixels, so

the larger noises correspond to moving the annotation completely
off the head. Next, we train the counting network with different
loss functions on the noisy datasets. The performance is shown in
Fig. 10 (a). First, the performance of all loss functions decreases
dramatically with the increase of the noise level, which shows
the impact of annotation shift noise. Second, the proposed loss
function is more robust to annotation noise, especially for large
noise levels. Finally, the density maps generated by networks
trained with different loss functions are shown in Fig. 9 (top
two rows). The proposed loss function can correct the shift noise.
For comparison, GL and BL may totally miss a person since the
prediction is over-confident, while our prediction is more accurate.

Finally, we note that GL has better performance than Ours
(shift), the shift-only version of our loss, while worse performance
than our full model. Note that GL can handle shift noise, duplicate
annotations, and missing annotations, since its unbalanced optimal
transport framework can ignore or hallucinate some annotations
using its point-wise and pixel-wise loss. In contrast, Ours (shift)
only handles the shift noise. Thus, GL might have advantage over
Ours (shift) since there is some inherent such missing/duplicate
noise in the dataset. However, once we additionally model the
duplicate/missing noise, our method performs better.
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Fig. 10. Experiment results: robustness to (a) shift noise, (b) missing noise, and (c) duplicate noise.
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Fig. 11. Ablation study: effect of β, λ1 and λ2.

TABLE 1
Effect of terms in the loss function on UCF-QNRF.

Component Combinations
pixel loss X X X
point loss X X X
count loss X X X

MAE 87.6 89.0 89.4 83.8

4.1.3 Robustness to missing/duplicate noise
We next evaluate the robustness of different loss functions to
missing/duplicate noise. To generate missing and duplicate noise,
we randomly remove the annotation point or add additional
points close to the current annotation with a probability π̃ ∈
{0.01, 0.05, 0.1, 0.15, 0.2}. The experimental results are shown
in Figs. 10 (b) and (c). First, the performance of the proposed
method is limited if we only model the shift noise (see “Ours
(shift)” in Fig. 10 (b)). Second, our full model with missing noise
considered is more robust to missing noise compared to other
loss functions. Third, BL handles missing noise better than GL,
whereas GL handles duplicate noise better than BL, and thus
they are only good at one type of missing/duplicate noise. In
contrast our full model is consistently good on both types of
noise. Finally, the improvement of modeling the duplicate noise
is limited compared to modeling the shift noise only as shown in
Fig. 10 (c). We believe the reason is that the duplicate annotation is
more likely to appear in high-density regions and the pixel weight
at those regions is low according to the modeling of shift noise.
Therefore, the modeling of shift noise is also useful to address
duplicate noise. As visualized in Fig. 9, the comparison methods
tend to under-estimate or over-estimate the counts because of the
noisy GT, while the proposed loss is more robust to the missing
and duplicate noises.

4.1.4 Ablation studies
We next conduct a series of ablation studies to study the effect of
various components.

Effect of loss components. We first investigate the effec-
tiveness of different components in the proposed loss function
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0.05 0.1 0.15 0.2 0.25 beta (var in sigmoid fun

MAE 86.16 86.91 83.8 85.49 86.04
MSE 154.78 153.71 147.8 153.25 153.45

0 0.01 0.1 0.2 0.5 0.8 1 scale
MAE 92.38 88.45 85.99 87.2 83.8 87.18 86.99
MSE 170.81 158.22 152.91 155.33 147.8 155.4 157.18

2 4 8 12 16 alpha
MAE 89.33 87.3 87.12 86.37 87.69
MSE 159.02 160.11 161.22 156.92 160.36
MAE 91.41 88.37 86.69 86.23 89.36 alpha new
MSE 157.95 159.54 157.31 152.6 155.44

4 8 16 32 64 shift noise curve
MAE 89.56 83.38 84.18 85.19 87.32
MSE 157.23 147.8 148.9 154.5 158.36

0.01 0.05 0.1 0.15 0.2 p lamnda curve
MAE 92.5 83.3 86.01 85.73 93.68
MSE 166.25 147 149.48 151.97 163.26

