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Typical approaches that learn crowd density maps are limited to extracting the supervisory information from the loosely organized
spatial information in the crowd dot/density maps. This paper tackles this challenge by performing the supervision in the frequency
domain. More specifically, we devise a new loss function for crowd analysis called generalized characteristic function loss (GCFL).
This loss carries out two steps: 1) transforming the spatial information in density or dot maps to the frequency domain; 2) calculating
a loss value between their frequency contents. For step 1, we establish a series of theoretical fundaments by extending the definition
of the characteristic function for probability distributions to density maps, as well as proving some vital properties of the extended
characteristic function. After taking the characteristic function of the density map, its information in the frequency domain is
well-organized and hierarchically distributed, while in the spatial domain it is loose-organized and dispersed everywhere. In step
2, we design a loss function that can fit the information organization in the frequency domain, allowing the exploitation of the
well-organized frequency information for the supervision of crowd analysis tasks. The loss function can be adapted to various crowd
analysis tasks through the specification of its window functions. In this paper, we demonstrate its power in three tasks: Crowd
Counting, Crowd Localization and Noisy Crowd Counting. We show the advantages of our GCFL compared to other SOTA losses
and its competitiveness to other SOTA methods by theoretical analysis and empirical results on benchmark datasets. Our codes are
available at github.com/wbshu/Crowd Counting in the Frequency Domain
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I. INTRODUCTION

CROWD analysis has a wide application in practice, such
as surveillance, business, urban planning, and trans-

portation management. Among crowd analysis tasks, crowd
counting draws much attention since the techniques used in it
can also be applied to other areas such as counting animals for
ecological purposes [1–3], counting microorganisms in micro-
scopic images [4–7], and counting vehicles in transportation
congestion [8–11]. The crowd counting task is challenging
due to occlusions and overlaps among people’s heads and
bodies as well as drastic changes in people heads’ shape and
size. Though a number of outstanding works are proposed
for solving this challenge [12–26], there are still many spaces
for further improvements. Furthermore, the training of the
mainstream methods relies on the dot map which is the
manual annotations of all heads in the image. But in practical
application, this dot map may be noisy, e.g., the annotation
may deviate from the exact head position to some extent, if
the annotator is working fast or is not careful. How to count
the crowd with the noisy dot map is a research field with real
demands but is underexplored. Recently, researchers [25–29]
also focus on crowd localization, which is a more difficult task
than crowd counting. For some high-level crowd analysis tasks
such as behavior detections, activity recognition, and crowd
tracking, the exact position of heads or people is required.
Based on those tasks’ wide application in the real world, the
research of crowd analysis has flourished for many years, and
benefits from active research.

Since [5] proposed the idea of crowd density maps as the
intermediate representation, which is an intermediate repre-
sentation based on smoothening the annotation dot map with

a Gaussian kernel, crowd counting has entered the dot-map
supervision era. The multi-column neural network (MCNN)
[30] was one of the first deep neural networks (DNN) to be
supervised using a density map, with many models following.
The subsequent research can be sorted into two categories:
1) designing the network structure for increasing the learning
capacity; 2) investigating how to better use the ground-truth
(GT) dot map to give stronger supervision. This paper belongs
to the 2nd category and addresses the loss design for extracting
high-quality supervision information from the GT.

Although there are already some methods [24–26] in the
second category obtaining outstanding performance, they also
have some shortcomings. Firstly, although there is adequate
exploitation of the position information in the optimal trans-
port (OT) loss [24, 25] and the purely point-based framework
(P2PNet) [26], the GT counting information is underexploited.
To address this, they introduce extra terms requiring delicate
balancing or more prior information. Secondly, in each training
step, both the P2PNet [26] and the OT loss [24, 25] rely on
iterative external algorithms for extracting the spatial informa-
tion from the GT.

We think that the above drawbacks are incurred by the
nature of the distribution of information in the spatial domain.
First, the counting information and the position information in
the spatial domain are loosely coupled, which makes the state-
of-the-art (SOTA) have to introduce remedies for exploiting
the counting information when the position information is fully
used; Second, the position information in the spatial domain
is distributed everywhere, and therefore a global optimiza-
tion procedure is required to extract the spatial relationships
(e.g., the Hungarian algorithm [31] for the P2PNet [31], the
Sinkhorn algorithm [32] for the OT loss [24, 25]). These
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Fig. 1: (a) Our framework for crowd analysis in the frequency domain. The dispersed spatial information in the predicted density and ground-truth dot maps
is converted to compact information in the frequency domain by computing their characteristic functions. Then the generalized characteristic function loss
(GCFL) is a modified extension of the L1-norm between the characteristic functions. The window functions H(t), F1(t), and F2(t) are set according to the
crowd analysis task. (b) The window functions used for crowd counting. (c) The window functions used for noisy crowd counting. (d) The window functions
used for crowd localization. The detailed window functions are introduced in Sec. III.

intrinsic drawbacks are hard to improve in the spatial domain
– instead, we consider transforming the information to the
frequency domain. By regarding dot and density maps as
finite measures (i.e., unnormalized probability densities) and
extending the definition of characteristic functions from prob-
ability to finite measures, we can well-organize information
in the frequency domain by means of deriving characteristic
functions of dot/density maps.

In the frequency domain, the original spatial information
is hierarchically organized in a compact range around the
origin. The information closer to the origin contains the global
spatial information (i.e., which regions contain crowds), while
information further from the origin relates to the local position
information (i.e., the exact positions of people). Moreover,
our statistical analysis also shows that the irregular spatial
annotation noise changes to a concentrated noise distribution
in a ring band in the frequency domain. Thus, exploiting the
well-ordered frequency information can help the design of
specific loss functions for better utilizing the GT information
for training on different crowd analysis tasks.

In the paper, we design a generalized characteristic function
loss (GCFL) for transforming the spatial information to the
frequency domain and then exploiting it for the supervision of
diverse crowd analysis tasks. The flexibility of the GCFL is
reflected in its window functions, and we demonstrate how to
use the GCFL to deal with crowd counting, crowd localization,
and noisy crowd analysis tasks by applying different window
functions. In the process, solid theoretical and experimental
evidence is provided. Fig. 1 shows the basic framework of
our method. In summary, the contributions of the paper are:

• We establish the theoretical basis of transforming the
spatial crowd information into the frequency domain by

extending the definition of the characteristic function
from probability distributions to finite measures, as well
as proving or strengthening some of its key properties.

• The characteristic function transformation yields a com-
pactly and hierarchically organized frequency informa-
tion, from which we propose the generalized charac-
teristic function loss (GCFL) for crowd analysis tasks.
The window functions in GCFL can be customized and
provide flexibility for specific crowd analysis tasks.

• We demonstrate three applications using different window
functions: crowd counting, crowd localization, and noisy
crowd counting. For crowd counting (see Fig. 1b), we
prove that minimizing the loss will decrease the up-
per bound of a pseudo sup norm metric between the
predicted and the ground truth density map (over all
sub-regions), which is effective for crowd counting. For
crowd localization (Fig. 1d), we exploit the advantages
of information organization in the frequency domain
to scale the prediction/GT map to improve localization
performance. For noisy crowd counting (see Fig. 1c), we
use theoretical and statistical analysis to reveal that noisy
annotations in the spatial domain will transform into noise
in the regular ring band in the frequency domain. We then
design a window function to ignore this regular ring band,
making the loss robust to noisy annotations.

• To the best of our knowledge, this is the first work
investigating crowd analysis in the frequency domain.
The experimental results on benchmark datasets show the
superiority of our loss to other SOTA losses on crowd
counting, crowd localization, and noisy crowd counting.

This paper is an extension work of our preliminary work
[33] on characteristic function loss (ChfL). In this paper,
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we propose a generalized loss function GCFL (§III-B), of
which the original ChfL loss in [33] is a special case for
a specific set of window functions. In addition, we apply
our GCFL to two new tasks by designing specific window
functions for crowd localization (§III-D and §V-C) and noisy
crowd counting (§III-E and §V-D), which are not included
in our preliminary conference paper. For crowd localization,
we propose the map scaling method that takes advantage
of the information distribution in the frequency domain. For
noisy crowd counting, we derive the distribution of spatial
annotation noise in the frequency domain, and design the
window function accordingly to ignore this noise. Compared
to the conference version, we also improve the implementation
details of GCFL through analysis of its gradients (§IV-B). The
new implementation leads to more stable training, with lower
variance in results for repeated training runs, which is more
suitable for use in real applications. Also, one property is
strengthened (§III-A-2 Property 4) and more ablation studies
are included (§V-B). Finally, we provide more theoretical
analysis and experimental results to show that the low-pass
filtering window is not necessary for our GCFL (§IV-A-2),
which addresses a limitation in our conference paper.

The remainder of this paper is organized as follows. Sec.
II introduces the related works of crowd analysis. Sec. III
proposes the GCFL and demonstrates its applications to crowd
counting, crowd localization, and noisy crowd counting. Sec.
IV is about the implementation of the GCFL. Finally, Sec.V
presents our experimental results, and Sec.VI concludes.

