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On Distinctive Image Captioning via Comparing
and Reweighting

Jiuniu Wang?, Wenjia Xu?, Qingzhong Wang, and Antoni B. Chan, Senior Member, IEEE

Abstract—Recent image captioning models are achieving impressive results based on popular metrics, i.e., BLEU, CIDEr, and SPICE.
However, focusing on the most popular metrics that only consider the overlap between the generated captions and human annotation
could result in using common words and phrases, which lacks distinctiveness, i.e., many similar images have the same caption. In this
paper, we aim to improve the distinctiveness of image captions via comparing and reweighting with a set of similar images. First, we
propose a distinctiveness metric—between-set CIDEr (CIDErBtw) to evaluate the distinctiveness of a caption with respect to those of
similar images. Our metric reveals that the human annotations of each image in the MSCOCO dataset are not equivalent based on
distinctiveness; however, previous works normally treat the human annotations equally during training, which could be a reason for
generating less distinctive captions. In contrast, we reweight each ground-truth caption according to its distinctiveness during training.
We further integrate a long-tailed weight strategy to highlight the rare words that contain more information, and captions from the
similar image set are sampled as negative examples to encourage the generated sentence to be unique. Finally, extensive experiments
are conducted, showing that our proposed approach significantly improves both distinctiveness (as measured by CIDErBtw and
retrieval metrics) and accuracy (e.g., as measured by CIDEr) for a wide variety of image captioning baselines. These results are further
confirmed through a user study.

Index Terms—Image captioning, distinctiveness, between-set CIDEr, training strategies, metric.

F

1 INTRODUCTION

IMAGE captioning [2], [3], [4], [5], [6], [7] attracts increasing
attention from researchers in the fields of computer vision

and natural language processing. It is promising in various
applications such as human-computer interaction [8], [9],
information retrieval [10], and medical image understand-
ing [11]. Currently, the limitation of image captioning mod-
els is that the generated captions tend to consist of common
words so that many images have similar or even the same
captions (see Figure 1). The distinctive concepts in images
are ignored, which limits the wider application of image
captioning since distinctive captions are needed in practice.
In terms of the quality of generated captions, [12] summa-
rizes four properties that encourage auto-generated captions
to resemble human language: fluency, relevance, diversity,
and descriptiveness. Various models and metrics have been
proposed to improve the fluency and relevance of the cap-
tions so as to obtain accurate results. However, these models
are poor at mimicking the inherent characteristics of human
language: distinctiveness, which refers to the specific and
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detailed aspects of the image that distinguish it from other
similar images.

Some recent works have focused on generating more
diverse captions [9], [12], [13], [14] and discriminative cap-
tions [9], [15], [16]. However, only encouraging diversity,
such as using synonyms or changing word order, may not
help with generating distinctive captions among multiple
similar images. For instance, the human caption in Figure 1
“an image of a living room setting with furniture and curtains”
is telling the same story as “a living room with furniture and
curtains”. The two sentences have the same distinctiveness,
although the first sentence is more diverse in syntax and
word usage. Discriminative captions are not always distinc-
tive. As an example, “a living room with a couch and a table”
is discriminative since it describes the detail in the target
image, but is not distinctive since it cannot describe the
difference with the similar image. In this paper, we mainly
focus on promoting the distinctiveness of image captioning,
where the caption should describe the important and spe-
cific aspects of an image that can distinguish it from other
similar images. To improve the distinctiveness of image
captioning, we first need metrics to measure the distinc-
tiveness of a certain caption. The retrieval metric is widely
employed in recent works to measure the distinctiveness
in the evaluation and improve the distinctiveness during
model training [12], [16], [17]. The premise of the retrieval
metric is that distinctive captions should correctly retrieve
the target image from a set of irrelevant images. However,
using self-retrieval in captioning models could lead to word
repetition problem [9], [18], i.e., the generated captions could
repeat distinctive words, which hurts the language fluency.
Furthermore, the results may vary when choosing different
retrieval models or candidate images pool.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3159811

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XX XX 2

Target Image Similar Image

VS

CIDErBtw Human Ground-truth Captions:

53.5 1: A living room with a big table next to a book shelf.

40.2 2: The large room has a wooden table with chairs and a couch.

54.2 3: A living room decorated with a modern theme.

73.0 4: A living room with wooden floors and furniture.

Machine generated captions:

141.5 Baseline: A living room with a couch and a table.

76.8 Ours: A living room with wooden table and a large window.

CIDErBtw Human Ground-truth Captions:

55.6 1: A living room filled with nice furniture and a persian rug.

55.9 2: An image of a living room setting with furniture and curtains.

38.9 3: An open living room with brown walls and beige carpeting.