80
81
82
83
84
85
86
87
88
89
90
91

4 8 16 32 64

M
AE

shift noise

78

80

82

84

86

88

90

92

94

96

0.01 0.05 0.1 0.15 0.2

M
AE

missing/duplicate noise

0.05 0.1 0.15 0.2 0.25 beta (var in sigmoid fun
MAE 86.16 86.91 83.8 85.49 86.04
MSE 154.78 153.71 147.8 153.25 153.45

0 0.01 0.1 0.2 0.5 0.8 1 scale
MAE 92.38 88.45 85.99 87.2 83.8 87.18 86.99
MSE 170.81 158.22 152.91 155.33 147.8 155.4 157.18

2 4 8 12 16 alpha
MAE 89.33 87.3 87.12 86.37 87.69
MSE 159.02 160.11 161.22 156.92 160.36
MAE 91.41 88.37 86.69 86.23 89.36 alpha new
MSE 157.95 159.54 157.31 152.6 155.44

4 8 16 32 64 shift noise curve
MAE 89.56 83.38 84.18 85.19 87.32
MSE 157.23 147.8 148.9 154.5 158.36

0.01 0.05 0.1 0.15 0.2 p lamnda curve
MAE 92.5 83.3 86.01 85.73 93.68
MSE 166.25 147 149.48 151.97 163.26

80
81
82
83
84
85
86
87
88
89
90
91

4 8 16 32 64

M
AE

shift noise

78

80

82

84

86

88

90

92

94

96

0.01 0.05 0.1 0.15 0.2

M
AE

missing/duplicate noise

Fig. 12. Ablation study: Effect of shift noise and missing/duplicate noise
parameters,

√
α and π̃, on the original UCF-QNRF.

TABLE 2
Ablation study on the modeling of different noise types on UCF-QNRF.

Std is the standard deviation over 5 trials.

baseline baseline + shift baseline + miss/duplicate Ours
MAE 91.8 90.9 91.4 87.8
std 2.3 1.1 3.4 2.6

on UCF-QNRF [74]. As shown in Tab. 1, the count loss is
the most important as the performance drops significantly if we
remove this component. Since the uncertain regions are trained
with low weights, the count loss is required to ensure the total
count prediction is accurate. In addition, the point-wise loss is
also useful for counting since it ensures the prediction around the
head region sums to 1. The pixel loss is less important since the
spatial arrangement of density affect less the total count.

Effect of shift noise and missing/duplicate noise parame-
ters. Since the noise level is unknown, we conduct an experiment
on the original UCF-QNRF dataset with different assumed noise
level parameters. In particular, we first compute the weight map-
ping function based on different shift noise and missing/duplicate
noise parameters as shown in Fig. 8. Then, different functions
are used to compute the pixel and point weights for comparison,
and the experiment result is shown in Fig. 12. We find that
the performance is limited if the assumed noise level is too
small, which confirms the original dataset is noisy. Specifically,
from the MAE results, we may infer that the shift noise in the
dataset is about 8 pixels, and the probability of duplicate/missing
annotations is around 0.05.

Effect of different noise types. We conduct an experiment
to verify the effectiveness of modeling shift noise and miss-
ing/duplicate noise on UCF-QNRF. Note that the missing noise
and duplicate noise are modeled together, and all experiments are
repeated for 5 times. The results are presented in Table 2. First,
the performance is improved with either shift or missing/duplicate
noise modeled, which demonstrate the effectiveness of noise mod-

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3299753

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX XXXX 10

TABLE 3
Experiment results for mixed shift noise levels on UCF-QNRF.

L2 BL GL Ours (shift) Ours (miss/duplicate) Ours (full)
MAE 177.0 110.5 91.8 90.9 92.5 88.5
MSE 251.5 191.9 162.8 159.1 160.9 157.0

TABLE 4
Experiment results using different counting models on UCF-QNRF.

VGG19 CSRNet MCNN
MAE MSE MAE MSE MAE MSE

L2 98.7 176.1 110.6 190.1 186.4 283.6
BL 88.8 154.8 96.5 163.3 177.4 259.0
GL 84.3 147.5 92.0 165.7 142.8 227.9
Ours 83.8 147.8 87.8 156.8 134.3 223.2

TABLE 5
Comparison of our method with other loss functions on UCF-QNRF

over 5 trials.