II. RELATED WORKS

A. Image-based crowd analysis

Image-based crowd analysis has had three research stages.
The first stage is “analysis by detections”, which used various
features to detect the people/heads in images [34–44], and then
counted or localized from the detection results. The second
stage is based on “image to count”, where regression methods
were explored for directly regressing the people count from
the input image features [45–51], which are specific to the
crowd counting task. The current stage uses dot annotations
of each person and harnesses an intermediate representation—
the density map [14–18, 20, 21, 28, 44, 52–55]. These methods
regress the density map from the image, and the downstream
crowd analysis tasks are based on the predicted density maps.
We introduce these methods in the next subsection.

B. Density map regression

[5] first proposed the density map regression method based
on hand-crafted features, and [30] showed the power of deep
learning for regressing the density maps. Based on the dot
annotations of each person’s head in the image, the GT den-
sity map provides large amounts of supervisory information,
and it combined with the strong learning capacity of DNNs
largely improves the performance of crowd analysis tasks.
There are roughly two branches of research on supervised
learning methods for density map regression. The first branch
is regarding the DNN design [12–21, 28], proceeding from
the traditional convolutional neural networks (CNNs) era to

the vision transformer era. In contrast to the network structure
design, the second branch studies how to better exploit the GT
to supervise the training [22–26]. Our method belongs to the
second category.

C. Improving training and loss functions

Traditional training for density map regression uses the
pixel-wise L2 loss between the GT and predicted density maps.
Recent methods [22–26] focus on improving training effec-
tiveness by extracting higher-quality supervisory information
from the dot annotations. In [56, 57], the dot annotations are
used to build an adaptive density map representation, where
the density kernel and the density map regressor are trained
together to improve the counting ability for the given task.
NoiseCC [23] merges the annotation uncertainty into the loss
function by modeling the spatial noise of each dot annotation
as a Gaussian distribution.

The Bayesian Loss (BL) method [22] used the GT dot map
to calculate class conditional distributions (CCD) for each
position as supervision, which inspires subsequent works by
demonstrating the potential of extracting supervisory informa-
tion from the GT dot map. Among them, the Generalized
Loss (GL) [25] and the Distribution Matching (DMCount) [24]
exploited the optimal transport (OT) distance between the GT
dot maps and predicted density maps as the loss function.
The OT loss is superior to the traditional pixel-wise L2 loss,
as OT is a global optimization problem that jointly considers
the transport cost of all pixels.

The Purely Point-Based Framework (P2PNet) [26] exploits
the position information in the GT by directly training the
network to predict the head positions of people. By solving a
one-to-one point match between the GT and the prediction in
each training step, each annotation’s position information was
fully used in the training process.

Despite their success, there are also some shortcomings
of these SOTA methods. Firstly, although there is adequate
exploitation of the position information in OT/P2PNet, the
GT counting information is underexploited. Therefore, extra
items and hyperparameters are introduced for remedies, which
require delicate balancing. Secondly, in each training step, both
the P2PNet [26] and OT [24, 25] rely on inefficient external
algorithms for extracting the spatial information from the GT.
[33] provides more details.

In contrast to [24–26], our method transforms the dispersed
spatial information to compact frequency information, which
can simultaneously use the position information and counting
information for supervision in a convenient way. Moreover,
our method is also efficient as it does not rely on external
algorithms for spatial information extraction. Our transforma-
tion only requires basic tensor operations and can be efficiently
implemented on GPU without iterations.

D. Transforming into the frequency domain in vision tasks

There are also related works exploiting the frequency do-
main in vision tasks [58–64]. These works transform the spa-
tial information to the frequency domain at different locations
of the model/training pipeline, such as on the inputs [62–64],
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the intermediate features [60, 61], or the model parameters
[58, 59]. The use of the frequency transform affects the model
in different ways; e.g., for tasks such as face forgery detection
[62] and image demoireing [63, 64], converting the input im-
ages to the frequency domain will allow better capturing of key
features for those tasks, while transforming the intermediate
features [60, 61] will enable long-range and short-range feature
interactions. Finally, applying frequency transforms on the
model parameters and applying a low-pass filter will benefit
model compression [58, 59]. In contrast to these previous
works, our work applies the frequency transform on the output
of the network and the GT density/dot map when computing
our loss function. The traditional loss pixel-wise mean-squared
error (MSE) implicitly assumes that the underlying per-pixel
errors (i.e., observation noise) are independent [23]. However,
for density maps the errors of pixels are typically correlated,
e.g., shifting an annotation induces a specific correlated error
structure [23]. Applying the frequency transform on the output
allows our loss function to consider correlations among the
map pixels during training.

III. GENERALIZED CHARACTERISTIC FUNCTION LOSS

In this section we will introduce our loss framework of
crowd analysis in the frequency domain. First, in §III-A, we
establish the theoretical basis of our framework around the
extension of the definition and properties of the characteristic
function, by which we can transform the disorganized spatial
crowd information to the hierarchically-organized frequency
information. Second, based on the above fundamentals, in
§III-B we propose our generalized characteristic function loss
(GCFL), of which the basic characteristic function loss (ChfL)
[33] is a special case. GCFL introduces a set of window
functions that allows the loss to be customized for specific
crowd analysis tasks. The framework is summarized in Fig. 1a.

Third, we demonstrate how to use GCFL for three crowd
analysis tasks. In §III-C we introduce GCFL for crowd count-
ing (Fig. 1b), and prove that minimizing GCFL will decrease
the upper bound of a pseudo sup norm metric between the
predicted and the GT density map (over all sub-regions of the
spatial domain). In §III-D, we study GCFL for crowd local-
ization (Fig. 1d), where we take advantage of the information
organization in the frequency domain to boost the performance
by scaling the annotation map. Finally, in §III-E, we study
GCFL for noisy crowd counting, where the dot annotations
contain spatial noise. Via theoretical and statistical analysis,
we first show that the irregular annotation noise in the spatial
domain will turn to a regular noise distribution in a ring band
in the frequency domain. We then devise a set of window
functions (Fig. 1c) that are robust to this frequency-domain
noise, thus enabling learning from noisy crowd annotations.

A. Theoretical basis

In this subsection we first extend the concept of char-
acteristic functions from probability distributions to density
maps (i.e., finite measures). We then prove some important
properties of characteristic functions of density maps.

1) Characteristic functions of density maps
In mathematics, the measure is defined as follows.
Definition 1 (Measure [65]): A measure is a set function

m defined on a measurable space (Ω,F), where Ω is the total
space and the family of sets F is a σ-algebra (comprising
subsets of Ω that are closed under union, intersection, and
complement), that satisfies:

(i) non-negativity: m(A) ≥ 0, ∀A ∈ F .
(ii) σ-additivity: m(∅) = 0, where ∅ is the empty set,

and m(
⋃∞

i=1 Ai) =
∑∞

i=1 m(Ai) for a countable set
{Ai|Ai ∈ F , Ai ∩Aj = ∅ if i ̸= j}.

If m(Ω) < ∞, i.e., the total measure is finite, then it is a finite
measure.

Thus, the density map is a finite measure on the 2D plane;
Ω is the 2D Euclidean space R2 and F are all Borel sets.

Definition 2 (Density Map): A crowd density map is
a finite measure defined on (R2,BR2), where R2 is the 2D
Euclidean space and BR2 is all the Borel sets on R2. The
density map’s total measure on R2 is the total people count.

A discrete density map is a density map whose measure is
only distributed on a set of finite points, i.e., if the density
map m satisfies the following property:

m(A) =

n∑
i=1

m({xi} ∩A),∀A ∈ BR2 , (1)

where xi ∈ R2 are those points with non-zero measure, then
m is a discrete density map. Note that the GT dot map is
also a discrete density map where every point with non-zero
measure has value 1, assuming that no two people can share
the same location.

Next, we introduce the definition of the characteristic func-
tion for probability distributions, which is a class of special
finite measures with a total measure of 1.

Definition 3 (Characteristic Function for Distributions
[66]): Given a distribution d defined on Rn, its characteristic
function φd is a complex-valued function defined on Rn:

φd(t) = EX∼d[e
i⟨t,X⟩], (2)

where t ∈ Rn is the independent variable of the frequency
domain, EX∼d is expectation under X with distribution d,
and i is the imaginary unit.

Since the probability distribution is just the finite measure
with total measure 1, the definition of characteristic functions
can be extended to finite measures (i.e., density maps).

Definition 4 (Characteristic Function for Measures): Given
a finite measure m defined on Rn, its characteristic function
φm is a complex-valued function defined on Rn:

φm(t) =

∫
Rn

ei⟨t,x⟩dm(x), (3)

where dm(x) is the integral calculated based on measure m.

Therefore, using Defn. 2 and 4, we can calculate the char-
acteristic function of a density map, transforming the spatial
information into the frequency domain. Fig. 2(a-c) show an
example of a density map and its characteristic function.
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2) Properties of the characteristic function
Next we derive several important properties of characteristic

functions of finite measures. All proofs are in the supplemen-
tal. For clarity, we will directly present these properties in
terms of density maps, rather than finite measures. Therefore,
in the remaining, the terminology “density map” refers the
finite measure defined on (R2,BR2) (see Defn. 2).