31.2 4: A large tan living room bathed in sunlight.

Machine generated captions:

174.2 Baseline: A living room with a couch and a table.

88.3 Ours: A living room with a white couch and a painting.

COCO_val2014_000000161370COCO_val2014_000000340175

Figure 1: The human ground-truth captions of a target image and a semantically similar image contain both common words
(highlighted in green) and distinctive words (highlighted in red for the target, and blue for the similar image). We underline
the words that are irrelevant to the image. The baseline model, Transformer [1] trained with MLE and SCST, generates the same
caption for both images, while our model generates distinctive captions with words unique to each image. The distinctiveness is
measured using CIDErBtw, the average CIDEr metric between the target caption and the GT captions of the similar images set,
where lower values mean more distinctive.

In this work, we propose a general metric for distinc-
tiveness, Between-Set CIDEr (CIDErBtw), by measuring the
semantic distance between one image’s caption and the
captions from a set of other similar images. If the caption
is distinctive, i.e., captures unique concepts in its image,
then it should have less overlap with its similar images set,
and lead to lower CIDErBtw. To improve the distinctiveness
of caption models, we also propose a training method,
Distinctiveness via Comparing and Reweighting (DCR),
which consists of three strategies that reweight the training
captions and words. In particular, we note that the human-
annotated captions of each image are not equivalent on
distinctiveness. Consider the example image and caption
pairs shown in Figure 1, some ground-truth captions con-
tain more distinctive concepts (e.g., bathed in sunlight) and
detailed description that can distinguish the image from its
similar image (e.g., wooden floor and brown walls). However,
traditional training objectives such as Maximum Likelihood
Estimation (MLE) and Reinforcement Learning (RL) treat
each ground-truth caption and each word equally. Thus, our
first strategy for improving distinctiveness is to give higher
weights to the distinctive ground-truth captions and dis-
tinctive words during training. In this way, the captioning
model focuses on important visual objects or properties, and
generates distinctive words instead of generic ones.

As discussed in [19], the long-tail problem is often ne-
glected in the model training. In linguistic studies, words
with less frequency often contain high information en-
tropy [20]. However, since these low-frequency words ap-
pear less often in the training dataset, they have a low
influence on model training, compared to high-frequency
words. Thus for our second strategy, we propose a weighted
cross-entropy (XE) loss to increase the training weight of
low-frequency words. By encouraging the model to pay
attention to low-frequency words, we thereby improve the
distinctiveness of generated captions.

Another problem of the current training process is that
the common approach aims to increase the probability of

the word within ground-truth captions, without deliberately
suppressing the probability of other words. Although simi-
lar images often convey the same semantic meaning, there
are always vital differences between them. For instance,
both images in Figure 1 represent a living room, while the
similar image still contains many objects that do not appear
in the target image, e.g., persian rug and white couch. We argue
that suppressing the words describing other similar images
would help the model to focus on the target image itself,
avoiding the generation of words that are relevant to the
scenes but do not exist in the target image. To address this
problem, our third strategy selects captions from the similar
images set as negative samples, and encourages the model
not to generate words in negative samples.

In summary, the contributions of our paper are three-
fold:

• We study the distinctiveness of generated captions,
considering that a caption should distinguish the
target image from other similar images. Similar im-
ages sets are constructed based on the similarity of
the images’ semantic meanings. Then a novel metric
CIDErBtw is proposed to evaluate the distinctiveness
of a caption within its similar image set. Experiments
show that our metric aligns with human judgment
for distinctiveness.

• We propose the Distinctiveness via Comparing and
Reweighting (DCR) training method, where we give
different weights to each sentence and each word.
DCR method consists of three strategies: CIDErBtw-
Strategy guides the model to focus more on distinc-
tive captions; The Long-Tailed Weight (LTW) strat-
egy is integrated to highlight the rare words that
contain more information; We also apply the Neg-
ative Samples (NS) strategy in contrastive learning,
to further encourage the generated caption to be
unique for the target image, rather than similar to
other images. Experiments show that training with
DCR guidance is generally applicable, and yields
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consistent improvement for four baseline models.
• Based on the transformer network trained with XE

loss, SCST (self-critical sequence training) [21], and
DCR method, we generate distinctive captions while
maintaining state-of-the-art performance according
to evaluation metrics such as CIDEr and BLEU. Both
automatic metrics and human evaluation demon-
strate that our captions are more accurate and more
distinctive.