L2 BL GL Ours
MAE 191.4 92.9 90.1 87.8
std 21.5 5.0 4.3 2.6

eling. Second, the improvement of shift noise modeling is more
significant compared to the missing/duplicate noise modeling,
which shows that the shift noise has more impact compared to
missing/duplicate noise. Finally, the largest improvement comes
from modeling all three types of noise together (ours).

Mixed levels of shift noise To better simulate a real situation,
we conduct an experiment based on mixed levels of shift noise
by randomly selecting a noise level from 0-64 pixels during
generation. The results are shown in Tab. 3. First, the performance
of Ours(shift) is better than comparison methods, which confirms
the effectiveness of shift noise modeling. Second, our full model
is even better than Ours(shift) since the missing/duplicate noise
still exists in the dataset.

Comparison of counting models To evaluate the effectiveness
of the proposed loss function, we compare it with L2, BL, and GL
for training different counting models. The results are shown in
Tab. 4. The model trained with the proposed loss is generally
better than other loss functions, for a variety of models. This
demonstrates that the modeling of noise is an important factor.

We further compare the proposed loss with other loss functions
over 5 repeated trials on UCF-QNRF, and the experiment results
are shown in Tab. 5. The proposed loss achieves the best MAE
and the standard deviation is smaller, which demonstrates the
effectiveness of our loss.

To further improve the performance, we apply the proposed
loss function to the recently proposed Transformer-based model
MAN [26], and the results are shown in Table 8 as “Ours (full)
+ MAN”. Our loss function improves the performance of MAN,
outperforming the traditional VGG19-based model, on the three
large-scale datasets. Thus, our loss is applicable to state-of-the-art
transformer-based models. Note that, the patch size is set to 2048
in our reproduction of MAN.

Combining with GL We next consider an experiment com-
bining our proposed method with generalized loss. In particular,
we directly change the point- and pixel-wise losses into weighted
pixel- and point-wise losses defined in (23) and (24). As shown in
Tab. 6, the performance can be further improved by incorporating
our weights with the generalized loss.

TABLE 6
Incorporating noise modeling with Generalized Loss (GL) on

UCF-QNRF.

GL Ours Ours + GL
MAE 84.3 83.8 81.4
MSE 147.5 147.8 143.7

SHA (482) UCF-QNRF (1201) NWPU-Crowd (3109)
L2 10.3 36.2 104
BL 10.1 35.2 99.9
GeneralizedLoss 12.2 42.1 116.5
Ours (shift) 11.3 58.6 179.6
Ours (full) 10.7 37.7 106.8
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Fig. 13. Comparison of training time per epoch for different losses and
datasets. The number in parentheses is the number of training images.

Training speed To demonstrate the efficiency of the empirical
approximation, we compare the training time of different loss
functions. In particular, VGG19 is used as the backbone and the
crop size is 512×512. The result is shown in Fig. 13. First, the
parametric modeling (“Ours (shift)”) is the most time-consuming
because of the computation of the covariance matrix. Second, the
computation of transport matrix in GL is also time-consuming,
but can be sped up by Sinkhorn iterations. Therefore, the speed of
GL is still faster than “Ours (shift)”. Finally, our proposed method
using the empirical approximation is as fast as L2 and BL which
confirms its efficiency.

4.1.5 Comparison with state-of-the-art methods
Finally, we compare the VGG19 backbone trained with our loss
function with state-of-the-art models. and the results are shown
in Tab 7. First, by modeling the annotation noise, our methods
achieves better performance than BL, which uses the same back-
bone. It confirms that the modeling of annotation noise is effective.
Second, the proposed method achieves the best MAE for most
of the datasets including three largest datasets: NWPU-Crowd,
JHU-CROWD++, and UCF-QNRF. We also compare with an
uncertainly method [79] on UCF-QNRF and our method achieves
better performance. Finally, the performance is improved when
modeling the missing and duplicate noise, compared to modeling
shift noise only (Ours full vs. Ours shift). DSSINet [80] is better
than our method on the smaller ShanghaiTech A dataset since it
uses multi-scale images to extract features. Similarly, MBTTBF
[81] achieves better performance on ShanghaiTech B by fusing
multi-level features together. However, those methods do not
generalize to large-scale datasets. Note that we use VGG19 as the
backbone, which does not do any special operation for multi-scale
feature extraction.