Property 1 (Uniqueness): The characteristic function
uniquely determines the density map and vice versa. Suppose
that φm1 and φm2 are two characteristic functions derived
from two density maps m1 and m2 respectively. Then,

φm1(t) = φm2(t) a.e. (4)

iff
m1(A) = m2(A), ∀A ∈ BR2 . (5)

We denote this as m1 = m2. In (4), a.e. means L({t ∈
R2|φm1(t) ̸= φm2(t)}) = 0, where L is the Lebesgue
measure. See proof in Appendix A.2.4.
Remark Intuitively, this property states that if the
characteristic functions of two density maps are identical,
then the two density maps are identical, and vice versa.
This property mainly guarantees that there is a unique
optimal solution in our loss function, whereas the problem of
non-unique optimal solutions in loss functions is pointed out
by [24] as a potential defect of the BL [22].

Property 2 (Linearity): Suppose that m3 is a linear com-
bination of two density maps m1 and m2,

m3 = αm1 + βm2, α, β ≥ 0 (6)

then
φm3

(t) = αφm1
(t) + βφm2

(t). (7)

See proof in Appendix A.2.1.
Remark This property is helpful when we derive the
characteristic functions of the GT and predicted density maps,
because they are linear combinations of some basic units,
e.g., singleton measures or Gaussian distributions.

Property 3 (Inversion Formula): For a density map m,
suppose there is a box area A = [a1, b1]× [a2, b2] in R2 with
zero measure boundary, i.e.,

m(∂A) = 0 (8)

where ∂A means the boundary of A, then we have

m(A) = lim
T→∞

1

(2π)2

∫
[−T,T ]2

∫
A

φm(t)e−i⟨t,x⟩dxdt (9)

where dx and dt mean both the first and second integral
are calculated based on Lebesgue measure.1 See proof in
Appendix A.2.2.
Remark This property bridges the density map and
its characteristic function. Fig. 2 illustrates that the main

1Note that when dx or dt appears in the next context, it also means the
integral is calculated based on Lebesgue measure. x ∈ R2 corresponds to the
spatial domain, and t ∈ R2 corresponds to the frequency domain.

contribution to the integral in (9) is from a small compact
range of R2, which means each spatial region’s information
can be recovered from the compactly organized frequency
information by Property 3.

Property 4 (Lipschitz Continuity): The characteristic func-
tion φm(t) of a density map m is uniformly continuous.
If m is a discrete density map (see Defn. 2) or a discrete
density map convolved with a Gaussian kernel, then the
characteristic function φm(t) is Lipschitz continuous. See
proof in App. A.2.3.
Remark This property is vital for the implementation of
our basic loss. There is no analytic solution for our basic
loss function, but this property enables an approximate
implementation of our basic loss by discretization.

B. Generalized characteristic function loss (GCFL)

We now propose our generalized characteristic function
loss (GCFL). We start from the characteristic function (ChfL)
loss in [33], and then derive the GCFL. Given the predicted
discrete density map mp and the GT density map m̂g , which
is obtained by convolving the GT dot map mg with a Gaussian
kernel, the Chf loss [33] is the L1-norm metric between their
characteristic functions φm̂g

and φmp
, i.e.,2

lchf(m̂g,mp) =

∫
R2

∣∣φm̂g
(t)− φmp

(t)
∣∣dt (10)

where in this paper |a| always means taking the modulus of
complex number a, i.e., |a| =

√
ℜ(a)2 + ℑ(a)2, where ℜ(a)

and ℑ(a) are the real and imaginary parts of a. If a is a real
number, then |a| is its absolute value.

In crowd counting tasks, we usually convolve the GT dot
map with a Gaussian kernel for smoothing the discrete density
map [22, 30, 56, 67]. In our framework, this is equivalent
to multiplying a Gaussian window with the characteristic
function of the dot annotation map. In particular, let mg

represent the GT dot map, and suppose there are M people
with locations {µj}Mj=1, then

mg(x) =

M∑
k=1

δ(x− µj), (11)

where δ(x) is the Dirac delta function, and we denote δµ(x) =
δ(x− µ). Using Property 2 and noting that the characteristic
function of a Dirac delta is φδµ(t) = exp(iµT t), we obtain
the characteristic function of the dot map,

φmg (t) =

M∑
j=1

φδµj
(t) =

M∑
j=1

exp(iµT
j t). (12)

2Note here that we directly use the Lebesgue integral on R2, but in (9)
we use a limit formula rather than the direct Lebesgue integral. As they are
not always identical, some care is needed and we provide the mathematical
details in the supplementary.
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Fig. 2: Comparison between the information distribution in the spatial domain and the frequency domain. (a) the density map m in the spatial domain
[0, 512]× [0, 749]; (b) the real part of the characteristic function φm of m, in the range [−1, 1]2; (c) the imaginary part of the characteristic function φm

in the range [−1, 1]2; (d) the spectrum of the characteristic function, i.e., |φm| in range [−1, 1]2. The information is distributed everywhere in the spatial
domain, while the information in the frequency domain is concentrated on a small compact range near the origin. By Property 3, that compact frequency
information can recover the information anywhere in the spatial domain.

The GT density map is typically obtained by convolving the
dot map with a Gaussian distribution, N (0,Σ), and thus the
GT density map m̂g is the sum of M Gaussian distributions,

m̂g = mg ∗ N (0,Σ) =

M∑
k=1

δµj
∗ N (0,Σ),

⇒ m̂g(x) =

M∑
j=1

N (x|µj ,Σ), (13)

where ∗ is the convolution operation. Using Property 2
and noting that the characteristic function of a Gaussian
distribution N (x|µ,Σ) is φN (t) = exp (iµT t− 1

2t
TΣt), we

obtain the characteristic function of m̂g

φm̂g
(t) =

M∑
j=1

exp
(
iµT

j t− 1
2t

TΣt
)

(14)

=

M∑
j=1

exp
(
iµT

j t
)
exp

(
− 1

2t
TΣt

)
(15)

= φmg
(t) exp

(
− 1

2t
TΣt

)
. (16)

This result is also consistent with the fact that convolution
in the spatial domain is equivalent to multiplication in the
frequency domain.

Therefore, using (16), we can rewrite the loss in (10) in
terms of the GT dot map mg ,

lchf(mg,mp) =

∫
R2

∣∣φmg
(t)G(t)− φmp

(t)
∣∣dt, (17)

where G(t) = exp(− 1
2t

TΣt) is the Gaussian window in the
frequency domain.

Now we can interpret why convolving a Gaussian kernel
with the GT dot map is beneficial to crowd counting in terms
of the frequency domain. Specifically, we have φm̂g

(t) =
φmg

(t)G(t). The Gaussian window exponentially decays as
the frequency increases. Therefore, multiplying the Gaussian
window will ignore the high-frequency components in the GT
dot map, which corresponds to local position information.
Thus, Gaussian kernel convolution can avoid overfitting on
the local position information in the GT, resulting in more
accurate crowd count predictions.

The Gaussian window G(t) is only one type of window
function in the frequency domain. More generally, we propose
a generalized characteristic loss function (GCFL),

lgchf(mg,mp;H,F1, F2) = (18)∫
R2

H(t)
∣∣φmg

(t)F1(t)− φmp
(t)F2(t)

∣∣ dt,
which is parametrized by three window functions {H,F1, F2}
that give flexibility to handle different crowd analysis tasks.

In (18), F1 controls the GT information, i.e., which part
of the GT should be stressed and which part should be
ignored. F2 controls the prediction information in an inverse
way. Suppose we want the prediction to respond with high
values in some region in the frequency domain, then we can
give low values in the corresponding region of F2. Since the
final prediction used in the loss is the product of the NN
prediction and the window F2, then the NN must output higher
prediction values to overcome the lower multiplicative factor
in F2. H controls the overall loss behavior, where important
frequencies can be given higher weights, and unimportant (or
less confident) frequencies given lower weights.

Next, we will demonstrate how to use our GCFL in (18) for
crowd counting, crowd localization, and noisy crowd counting.

C. GCFL for crowd counting

The Chf loss lchf in [33] for crowd counting is a special
case of our GCFL using the following window functions,

H(t) = 1, F1(t) = exp(− 1
2t

TΣt), F2(t) = 1, (19)

where Σ is the covariance matrix of the Gaussian kernel used
to build the density map.

We next present some vital properties for this Chf loss
in (10). The first property is that it is not underdetermined,
i.e., two unequal density maps m1 and m2 will never have
zero loss between them. As pointed out in [24], minimizing
an underdetermined loss may degenerate the crowd counting
performance.

Proposition 1: The chf loss lchf , i.e., the GCFL with window
functions in (19), is not underdetermined for the ground-truth
density map m̂g and the predicted density map mp. See proof
in Appendix A.3.1.

Next we present a proposition for revealing why the Chf
loss works well for crowd counting.
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Proposition 2: For the ground-truth density map m̂g and
the predicted density map mp,

|m̂g(A)−mp(A)| ≤ (2π)−2lchf(m̂g,mp)L(A), (20)

for any open set A ∈ BR2 . Here L means the Lebesgue
measure, i.e., area of A. See proof in Appendix A.3.2.

The proposition shows what will happen to the predicted
density map when the Chf loss decreases w.r.t. the GT.
Rearranging the terms in (20), we obtain

(2π)2
|m̂g(A)−mp(A)|

L(A) ≤ lchf(m̂g,mp),∀A ∈ BR2 . (21)

and therefore the Chf loss is an upper-bound to the normalized
counting errors of all sub-regions A in the density map,
|m̂g(A)−mp(A)|

L(A) , where the normalization is based on the sub-
region area L(A).