The preliminary version of this work was published
in [22], and has been extended in 4 aspects in this paper.
First, we further study the Long-Tailed Weight strategy that
mainly works on word-level and supplements the sentence-
level CIDErBtwStrategy from [22]. Second, we investigate
using contrastive learning, based on word level negative
samples from the similar image set, to promote the dis-
tinctiveness of generated captions. Third, we investigate
the influence of different definitions of similar images sets,
including different image-text retrieval methods, the size
of similar images sets, and their corresponding effect on
the training process and evaluating metrics. We then col-
lect extensive human judgments on distinctiveness, and
analyze its correlation with different metrics. Fourth, us-
ing the newly introduced methodologies, we present new
experiments with the investigated DCR method on several
baseline models.

The remainder of this paper is organized as follows. In
Section 2, we describe related work. We define Between-Set
CIDEr in Section 3 and propose our methodology (i.e., DCR)
in Section 4. Next, the quantitative results, user study, and
qualitative results are reported respectively in Sections 5, 6,
and 7. Finally, we draw a conclusion in Section 8.

2 RELATED WORK

Captioning models. A wide range of image captioning
models have been developed [2], [3], [4], [5], [6], [7], achiev-
ing satisfying results as measured by popular metrics, such
as BLEU [23], CIDEr [24] and SPICE [25]. Generally, an
image captioning model is composed of three modules:
1) visual feature extractor, 2) language generator, and 3)
the connection between vision and language. Convolu-
tional neural networks (CNNs) [26], [27] are widely used
as visual feature extractors. Recently, object-level features
extracted by Faster-RCNN [28] have also been introduced
into captioning models [29], significantly improving the
performance of image captioning models. [30] proposed
a hierarchy parsing model to fuse multi-level image fea-
tures extracted by mask-RCNN [31], which improves the
performance of the baseline models. In terms of language
generators, LSTM [32] and its variants are the most popular,
while some works [6], [7] use CNNs as the decoder since
LSTMs cannot be trained in parallel. More recently, trans-
formers [1], [33], [34] show improved performance in both
language generation and language understanding, where
the multi-head attention plays the most important role and
the receptive field is much larger than CNNs. Stacking
multi-head attention layers could mitigate the long-term
dependency problem in LSTMs. Hence, the transformer
model could handle much longer texts. For vision-language
connection, attention mechanisms [5], [21], [29], [35] are

used to reveal the co-occurrence between concepts and
objects in the images. Reinforcement learning [15], [21] also
guides the models to meet the metric judgment better.
Distinctive image captioning. Previous works [17], [18],
[36] reveal that training the captioning model with MLE
loss or CIDEr reward results in over-generic captions, since
the captioning models try to predict an “average” caption
that is close to all ground-truth captions. These captions
lack distinctiveness, i.e., they describe images with similar
semantic content using the same caption. Various recent
works are related to this topic. In summary, they propose
three aspects to consider: (1) diversity: describe one im-
age with notably different expressions every time like hu-
mans [36], or use rich and diverse wording [18] to generate
captions; (2) discriminability: describe an image by referring
to the important and detailed aspects of the image, which
is accurate, and informative [9], [12], [15], [16], [37]; (3)
distinctiveness: describe the important and specific aspects of
an image that can distinguish the image from other similar
images [12], [17]. In our paper, we focus on the last aspect,
distinctiveness.

To promote diversity, two typical techniques (i.e., GAN
methods and two-stage methods) have been investigated.
Some works [13], [36], [38], [39] employ GANs, where an
evaluator distinguishes the generated captions from hu-
man annotations, encouraging the captions to be similar
to human annotations. Seq-CVAE [40] further improves
the sentence diversity in word-wise latent space. COS-
CVAE [41] splits the context and objects by factorization
of the latent space, and describes the image with novel
context. In the other way, the two-stage method [12], [14],
[42] first generates a simple caption and then refines it into a
more diverse caption. StackCap [42] proposes coarse-to-fine
framework to combine multi-grained attentions; VisPara-
Cap [12] employs visual paraphrases to describe details
in captions; ETN [14] applies denoising LSTM to edit the
preliminary caption. During inference, the models with two-
stage LSTM have to generate two sentences for one image,
which is time-consuming. Another drawback of the two-
stage method is that it cannot be trained in SCST [21]
manner, and therefore the performance based on BLEU [23],
CIDEr [24], and SPICE [25] is limited. Additionally, aux-
iliary information (such as where, when, and who takes
the picture) could also be used to generate personalized
captions [8], [43] to improve diversity, but many images do
not have such personalized information.