Finally, we note that our MSE is worse than other methods
because our model makes more mistakes on images with more
than 5,000 people, as shown in Tab. 8. Since the proposed method
assumes more noise in high-density regions and decreases the
weight of those regions, the fitting of normal images is better
than images with extreme counts (outliers). Furthermore, since we
modeled the missing annotation noise, some challenging hard-
negative images with fake crowd scenes will be over-counted.
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TABLE 7
Comparison with state-of-the-art crowd counting methods.

Venue NWPU-Crowd JHU-CROWD++ UCF-QNRF ShanghaiTech A ShanghaiTech B

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Uncertainty [79] NeurIPS’17 - - - - 103.2 103.2 - - - -
CP-CNN [13] CVPR’17 - - - - - - 73.6 106.4 20.1 30.1
ASACP [82] CVPR’18 - - - - - - 75.7 102.7 17.2 27.4
Switch-CNN [11] CVPR’17 - - - - 228.0 445.0 90.4 135.0 21.6 33.4
CMTL [83] AVSBS’17 - - 157.8 490.4 252.0 514.0 101.3 152.4 20.0 31.1
CL [74] CVPR’18 - - - - 132.0 191.0 - - - -
LSCCNN [84] TPAMI’20 - - 112.7 454.4 120.5 218.2 66.5 101.8 7.7 12.7
MCNN [5] CVPR’16 232.5 714.6 188.9 483.4 277.0 426.0 110.2 173.2 26.4 41.3
CSRNet [77] CVPR’18 121.3 387.8 85.9 309.2 110.6 190.1 68.2 115.0 10.6 16.0
SANet [85] ECCV’18 190.6 491.4 91.1 320.4 - - 67.0 104.5 8.4 13.6
DSSINet [80] ICCV’19 - - 133.5 416.5 99.1 159.2 60.6 96.0 6.8 10.3
MBTTBF [81] ICCV’19 - - 81.8 299.1 97.5 165.2 60.2 94.1 8.0 15.5
BL [73] ICCV’19 105.4 454.2 75.0 299.9 88.7 154.8 62.8 101.8 7.7 12.7
P2PNet [22] ICCV’21 77.4 362.0 - - 85.3 154.3 52.7 85.1 6.3 9.9
MAN [26] CVPR’22 76.5 323.0 53.4 209.9 77.3 131.5 56.8 90.3 - -
Ours (shift) 96.9 534.2 67.7 258.5 85.8 150.6 61.9 99.6 7.4 11.3
Ours (full) 87.9 444.5 59.1 259.6 83.8 147.8 61.8 104.3 7.1 12.4
Ours (full) + MAN 75.3 313.1 53.0 208.6 75.3 128.3 56.4 89.4 6.5 10.3

TABLE 8
The performance of different density levels on NWPU-Crowd test set. Note that the number of images is for the whole dataset for reference, since

the distribution of the test set is unknown.

Crowd level 0 (0, 100] (100, 500] (500, 5000] > 5000
No. of images 351 1500 2371 889 52
Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
MCNN 356.0 1232.5 72.1 151.0 103.5 154.7 509.5 768.3 4818.2 5179.5
SANet 432.0 974.4 65.0 169.8 104.2 180.8 385.1 580.6 2595.4 2974.2
CSRNet 176.0 572.3 35.8 69.1 59.7 106.3 285.8 448.3 2055.8 2846.5
BL 66.5 258.4 8.7 13.9 41.2 87.1 249.9 437.3 3386.4 3932.2
Ours 179.0 1056.1 7.3 13.7 33.4 75.1 186.0 318.1 2435.0 3075.1

For other scene types, our proposed method achieves the best
performance for both MAE and MSE.

4.2 Visual Tracking

In this section, we apply our proposed loss to visual object
tracking, where MSE loss is typically used between the predicted
target response map and the ground-truth heat map.