Next, we define the “sup norm” metric between two density
maps, which is the largest normalized error over all sub-
regions, as

∆(m̂g,mp) = sup
∂A=∅ ∧ L(A)̸=0

|m̂g(A)−mp(A)|
L(A)

, (22)

where ∂A = ∅ means A has an empty boundary (i.e., it
is an open set), and L(A) ̸= 0 means it has a non-trivial
Lebesgue measure. Our sup norm in (22) has a similar flavor
to the MESA (Maximum Excess over SubArrays) loss from
[5], except that MESA is defined using rectangular regions and
is unnormalized, whereas ours is defined over all sub-regions
and is normalized.

Finally, we obtain

(2π)2∆(m̂g,mp) ≤ lchf(m̂g,mp), (23)

and thus minimizing the Chf loss is equivalent to minimizing
the upper bound of our sup norm metric ∆(m̂g,mp) between
the prediction and the GT, i.e., minimizing the largest normal-
ized error over all sub-regions. Using the Chf loss for training
will apply supervision more evenly on all region counts, which
avoids individual pixel-wise fluctuations in the spatial domain
(e.g., inherent with pixel-wise losses like L2). Specifically,
(21-23) show that decreasing the Chf loss will ensure the
closeness of the prediction to the GT for all areas in the spatial
domain, i.e., both local and global counts are considered for
supervision.

In practical implementation, we adopt the following win-
dows for GCFL to do crowd counting,

H(t) =

{
1, t ∈ [−0.3, 0.3]2

0, otherwise
, (24)

F1(t) = exp(− 1
2t

TΣt), F2(t) = 1.

Comparing (24) with (19), H(t) is truncated to a frequency
range around the origin, and thus the integral in (18) is
restricted on [−0.3, 0.3]2. See §IV-A1 and §V-B3 for more
details.

D. GCFL for localization

In contrast to crowd counting which needs to ignore local
details for preventing overfitting, crowd localization needs
more local information to provide precise positions, especially
for tiny dense heads. In the frequency domain, Low-frequency
components correspond to smoother 2D sinusoids, while high-
frequency components correspond to sharper 2D sinusoids.
Reconstructing precise local details in the spatial domain re-
quires high-frequency sinusoids. Thus, the following window
functions are adopted for GCFL to tackle crowd localization:

H(t) =

{
1, t ∈ [−0.5, 0.5]2

0, otherwise
, F1(t) = 1, F2(t) = 1. (25)

Since the localization requires precise local information, it
is not helpful to use a Gaussian window to smoothen the
local position information. Therefore in (25), we remove
the Gaussian window as compared to (24). Furthermore, the
integral range is expanded from [−0.3, 0.3]2 to [−0.5, 0.5]2,
which includes more high-frequency components to use more
precise localization information for supervision. §IV-A2 gives
more theoretical details about the range selection, while §V-C2
presents an ablation study of the H window range.

Map scaling. When we train the model for crowd local-
ization on dense heads, we can also exploit the informa-
tion distribution in the frequency domain and devise a map
scaling trick. After transformation to the frequency domain,
most information is concentrated in a small compact range
around the origin. This attribute is applicable to any spatial
information distribution, i.e., no matter how large the range
of the spatial information, its transformed frequency infor-
mation is always in that small compact range. Therefore,
we can expand the coordinates of the GT dot map and
the corresponding predicted density map simultaneously, so
that the localization error is increased. Then GCFL will be
more sensitive to the localization error, but without any extra
time or space consumption due to the above property of the
frequency information organization. Furthermore, when the
GT dot map is scaled, some dense heads are more separated,
which makes the local position information clearer. Note that
here we are scaling the coordinate system of the GT dots (e.g.,
µj → 10µj) and predicted density locations in the discrete
density map (cf., increasing the image resolution), so no extra
memory and negligible extra computation are required.

E. GCFL for noisy crowd counting

In practical application, the annotation of heads may not
be in the exact center of the head, due to carelessness and
the ambiguity of the annotation task. In other words, there
exists spatial noise in the head annotations. How to train a
crowd counting model with this type of noisy training data is
a realistic problem. [23] has investigated this problem in terms
of the spatial domain. Here we tackle this challenge in terms
of the frequency domain, by using GCFL.

1) Analysis of annotation noise in the frequency domain
We start from the characteristic function of the GT density

map m̂g in (13), and analyze how annotation noise affects
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the frequency information. Suppose for each head µj the
annotation noise is a 2D random vector ϵj , the noisy GT
density map m̃g is

m̃g(x) =

M∑
j=1

N (x|µj + ϵj ,Σ). (26)

By (16), we obtain the characteristic function of m̃g ,

φm̃g
(t) =

M∑
j=1

exp
(
i(µj + ϵj)

T t− 1
2t

TΣt
)

(27)

=
[ M∑
j=1

exp(iµT
j t) exp(iϵ

T
j t)

]
exp(− 1

2t
TΣt). (28)

Comparing (27) with (14), the annotation noise introduces
the extra terms exp(iϵTj t) in the frequency domain, which
perturbs the frequency content. Note that | exp(iϵTj t)| = 1
always holds, and thus the noise term will only rotate the
original frequency component of each head, without changing
its modulus. From this perspective, the perturbation in the
frequency domain is bounded somehow.

Gaussian annotation noise. To further analyze the effect, we
first assume a Gaussian distribution on the annotation noise.

Proposition 3: Suppose the noisy density map is defined
in (26). If spatial annotation noises {ϵj}j are independent and
identically distributed (i.i.d.) and follow a Gaussian distribu-
tion N (0,Λ), then for the noisy characteristic function φm̃g

,

E[φm̃g
(t)] =

M∑
j=1

exp(iµT
j t) exp(− 1

2t
T (Λ+Σ)t), (29)

var(φm̃g
(t)) = M(1− exp(−tTΛt)) exp(−tTΣt). (30)

See proof in Appendix A.3.3.

Comparing (29) and (15), on average, the Gaussian anno-
tation noise has the effect of spreading the Gaussian window
according to the annotation noise variance Λ. For the variance
distribution, note that the two terms (1 − exp(−tTΛt)) and
exp(−tTΣt) in (30) have complementary effect, which cause
var(φm̃g

) → 0 when |t| → 0 or |t| → ∞ (see the plot in
Fig. 3a). Thus, from (30), there are 2 important properties of
the variance map: 1) the region of large variance forms a ring
band in the frequency domain; 2) the variance linearly scales
with the count M .

Non-Gaussian annotation noise. Next we show the above two
properties of the variance map also hold without the Gaussian
assumption. More specifically, we have

Proposition 4: Suppose the noisy density map is defined
in (26). Let the spatial annotation noises {ϵj}j be i.i.d. and
follow distribution X , and let φm̃g

be the noisy characteristic
function. Then the variance map var(φm̃g

(t)) → 0 when
|t| → ∞ and |t| → 0, and var(φm̃g

(t)) linearly scales with
the total people count in m̃g . See proof in Appendix A.3.4.

Proposition 4 shows the two properties of the frequency
noise distribution hold regardless of the specific distribution of
the spatial annotation noise. In the spatial domain, the diversity

of the head positions and annotation noise distribution makes
the joint distribution of the noises very different among
different images, which makes implementing noise robustness
in the spatial domain difficult. However, Proposition 4 reveals
that the irregularly distributed spatial annotation noises are
regularly concentrated in a ring band in the frequency domain
and their variances linearly scale with the total people count in
the annotated dot map. This suggests a convenient method for
handling spatial annotation noises in the frequency domain.

2) Simulation of noise distribution
To confirm our analysis, we run a statistical simulation

to examine the effect of annotation noise in the frequency
domain. For a given dot map, we simulate a noisy dot map by
adding spatial noise to each dot according to a uniform disk
distribution with a radius of 20 pixels. We then calculate the
density maps for the original dot map and the noisy version,
and the error map between their characteristic functions. The
process is repeated 10,000 times, and we obtain a variance
map for each dot map. Finally, we perform this procedure for
2,000 dot maps from the training set of JHU++ dataset [68],
thus obtaining 2,000 variance maps.

Figure 3b-3d show examples of error variance maps for
three dot maps with different counts. In the frequency domain,
the spatial annotation noise causes perturbations to the charac-
teristic functions in a ring region around the origin. Note that
the scale of the variance varies with the number of people in
the original dot map. Normalizing the error variance maps by
the number of people in the ground truth and averaging them
yields the consistent error map in Fig. 3e, which illustrates that
there is indeed a linear correlation between the error variance
and the ground-truth count.3

3) Noise-robust window
Using our analysis, we design an appropriate dynamic

window function H(t) that focuses less on the information
in the ring band, which makes the model training robust to
spatial annotation noise. Let h(t) be the average normalized
variance map in Fig. 3e, then we define a dynamic window
function H(t) for each image,

H(t) =

{
1√

h(t)·M+1
, t ∈ [−0.3, 0.3]2

0, otherwise
,

F1(t) = exp(− 1
2t

TΣt), F2(t) = 1, (31)

where M is the total people count in the ground truth mg ,
and thus h(t) · M is the error variance map of each image.
H(t) is the reciprocal of the standard deviation map, where
positions with large variances will have low weights and thus
GCFL will focus less on these positions. Note that even when
applying this window H , the overall count in the frequency
domain, which is represented by the value at t = 0, remains
the same, thus the count is not affected during training. We
use the windows in (31) for the noisy crowd counting task.

IV. IMPLEMENTATION OF GCFL
Since there is no analytical solution for the integral in

(18), we first propose an approximate implementation of

3See Appendix C for more details.
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Fig. 3: (a), The variance map of the characteristic function when the spatial annotation noise follows a Gaussian distribution, with total people count 1.
(b)∼(e) Simulation of the variance maps of characteristic functions of density maps with spatial annotation noise with (b) 455, (c) 855, and (d) 7139 people.
(e) shows the average variance maps (over 2000 dot maps) after normalizing by the GT count, which illustrates the variance scales linearly with the count.

GCFL using both theoretical and empirical support. Then, we
modify the implemented loss by analyzing the backpropagated
gradient, and propose a modified GCFL loss that yields more
stable training with lower variance among repeated runs. These
properties make it well-suited for real applications.

A. Approximating the integral

To approximate (18) of GCFL requires two steps: 1) trun-
cating the infinite integral range on a finite range; 2) using the
Riemann sum to approximate the integral in this finite range.

1) Truncating the integral to a finite range
As illustrated in Fig. 2, the characteristic function values

outside a compact central range are typically very small.
Thus, the integral can be truncated using the window function
H . The empirical and theoretical evidence also supports the
truncation. In theory, we have the following upper bound of
the error between the original and reconstructed density map.

Proposition 5: Suppose the density map m is obtained
by convolving a discrete dot map with a Gaussian kernel
whose bandwidth is σ, and the reconstructed density map m̃ is
obtained from the characteristic function φm restricted on the
disk B(0, r). Let T be the total measure of m. Then on any
non-empty box area A with trivial boundary, i.e., m(∂A) = 0,
we have

|m(A)− m̃(A)|
L(A)

≤
T exp(−σ2r2

2 )

2πσ2
. (32)

where L(A) means the Lebesgue measure of A, i.e., the area
of the region A. See proof in Appendix A.3.5.

Proposition 5 indicates that the error between the original
and the reconstructed GT density map can be well bounded
by an exponentially decaying term, when we use a Gaussian
kernel to generate the GT density map from the dot map.
Fig. 4 shows the comparison between the original density
map and the reconstructed density map from the truncated
characteristic function.

2) Truncation without low-pass windows
If we do not convolve the GT dot map with the Gaussian

window (or any other smoothing windows), then truncation
still has an effect on the training.

As stated in Defn. 2, the dot map is also a discrete density
map, then the following proposition works for both the ground-
truth dot map and the predicted discrete density map.

Proposition 6: Consider a discrete density map m whose
measure is distributed on N points {p(1), · · · ,p(N)}. Let

m̃ be the reconstructed density map from the characteristic
function φm restricted on the square [−a, a]2. Then on any
non-empty box area A with trivial boundary, i.e., m(∂A) = 0,

m̃(A) =

N∑
k=1

m(p(k))

∫
A

2∏
d=1

sin((p
(k)
d − xd)a)

π(p
(k)
d − xd)

dx (33)

where the subscripts here indicate the 1st and 2nd coordinates
of p(k) or x. See proof in Appendix A.3.6.

Denote the integrand in (33) as

f (k)(x) =

2∏
d=1

sin((p
(k)
d − xd)a)

π(p
(k)
d − xd)

(34)

=
a2

π2

2∏
d=1

sinc((p
(k)
d − xd)a), (35)

where sinc(x) = sin(x)
x , and let

f(x) =
a2

π2

2∏
d=1

sinc(xda). (36)

Then (33) can be rewritten as

m̃(A) = (m ∗ F )(A) (37)

where ∗ means the convolution of two measures and

F (A) =

∫
A

f(x)dx (38)

is the signed measure with f as its density function. Therefore
intuitively, Proposition 6 says that truncating the integral is ac-
tually multiplying the frequency components with a rectangle
window, which corresponds to convolving the dot map with
a sinc function. The sinc function’s components compactly
gather around the center and quickly decay to 0 after the
first zero point (outside the main lobe), which suggests the
feasibility of truncating the integral to a small range. Thus
truncating the characteristic function of the discrete density
map is equivalent to distributing the extremely concentrated
singleton measure at the annotation point to its neighboring
pixels. This is a form of measure smoothing, preventing over-
fitting since the predictions of the NN do not have to be exactly
at the ground truth dot positions. It is also consistent with
the case in the frequency domain. Since the high-frequency
components in general correspond to the noise part, truncating
the integral means discarding the high-frequency components,
which can prevent overfitting on noise.
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Fig. 4: Comparison between the original density map and the reconstructed density map from the characteristic function confined on a small range. (a) the
original density map (with a Gaussian kernel of bandwidth 8) ; (b) the reconstructed density map from its characteristic function truncated on [−0.3, 0.3]2,
and on (c) [−0.5, 0.5]2; (d) the difference between (a) and (b); (e) the difference between (a) and (c). The reconstructed density map and the original density
map are nearly the same. Note the range of difference values in (d) and (e) is much smaller than the range of the density values. This indicates that the
characteristic function confined in a small range carries nearly all the information in the spatial domain. Hence, it is appropriate to restrict the integral to a
small range when we calculate the GCFL.
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Fig. 5: (a) the original dot map. (b) the recovered density map from the
characteristic function truncated on [−0.5, 0.5]2.

Fig. 5 shows an example. In the spatial domain, the spatial
unit is an image pixel. Thus a single pixel with measure v in
the discrete density map is similar to a disk centered at the
pixel location whose radius is several pixels and whose total
measure is also near to v. Specifically, we set a = 0.3 in the
crowd counting task and a = 0.5 in the crowd localization
task, which corresponds to a sinc function with a main-lobe
width of 21 pixels and 13 pixels respectively according to
(36). In crowd localization, the main lobe is narrower so the
density map is more separated and sharper, which is useful
for localization in dense crowds.

3) Approximating the integral with Riemann sum
Although the GCFL integral is confined to a small range, it

still needs to be approximated with the Riemann sum. Prop. 4
shows the Lipschitz continuity of the characteristic function,
which gives a firm theoretical guarantee for the Riemann sum
approximation. Furthermore, some empirical results will be
shown in §V-B3.

The implementation of GCFL using the Riemann sum
approximation is illustrated in Fig. 6. For a given image, let
there be M people in the ground truth with locations {µj}Mj=1.
The characteristic function of the dot map is (12). Let P (x) be
the values in 2D matrix corresponding to the predicted density
map at spatial locations x. The prediction density map mp is
also a stack of singleton measures, and by Property 2 we have

φmp(t) =
∑
x

P (x)φδx =
∑
x

exp(ixT t)P (x). (39)

In the Riemann sum approximation, the integral range on
[−a, a]2 is divided evenly into small square grids. Let R be

the set of center points on the grids, where the edge size of
the square grid is c. Then, the implementation of GCFL is

l̂gchf(mg,mp) = c2
∑
t∈R

H(t)
∣∣φmg (t)F1(t)− φmp(t)F2(t)

∣∣
(40)

= c2
∑
t∈R

H(t)
∣∣∣F1(t)

M∑
j=1

exp(iµT
j t)− F2(t)

∑
x

exp(ixT t)P (x)
∣∣∣.

(41)

The approximation introduces two hyperparameters in our
method: 1) the granularity of the grid in the Riemann sum (c);
2) the integral range (a). One of the important consequences of
Property 4 is to decouple these two hyperparameters. Property
4 demonstrates a uniform continuity of the characteristic
function, which means the intensity of the continuity is similar
everywhere in the domain. Therefore, if the granularity of the
Riemann sum approximation works fine around the origin,
then it also works on any integral range. Hence, the granularity
of the Riemann sum approximation is independent of the
integral range. As a result, the hyperparameter search is
converted from a two-dimensional grid search to two one-
dimensional line searches, which is more efficient. In addition,
the independence of the granularity to the integral range
guarantees that we can use the same granularity setting for
both crowd counting and crowd localization. No extra ablation
study on granularity is needed once the ablation study for
crowd counting is executed.

B. Improving training stability
The above implementation may have an unstable training

process in crowd counting tasks, which causes large variances
in results across different trials, which may limit its usefulness
in real applications. Therefore, here we propose two variants
to lgchf for improving the training stability.