4.2.1 Settings

Dataset: For the visual tracking task. we use the widely used
OTB [37] tracking dataset to evaluate the performance of the
proposed method. The OTB dataset contains 100 challenging
video sequences with various attributes (e.g., occlusion, rotation,
illumination variation, background cluster and fast motion), which
can effectively demonstrate the effectiveness of our method. We
evaluate the robustness of the proposed method by adding shift
noise to the tracking dataset. Specifically, noisy training datasets
are generated by randomly moving the center of the annotated
bounding boxes by {20, 30, 40} pixels in a random direction.

Metrics: Following OTB [37], we use the precision and
success metrics for evaluation. The precision is the percentage
of frames whose center errors with respect to the ground-truth
are smaller than a predefined distance threshold. The success is
defined as the percentage of frames whose overlap ratios with the
ground truth bounding box are larger than an overlap threshold.
The distance precision at a threshold (DPR) of 20 pixels and
the area under curve (AUC) of the success plot are reported for
comparison.

Training and Inference: We use DiMP18 [55] as our baseline
tracker since DiMP18 uses a standard MSE loss as the target clas-
sification loss, which can be directly replaced with our proposed
loss in (23) without further modifications. We use the GOT-10K
[86] dataset to train both the DiMP18 baseline and our variant. For
the scale estimation in the DiMP18 baseline and our variant, we
use the pre-trained IOUNet [87] for scale estimation and do not
update it during training in order to better study the effect of noisy
annotation on target localization ability. We use the same training
settings described in [55] for fair comparison.

During the online tracking stage, we use the same online
updating strategies used in DiMP18 [55] for fair comparison. We
also use the ground-truth bounding box in the first video frame to
initialize our tracker, which is the same as DiMP18. In this way,
the experiments will better demonstrate our method can learn a
more robust offline tracking model even using noisy annotated
tracking data.

4.2.2 Robustness to noise

Fig. 14 shows the tracker performance vs. the spatial noise
level. Our method achieves better results than the baseline for
different noise levels. When the noise level becomes larger, the
improvements of our method is more significant, which indicates
that our proposed loss can more effectively handle the noisy anno-
tations, whereas standard MSE loss cannot. Another interesting
phenomenon is that even when there is no added noise (i.e.,
noise=0), the performance of our method is still better than the
baseline in terms of both the DPR and AUC metrics. This is
mainly because the training dataset GOT-10K naturally contains

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3299753

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX XXXX 12

(a) (b)
0 20 30 40

Baseline 81.8 80 79.2 76.3
Ours 83.9 82.6 82.5 81.6

0 20 30 40
Baseline 62.2 61.5 60.2 58.2
Ours 63.8 62.8 62.2 61.7

72

74

76

78

80

82

84

86

0 20 30 40

DP
R 

%

noise 

Baseline

Ours

55

56

57

58

59

60

61

62

63

64

65

0 20 30 40

AU
C 

%

noise 

Baseline

Ours

0 20 30 40
Baseline 81.8 80 79.2 76.3
Ours 83.9 82.6 82.5 81.6

0 20 30 40
Baseline 62.2 61.5 60.2 58.2
Ours 63.8 62.8 62.2 61.7

72

74

76

78

80

82

84

86

0 20 30 40

DP
R 

%

noise 

Baseline

Ours

55

56

57

58

59

60

61

62

63

64

65

0 20 30 40

AU
C 

%

noise 

Baseline

Ours

Fig. 14. Robustness to shift noise for visual tracking.

noisy annotations, and our method leads to more effective training
on the original GOT-10K dataset.

We further visualize the classification maps and predicted
bounding boxes (denoted as red boxes) with different noise levels
in Fig. 15. The classification score of the target center location
(denoted as red cross) is shown in the top-right of the video frame.
The DiMP tracker offline-trained with our loss is more robust to
handle online distractors and avoids some tracking failures, even
with large added spatial noise levels. In addition, when the spatial
annotation noise increases, our method can still accurately predict
the target center location with high classification score (CS), e.g.,
when noise=40, cs=0.42.

4.3 Human Pose Estimation
In this section, we apply our proposed loss to human pose
estimation (HPE), where L2 loss is typically used to supervise
the model to learn from pose joint heat maps.