For clarity, we first assume H(t) = F1(t) = F2(t) = 1 in
(40) for analysis, and we will add the three window functions
back at the end. Now (40) becomes

l̂gchf(mg,mp) = c2
∑
t∈R

∣∣φmg
(t)− φmp

(t)
∣∣ . (42)

Let t = [t1, t2]
T . We first write the set R as

R = {(t1, t2)|t1 ∈ R1, t2 ∈ R2}, (43)
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Fig. 6: The implementation of the GCFL. The DNN output is a density map
represented as a 2D matrix, where each value P (x) in the matrix corresponds
to the singleton measure at a spatial position x. Each dot in the GT has
position µj . R is the set of points used for the Riemann sum approximation.

where R1 and R2 are the coordinate sets for the t1 and t2
axes in the frequency plane. Then we can expand (42) as

l̂gchf(mg,mp) =

c2
∑

t1∈R1

∑
t2∈R2

√
ℜ(∆(t1, t2))2 + ℑ(∆(t1, t2))2, (44)

where ℜ and ℑ mean taking the real and imaginary parts of
a complex number, and ∆(t1, t2) is defined as

∆(t) = ∆(t1, t2) = φmg
(t1, t2)− φmp

(t1, t2). (45)

We next define our two variants of GCFL,

l̄gchf(mg,mp) (46)

= c2
∑

t1∈R1

√ ∑
t2∈R2

ℜ(∆(t1, t2))2 + ℑ(∆(t1, t2))2,

and4

l̃gchf(mg,mp) (47)

= c

√ ∑
t1∈R1

∑
t2∈R2

ℜ(∆(t1, t2))2 + ℑ(∆(t1, t2))2.

Note that decreasing the loss in (46) and (47) will also
cause the decrease in (40), and vice versa. By analyzing their
derivatives with respect to an output prediction value, we can
examine the behaviors of training with these losses. Since the
constants c and c2 are absorbed into the learning rate, we first
normalize the loss functions to remove these constants. For
an output prediction value at position x, the derivatives of the
losses with respect to P (x) are (see App. B for derivations):

1

c2
∂l̂gchf(mg,mp)

∂P (x)
=

∑
t∈R

⟨d(t),−fx(t)⟩
∥d(t)∥2

, (48)

1

c2
∂l̄gchf(mg,mp)

∂P (x)
=

∑
t∈R

⟨d(t),−fx(t)⟩
Q(t)

, (49)

1

c

∂l̃gchf(mg,mp)

∂P (x)
=

∑
t∈R

⟨d(t),−fx(t)⟩
1
c l̃gchf(mg,mp)

, (50)

4For l̄gchf , we also considered first summing over t1 ∈ R1 inside
the square root, and then summing over t2 ∈ R2 outside. A preliminary
study showed little difference in performance, with MAE of 58.78±1.06 and
58.71±1.05 for the two versions on ShanghaiTech A.
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Fig. 7: Comparison of the training process using GCFL l̂gchf and its variant
l̄gchf . The plot shows the test MAE on ShanghaiTech A test set during training
(1000 epochs). Although the two losses can both explore some local optimal
with the low test MAE, the more aggressive strategy in l̂gchf makes its training
more unstable.

Fig. 8: Comparison of test MAE results of ten runs using losses l̂gchf and
l̃gchf for training. The whiskers plot shows the mean, standard deviation,
minimum and maximum test MAE over the trials. Training with l̂gchf results
in a larger variance in test MAE, as compared to training with l̃gchf .

where

d(t) =

[
ℜ(∆(t))
ℑ(∆(t))

]
, fx(t) =

[
ℜ(exp(ixT t))
ℑ(exp(ixT t))

]
. (51)

In their derivatives, the numerator term ⟨d(t),−fx(t)⟩ is
common, while the three denominators are different,

∥d(t)∥2 =
√
ℜ(∆(t1, t2))2 + ℑ(∆(t1, t2))2, (52)

Q(t) =

√∑
t∈R2

ℜ(∆(t1, t))2 + ℑ(∆(t1, t))2, (53)

1
c l̃gchf(mg,mp) (54)

=

√ ∑
t1∈R1

∑
t2∈R2

ℜ(∆(t1, t2))2 + ℑ(∆(t1, t2))2.

From (52), (53), and (54), we have the following relationship
among the denominators

∥d(t)∥2 < Q(t) < 1
c l̃gchf(mg,mp). (55)

Therefore, the three losses behave differently during opti-
mization. The l̂gchf adopts the most aggressive optimization
strategy at each training step, as its derivative possesses the
smallest denominator. In contrast, l̃gchf is the most conserva-
tive optimization strategy, since its derivative has the largest
denominator. Finally, l̄gchf is between l̂gchf and l̃gchf .

From the training result on SHTCA (l̂gchf v.s. l̄gchf , see
Fig. 7) and SHTCB (l̂gchf vs. l̃gchf , see Fig. 8), the aggres-
sive optimization strategy of l̂gchf yields an unstable training
process, as well as higher variance of results among different
runs. The variants l̄gchf and l̃gchf mitigate these disadvantages.
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Finally, we add the H(t), F1(t), and F2(t) back to the
modifications to get the final version,

l̄gchf(mg,mp;H,F1, F2) (56)

= c2
∑

t1∈R1

√ ∑
t2∈R2

ℜ(∆̂(t1, t2))2 + ℑ(∆̂(t1, t2))2,

l̃gchf(mg,mp;H,F1, F2) (57)

= c

√ ∑
t1∈R1

∑
t2∈R2

ℜ(∆̂(t1, t2))2 + ℑ(∆̂(t1, t2))2

where

∆̂(t1, t2) = H(t1, t2)(φmg (t1, t2)F1(t1, t2)− φmp(t1, t2)F2(t1, t2)).

We use (57) for crowd counting in order to make the training
more stable. If there are more images with dense people in
the dataset, then we use the more aggressive version in (56).

V. EXPERIMENTS

In this section we present experiments on crowd counting
& localization and noisy crowd counting using our GCFL.

A. Experiment setup

We conduct crowd counting tasks on five benchmark data
sets: ShanghaiTech A & B [30], UCF-QNRF [67], JHU++
[68, 69], and NWPU [29]. Following the convention, the crowd
localization is conducted on UCF-QNRF and NWPU. For the
noisy crowd counting, we construct 5 different noisy crowd
data sets from UCF-QNRF by adding different levels of noise
to the original GT. For UCF-QNRF, we resize each image so
that its shortest side does not exceed 1536. For JHU++ and
NWPU, similar resizing is performed with length 2048. The
image crop size is 384 for UCF-QNRF, JHU++, and NWPU,
128 for ShanghaiTech A, and 512 for ShanghaiTech B.

We use the same density map regression DNN from [22–
25], comprising the feature extraction layers of VGG19 [70]
connected to a regression module composed of three convo-
lution layers. For our loss functions, we use the Adam [71]
optimizer with learning rate 1e-5 and weight decay 1e-4.

If the Gaussian window is used, the covariance matrix is
always a diagonal matrix with the diagonal set as 64, which
follows the convention that the Gaussian kernel in the spatial
domain is set to the bandwidth 8 pixels. The grid granularity in
the Riemann sum approximation is set to 0.01 for all datasets.

For our GCFL, we use the window functions in (24) for
crowd counting and localization of sparse heads, which we
denote as GCFL-CC. For crowd localization of non-sparse
heads, we use windows in (25), which is denoted as GCFL-CL,
and we use (31) in GCFL for noisy crowd counting, denoted
as GCFL-NCC. For clarity, we use GCFL to represent our
method in experimental results where we compare it with
SOTAs. And we use the specific names GCFL-CC, GCFL-
CL, and GCFL-NCC in the ablation study. In crowd counting,
we apply the variant loss in (56) on dense datasets QNRF and
SHTCA, and apply the variant loss (57) on the other datasets,
SHTCB, JHU++, and NWPU. For crowd localization, we use
map scaling with factor 10 for the ground truth and prediction
dot map during the training process.

NWPU JHU++ UCF-QNRF SHTC A SHTC B
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

VGG19+L2 - - 78.1 300.1 98.7 176.1 68.6 110.1 8.5 13.9
BL [22] 105.4 454.2 75.0 299.9 88.7 154.8 62.8 101.8 7.7 12.7
NoiseCC [23] 96.9 534.2 67.7 258.5 85.8 150.6 61.9 99.6 7.4 11.3
DM count [24] 88.4 388.6 68.4 283.3 85.6 148.3 59.7 95.7 7.4 11.8
GL [25] 79.3 346.1 59.9 259.5 84.3 147.5 61.3 95.4 7.3 11.7
GCFL (ours) 76.8 343.0 57.0 235.7 80.3 137.6 57.5 94.3 6.9 11.0

TABLE I: Comparison with state-of-the-art loss functions and baseline. All
losses use the same network architecture from [22]. The best method is bold,
while the second best is underline.

Loss time
per epoch

time per
500 epochs

number of related
hyperparameters

VGG19+L2 15.0 s 2h 5m 1
BL[22] 15.2 s 2h 7m 2

NoiseCC [23] 16.4 s 2h 17m 6
DM count [24] 19.0 s 2h 38m 4

GL [25] 17.4 s 2h 25m 7
GCFL (ours) 15.4 s 2h 9m 3

TABLE II: Efficiency and number of hyperparameters for different loss
functions. The training time is measured using the training set (300 images)
of ShanghaiTech A (with batch size 1 and crop size 512). Our implementation
uses PyTorch on an RTX2080 TI and i7 9700K CPU with 64GB memory.

B. Crowd counting

The evaluation metrics for crowd counting follow the stan-
dard convention: the Mean Absolute Error (MAE) and the
Root Mean Square Error (MSE) are adopted.

1) Comparison of loss functions
First we compare our GCFL with SOTA loss functions in

crowd counting in Table I. All of the losses use the same
network architecture from [22]. Our loss outperforms the other
losses on all datasets. Moreover, [24, 25] require an external
Sinkhorn algorithm [32] running dozens of even hundreds of
iterations in each training batch, while [23] needs to invert
large matrices in each training batch. Nevertheless, GCFL does
not require any other external algorithm, and the calculations
are quickly completed using standard tensor operations.

Table II shows the efficiency comparison among these loss
functions. Since all losses use the same network architecture
in the training phase, the identical inference time is omitted
here. Excluding the L2 baseline, BL [22] is the most efficient
loss function but also has the poorest performance. Our GCFL
has 2nd highest efficiency, as well as the 2nd lowest number
of hyperparameters, while also achieving the best MAE and
MSE. Note we only use 300 training images to compute
the timings, and the efficiency advantage will increase as the
training size and number of epochs increase.

2) Comparison with SOTA
Table III shows the comparison between our loss and the

current SOTA. For fairness, this comparison only considers
methods using a single model and trained on an individual
dataset. Although our method is simple, our GCFL is compet-
itive against current SOTA on large-scale datasets, obtaining
the lowest MAE/MSE on UCF-QNRF, JHU++, and NWPU.
Our method also obtains competitive results on ShanghaiTech
A and B, but these two datasets are smaller and less repre-
sentative of generalization ability. These comparative results
demonstrate the potential of supervising crowd counting in the
frequency domain.

We also compare the efficiency of our method with other
recent algorithms in Table III. Our method is 4x faster than
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NWPU JHU++ UCF-QNRF SHTC A SHTC B
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

CAN [16] 106.3 386.5 100.1 314.0 107 183 62.3 100.0 7.8 12.2
SFCN [72] 105.7 424.1 77.5 297.6 102.0 171.4 64.8 107.5 7.6 13.0
BL [22] 105.4 454.2 75.0 299.9 88.7 154.8 62.8 101.8 7.7 12.7
KDMG [56] 100.5 415.5 69.7 268.3 99.5 173.0 63.8 99.2 7.8 12.7
LSCCNN [42] - - 112.7 454.4 120.5 218.2 66.5 101.8 7.7 12.7
RPNet [18] - - - - - - 61.2 96.9 8.1 11.6
AMRNet [73] - - - - 86.6 152.2 61.6 98.4 7.0 11.0
NoiseCC [23] 96.9 534.2 67.7 258.5 85.8 150.6 61.9 99.6 7.4 11.3
DM count [24] 88.4 388.6 68.4 283.3 85.6 148.3 59.7 95.7 7.4 11.8
LA-Batch [74] - - - - 113.0 210.0 65.8 103.6 8.6 14.0
AutoScale [75] 94.1 388.2 65.9 264.8 104.4 174.2 65.8 112.1 8.6 13.9
GL [25] 79.3 346.1 59.9 259.5 84.3 147.5 61.3 95.4 7.3 11.7
SDA+BL [76] - - 62.6 264.1 83.3 143.1 58.4 95.7 - -
P2PNet [26] 77.4 362.0 - - 85.3 154.5 52.7 85.1 6.2 9.9
DMCNet [77] - - 69.6 246.9 96.5 164.0 58.5 84.6 8.6 13.7
SS-DCNet [78] - - - - 81.9 143.8 56.1 88.9 6.6 10.8
DC [79] - - 60.0 269.9 86.9 159.3 59.7 91.4 7.0 11.6
GauNet [80] - - 58.2 245.1 81.6 153.7 54.8 89.1 6.2 9.9
GCFL (ours) 76.8 343.0 57.0 235.7 80.3 137.6 57.5 94.3 6.9 11.0

TABLE III: Comparison with state-of-the-art single-model methods trained
on individual data sets.

Algorithm training time
per epoch

inference time
per epoch

crop size of images
for training

KDMG [56] 83.0 s 6.9 s 512
P2PNet [23] 60.8 s 11.8 s 128
GCFL (ours) 15.4 s 6.9 s 512

TABLE IV: Running time of recent algorithms. The inference time is
measured using the test set (182 original images) of ShanghaiTech A. Other
settings are the same as in Table II.
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Fig. 9: Ablation study on (a) the integral range [−a, a]2 where a is the value
in the x-axis; (b) the grid granularity in the Riemann sum approximation,
where the granularity is the side length of the square grid and the integral
range is fixed at [−0.2, 0.2]2.

P2PNet (despite P2PNet using smaller image sizes) and 5.4x
faster than KDMG in training. For inference, our method has
the same running time as KDMG since they use the same
architecture, and is ∼41% faster than P2PNet.

3) Ablation study
The approximation of the integral of GCFL-CC introduces

two extra hyperparameters: the integral range a and the grid
granularity c in the Riemann sum approximation. As men-
tioned in §IV, Property 4 decouples these two hyperparame-
ters, and thus the ablation study is carried out individually for
each hyperparameter on ShanghaiTech A.

Fig. 9a shows the results for different integral ranges.
Generally, the counting performance is robust to different
integral ranges. When the range is above [−0.3, 0.3]2, the
performance gradually degenerates, which suggests that the
frequency information beyond this range may make the model
overfit. In practice, we fix the range at [−0.3, 0.3]2.

Fig. 9b shows the counting result for different grid granu-
larity. When the granularity is too coarse, i.e., 0.1 granularity,
then the error increases significantly. When the granularity
is below 0.04, the performance is not too sensitive to the
granularity change. Since small granularity means more grids,

CSRNet [14] VGG19 [22] MAN [81]
MAE MSE MAE MSE MAE MSE

MSE 110.6 190.1 98.7 176.1 84.5 148.5
GCFL 83.0 139.8 80.3 137.6 78.6 133.4

TABLE V: Comparison of GCFL and MSE loss for different architectures.

which corresponds to more memory/computation, we set the
granularity as 0.01 in practice.

We next demonstrate the ability of GCFL to improve the
performance of different network structures. We compare
our GCFL with the L2 (MSE) loss on three typical net-
work structures: CNN-based CSRNet [14], VGG19 [22], and
transformer-based MAN [81], which are arranged according to
their learning ability (the last is the strongest). The experiments
are conducted on the QNRF dataset, and results are shown
in Table V. GCFL improves over MSE regardless of the
network structure used, albeit the improvements diminish as
the learning ability of the network becomes stronger (i.e.
MAN). Both the designs of the network structure and the loss
function can benefit the ability to learn from the training data.

Finally, we note that transformer-based networks (e.g.,
MAN) create long-range interactions among features, which
are then used to predict each output. In contrast, our GCFL
applies a frequency transformation on the outputs, which
better represents long-range correlations (interactions) among
outputs. Thus, the transformer architecture and GCFL are
complementary, and as a result, the transformer still benefits
from using our GCFL, as compared to the MSE loss.

C. Crowd localization

We next conduct experiments on crowd localization using
GCFL for training. To localize people in the predicted density
map, we use a similar strategy as the official code of [29]. The
output density map will first be upsampled to the same size as
the input image, then a 3×3 max pooling with stride 1 is used
for finding local maxima. The local maxima that are larger
than a threshold are selected as the final localization points.
Instead of using a troublesome fine-tuning method to find the
proper threshold, we use an automatic method for dynamically
deciding the threshold of each density map. Specifically, since
we trust the crowd-counting result of our GCFL, the density
threshold is set such that the number of localized points is
closest to the people count predicted by GCFL-CC.

Our final localization result combines the results from
GCFL-CL and GCFL-CC. Specifically, for the localization
results from GCFL-CC, we first delete those localization points
that are within 60 pixels of another localization point, in order
to keep only sparse localization points. Then, we add these
remaining points from GCFL-CC to the localization result
from GCFL-CL if there is no localization point from GCFL-
CL that is within 60 pixels.

1) Comparison with SOTA
We follow the convention to test on NWPU and QNRF

datasets. For NWPU, the result is evaluated by the official
website, which calculates precision, recall, and F1 measure
based on the total true positive number, prediction points
number, and ground truth points number. For QNRF, there
is no official code for evaluation, and the evaluation method
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Algorithm Prec. Recall F1
MCNN [30] 59.93 63.5 61.66

BL [22] 76.70 65.40 70.60
CL [67] 75.80 59.75 66.82

LSC-CNN [42] 74.62 73.50 74.06
DMcount [24] 73.10 63.80 68.13

TopoCount [27] 81.77 78.96 80.34
GL [25] 78.20 74.80 76.46

GCFL (ours) 80.81 80.20 80.50

TABLE VI: Comparison of localization performance on QNRF.

Algorithm Prec. Recall F1
TinyFaces [82] 52.9 61.1 56.7

GPR [83] 55.8 49.6 52.5
RAZ Loc [84] 66.6 54.3 59.8

Crowd SDNet [43] 65.1 62.4 63.7
TopoCount [27] 69.5 68.7 69.1

GL [25] 80.0 56.2 66.0
P2PNet [26] 72.9 69.5 71.2

AutoScale Loc [85] 67.3 57.4 62.0
CLTR [28] 69.4 67.6 68.5
OT-M [86] 71.0 65.8 68.3

GCFL (ours) 73.5 71.5 72.5

TABLE VII: Comparison of localization performance on NWPU test set.

used in the original paper is not clear enough. Thus, we use
the evaluation code from the recent SOTA [27]. Specifically, a
1-to-1 matching between the prediction and the ground truth
localization points is calculated with distance thresholds from
1 to 100. For each threshold, the precision and recall are
calculated based on the mapping result. Then for each image,
the average precision and recall values are computed. Finally,
the mean of the average precisions and recalls of all the images
is reported, along with the F1 measure.