4.3.1 Settings
Dataset: MPII [88] and CrowdPose [89] are used to evaluate the
performance of the proposed method on human pose estimation.
MPII contains around 25k images with 40k people. To demon-
strate the effectiveness of the proposed method on dense crowds,
we further apply the method on CrowdPose, which is divided into
3 crowd levels based on the ratio of overlapped joints in an image
[89]: easy (0-0.1), medium (0.1-0.8), and hard (0.8-1).

Metrics: Followed by previous works [88, 89], we evaluate
using Percentage of Correct Keypoints (PCKh) based on head size
for MPII, and Average Precision (AP) for CrowdPose.

Training: Our baseline networks are HRNet-W32 [3] for MPII
dataset and HigherHRNet-W48+ [90] for CrowdPose. During
training, we directly replace the MSE loss with our proposed loss
in (23), and the remaining training details follow the baselines
[3, 90]. Adam optimizer [78] is used for optimization and the base
learning is set to 1e-3. The model is trained for 210 epochs and
the learning rate is decreased by 10 at 170 and 200 epochs.

4.3.2 Robustness to noise
We now evaluate the robustness of the proposed loss to shift noise
on human pose estimation. Similar to crowd counting, the noisy
datasets are generated by randomly moving annotation points
by {2, 4, 8, 16} pixels. The experimental results are shown in
Fig. 16. First, the performance of our loss function is almost the
same as the traditional method. We believe the reason is that the
annotations in HPE are less noisy compared to crowd counting,
since the number of annotations is less and the occluded joints are
usually ignored. Second, the improvement of the proposed method
becomes larger as the increase of the noise level, which confirms
the robustness of the method. Finally, the improvement becomes

more significant when a more accurate localization criteria is used
(10% of head size is used for calculating PCKh). This suggests that
the localization of our method is more accurate than traditional L2
loss. As shown in Fig. 17, heat maps generated by our loss function
are sharper than L2 loss, which further confirm that the proposed
loss is more robust to shift noise.

4.3.3 Comparison with state-of-the-art methods
We evaluate the proposed method on crowded images in Crowd-
Pose dataset, and compare it with state-of-the-art methods. As
shown in Tab. 9, the proposed method achieves the best perfor-
mance compared to other methods. In particular, the proposed
method uses the same backbone network but is superior to the
baseline method HigherHRNet [90]. Finally, the improvement on
medium and crowded images is greater than on the easy images
with less occlusion. This shows the potential of the proposed
method to handle challenging noisy scenarios.

5 CONCLUSION

In this paper, we investigate three different types of noise in point-
wise annotations: shift noise, missing-point noise, and duplicate-
point noise. To model the more prevalent shift noise, we propose
to model real locations as random variables and derive the distribu-
tion of the ground-truth map. To model the missing and duplicate
noise in dense annotations, we further derive the distribution of
the point-wise densities. Then, the negative log-likelihood is used
as the loss function which is equivalent to a weighted L2/L1 loss.
Finally, to accelerate the training process, we propose an empirical
approximation to the weights in the loss function. We apply the
proposed loss function to crowd counting, tracking and human
pose estimation. Experimental results show that the proposed
method is more robust to different types and levels of noises.
The further work will focus on applying the noise-modeling prin-
ciples to derive other robust loss functions for structured ground-
truth annotations. For example, our robust loss framework could
be applied to regressing bounding box annotations under noisy
annotation conditions, e.g., in semi-supervised or self-supervised
learning where pseudo-annotations are noisy (similar to [56]).
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Fig. 15. Visualization of visual tracking results with different loss functions and noise levels. The tracker offline-trained with our loss is more robust
to handle online distractors and avoid some tracking failures, even with large added spatial noises levels.

TABLE 9
Comparison with state-of-the-art human pose estimation methods on CrowdPose dataset. + means using multi-scale test.

mAP@0.5:0.95 mAP@0.5 mAP@0.75 APeasy APmedium APhard

Mask R-CNN [91] 57.2 83.5 60.3 69.4 57.9 45.8
AlphaPose [33] 61.0 81.3 66.0 71.2 61.4 51.1
Xiao et al. [4] 60.8 81.4 65.7 71.4 61.2 51.2
CrowdPose [89] 66.0 84.2 71.5 75.5 66.3 57.4
HigherHRNet-W48+ [90] (baseline) 67.6 87.4 72.6 75.8 68.1 58.9
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