Table VI shows the comparison result on QNRF. Our
method obtains the best recall and F1 measure, as well as the
second-best precision, which is only inferior to the TopoCount
[27]. Note that the TopoCount requires manually setting a box
range for heads in the image, which is not needed in our
method. Table VII shows that our method also achieves the
best recall and F1 measure on the challenging NWPU dataset,
while it has the second high precision, only lower than GL
[25]. However, GL obtains high precision at the cost of a
comparatively lower recall, whereas our method has both high
precision and the best recall among all the compared methods.

2) Ablation study
We next conduct an ablation study on QNRF. As we stated

in §IV, we do not need to conduct an ablation study on the
granularity of the Riemann sum approximation, since it is
already conducted in §V-B3.

Integral Range We first explore the appropriate integral
range with results shown in Table VIII. Expanding the integral
range from [−0.5, 0.5]2 to [−0.7, 0.7]2 diminishes localization
performance, which suggests that adding too many local
details will incur overfitting. Using integral range [−0.3, 0.3]2

removes more high-frequency components compared with
range [−0.5, 0.5]2, which results in underfitting the local
information. Thus overall, using [−0.5, 0.5]2 as the integral
range is the best choice.

Map Scaling. We investigate the map scaling factor
for crowd localization, while setting the integral range to
[−0.5, 0.5]2. Table IX shows the results for different map

Integral range Prec. Recall F1
[−0.3, 0.3]2 80.93 78.39 79.64
[−0.5, 0.5]2 81.24 78.73 79.96
[−0.7, 0.7]2 80.41 77.78 79.07

TABLE VIII: Ablation study on the integral range for GCFL-CL.

Map scaling factor Prec. Recall F1
No map scaling 81.24 78.73 79.96

5 81.44 78.91 80.15
10 81.64 79.10 80.35
15 81.42 78.89 80.14
20 81.42 78.87 80.12

TABLE IX: Ablation study on map scaling for GCFL-CL

H(t) Pr Re F1

H1(t) =

{
1, t ∈ [−0.5, 0.5]2

0, otherwise
81.64 79.10 80.35

H2(t) =


8∥t∥2 + 0.6, ∥t∥2 ≤ 0.05

1, ∥t∥2 > 0.05

∧ t ∈ [−0.5, 0.5]2

0, otherwise

81.00 78.47 79.71

H3(t) =


4∥t∥2 + 0.6, ∥t∥2 ≤ 0.1

1, ∥t∥2 > 0.1

∧ t ∈ [−0.5, 0.5]2

0, otherwise

80.97 78.41 79.67

H4(t) =


0.8, ∥t∥2 ≤ 0.05

1, ∥t∥2 > 0.05

∧t ∈ [−0.5, 0.5]2

0, otherwise

80.98 78.46 79.70

H5(t) =


0.8, ∥t∥2 ≤ 0.1

1, ∥t∥2 > 0.1

∧ t ∈ [−0.5, 0.5]2

0, otherwise

80.95 78.41 79.66

H6(t) =


1√

h(t)·M+1
, t ∈ [−0.3, 0.3]2

1, t ∈ [−0.5, 0.5]2

∧ t /∈ [−0.3, 0.3]2

0, otherwise

80.90 78.36 79.61

TABLE X: Ablation study on H(t) window function for crowd localization.
The H(t) in the final row is from the noise robust window functions (31).
We only show results for the best hyperparameter setting for each window.

scaling factors. Map scaling is effective in improving the
localization results up to a point. Afterwards, larger scaling
factors more heavily focus on the localization error, leading
to overfitting. Thus, we select factor 10 accordingly.

Window function H . We use the H(t) function to control
the behavior or our GCFL. Table X shows the effects of
different H(t) for crowd localization. These prototypes of
H(t) correspond to different strategies of focusing less on
the frequency components around the origin, which is more
about the global spatial information. The rationale is that
this may make GCFL comparatively focus more on the local
spatial information, which might help localization. Windows
H2 and H3 gradually decay the lower-frequency components
(e.g., see Fig. 10a). Windows H4 and H5 uniformly give
the region around the origin a lower weight (see Fig. 10b).
Finally H6 is from the noise robust window in (31). Here
we only use the hyperparameter (coefficient) settings for each
window prototype that give the best results. The results in
Table X show that all the prototypes obtain inferior localization
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Fig. 10: Three prototypes of H(t) for ignoring the frequency components near
the origin. Ha is the prototype of H2 and H3 in Table X, Hb corresponds
to H4 and H5, and Hc is for H6.

technique used Prec. Recall F1
GCFL-CL 81.24 78.73 79.96

+ map scaling 81.64 79.1 80.35
+ supplement from GCFL-CC 80.81 80.20 80.50

TABLE XI: Ablation study on each term in crowd localization

NWPU JHU++ UCF-QNRF SHTC A SHTC B
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

GCFL-CC 76.8 343.0 57.0 235.7 80.3 137.6 57.5 94.3 6.9 11.0
GCFL-NCC 77.7 349.6 58.2 239.2 79.5 140.0 55.0 88.5 6.9 11.3

TABLE XII: Crowd counting performance using GCFL-CC and GCFL-NCC
on the original datasets (without adding additional annotation noise).

results compared with the window H1. Thus, the frequency
information surrounding the origin, i.e., the global spatial
information, is also important for crowd localization of non-
sparse heads.

Contribution of each term. To obtain the final localization
result, we supplement the results from GCFL-CL with sparse
heads localized by GCFL-CC. GCFL-CL is used to train the
model for the basic crowd localization result, and map scaling
is used to improve the localization result. Table XI shows the
effect of each part. The map scaling is useful for improving
precision and recall simultaneously. The supplement from the
GCFL-CC can further improve the F1 measure.

D. Noisy crowd counting

In this section, we experiment with GCFL-NCC, which
uses the noise robust window in (31). We first show that
GCFL-NCC does not affect the crowd counting result much on
standard (noiseless) data. Table XII shows the crowd counting
result comparison between the GCFL-NCC and GCFL-CC
(using windows in (24)). On most of these data sets, the
GCFL-NCC obtains similar results to the GCFL-CC. On
ShanghaiTech A, there is some annotation noise, and hence
the result of using the noise robust window is better than using
the counting window.

Next we show the robustness of GCFL-NCC on datasets
with annotation noise. We simulate noisy data by regenerating
the dot map with random sampling. Since the Gaussian
distribution is peaked around the origin, we instead adopt a
uniform distribution over a disk to increase the noise level.
Each original annotation is replaced by a sample randomly
selected from a disk uniformly distributed and centered at the
original annotation position. The radius of the disk determines
the noise level, and in this experiment we use 5 levels
of noise with distribution radius in {20, 30, 40, 50, 60}. We
compare with other SOTA losses for crowd counting, and
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Fig. 11: Comparison of SOTA losses on training with noisy dot annotations
on QNRF: (a) test MAE and (b) test MSE. The noise level is the radius of
the uniform distribution disk used to generate annotation noise. Noise level 0
means no annotation noise.

Fig. 11 presents the result. For different noise levels, GCFL-
NCC almost always achieves the lowest MAE and MSE,
which suggests its stronger robustness to the annotation noise
compared with other losses. On noise level 30, the MSE
performance of GCFL-NCC is slightly worse than NoiseCC
[23]. However, NoiseCC is sensitive to its hyperparameters
– for different noise levels, the hyperparameter α (i.e., the
bandwidth of the Gaussian distribution of the annotation noise
in their model) needs to be adjusted for each noise level. And
in our experiments, α is set as the same value as the noise
level. In contrast, for GCFL-NCC, the same hyperparameter
setting works for all noise levels in the experiment, and thus
GCFL-NCC is robust to its hyperparameter settings and is
more practical for real applications.

VI. CONCLUSION

In this paper, we proposed the GCFL for crowd analysis in
the frequency domain. GCFL has two steps: 1) transforming
the spatial information to the frequency domain; 2) calculating
a loss between the frequency information. In the first step,
we established the theoretical foundation by extending the
definition of characteristic functions and proving a series of
vital properties. In the second step, we used window func-
tions to make GCFL flexible for various tasks, and introduce
approximate implementations that are convenient and efficient
for real applications.

By exploiting different window functions, GCFL is able to
tackle different crowd analysis tasks. We demonstrated three
examples in this paper: crowd counting, crowd localization,
and noisy crowd counting. In the process of designing the
window functions for three tasks, we found some insightful
properties of the crowd information in the frequency domain,
which indicates its advantage in information organization
compared to the spatial domain. Future work will consider
devising bespoke window functions for applying GCFL to
more crowd analysis tasks, e.g., image-based frameworks for
counting everything, which is largely based on MSE loss
between density maps [87, 88], and extending GCFL to the
spatio-temporal frequency domain for video crowd counting,
which may introduce an additional frequency transformation
in time and associated temporal windows based on people’s
motion constraints.
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