Contrastive learning [16], [17] and self-retrieval [9], [15]
are introduced into captioning models to improve the dis-
criminability of the generated captions. CL [17] and Disc-
Cap [16] optimize the contrastive loss based on randomly
selected unmatched image-caption pairs. However, the ran-
domly sampled images in a batch can be easily distin-
guished from the target images. In contrast, instead of using
random sampling, we select negative samples (NS) from the
similar images set, to specifically discourage generating cap-
tions that describe the similar images. Furthermore, instead
of sentence-level contrastive learning [15], [16], [17] we focus
on word-level negative samples, which more flexibly and
accurately convey the distinctiveness information. SRPL [15]
employs self-retrieval reward to extend the contrastive loss,
which aims at pushing the generated caption far from other

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3159811

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XX XX 4

images in the training batch. PSST [9] trains the captioning
model and retrieval model jointly. On the one hand, image
retrieval encourages a model to generate distinctive words,
while on the other hand, it hurts the accuracy and caption
quality—weighing too much on image retrieval could lead
a model to repeat the distinctive words [18].

There are some previous works [44], [45] related to gen-
erating distinctive captions. Distinctiveness requires cap-
tions to show the difference within similar images. Context-
agnostic Supervision [44] applies suppressed loss to gener-
ate a different caption from a distractor concept. [45] gives a
caption for a group of images, constructing the contrastive
feature to reflect the difference between images in the target
group and context group. In this paper, we encourage the
generated caption to learn from its own ground-truth cap-
tions, giving higher weights to captions and words that are
distinctive from other similar images, which disregards the
generic captions. Thus both accuracy and distinctiveness are
promoted by our method.
Long-tail re-weighting, which uses weights to balance the
loss functions of head and tail classes, is adopted to alleviate
the imbalance of long-tail distribution in image classifica-
tion and object detection. Re-weighting methods can be
categorized to Class-level Weighting [46], [47] and Sample-
level Weighting [48], [49]. The Class-level Weighting [46],
[47] guides the model to pay more attention to minority
categories by assigning weights to categories, based on the
inverse class frequencies. On the other hand, our model
focuses on each word sample and assigns the weight for
the long-tail words that are more distinctive. Sample-level
Weighting, e.g., focal loss [48], determines the weight for
each image by how easily the image can be correctly clas-
sified. In contrast, our training loss is combined with cross-
entropy loss, and explicitly encourages the model to pay
attention to the words with lower frequency in the training
set.

Re-sampling [50] is another popular direction to tackle
the long-tail problem, which achieves a balanced class dis-
tribution by up-sampling the long tail classes [51]. Since
the supervision for image captioning is sentence-level, sim-
ply up-sampling (repeating) rare words might do harm
to the sentence structure and influence the fluency of the
generated captions, e.g., generating captions with repeated
words. Thus we choose the re-weighting strategy to assign
higher weights for the long-tail words without changing
the ground truth captions structure, and leave re-sampling
methods for future research.

The long tail in the empirical distribution of the image
caption dataset MSCOCO is introduced in [52]. As in lin-
guistic studies, words with less frequency often contain high
information entropy [20], and [53] argues that a long-tail in
the word frequency distribution indicates higher diversity in
the generated captions. There are two recent works related
to the long-tail phenomenon in seq-2-seq models [54], [55].
Raunak et al. [54] enable the model to predict the low-
frequency words on the task of Neural Machine Translation.
Ding et al. [55] motivate in the opposite direction to ignore
the unique information and emphasize the common words
in Image Captioning models, which results in a generic cap-
tion with high accuracy as measured by CIDEr. However, no
prior work focuses on imposing the long-tail words in the

image captioning task, since the metrics such as CIDEr and
BLEU encourage the model to focus on the common words.
To the best of our knowledge, we are the first to improve the
distinctiveness by assigning higher weights to the long-tail
words during model training.

As for the techniques, Raunak et al. [54] introduce Anti-
Focal loss for penalizing low-confidence predictions, while
Ding et al. [55] calculates the word weight according to
the co-occurrence between the target image and one similar
image. On the contrary, our model incorporates a re-weight
strategy with cross-entropy loss and assigns higher weights
to the long-tail words, where the weight is based on the
word frequency.
Metrics for distinctiveness. Traditional metrics such as
BLEU [23], METEOR [56], ROUGE-L [57], CIDEr [24] and
SPICE [25] normally consider the overlap between a gener-
ated caption and the ground-truth captions. These metrics
treat all ground-truth captions equally, and thus a generated
caption only containing common words could obtain high
scores, reflecting the statistics of human annotations. Some
works aim to generate multiple captions to cover more con-
cepts in an image [36], [38], [58], [59] and several diversity
metrics are proposed, such as the number of novel captions,
the number of distinctive n-grams [60], mBLEU [38], local
and global word recall [61], and self-CIDEr [18]. However,
these metrics only encourage the diversity and discrim-
inability of generated captions, and do not explicitly eval-
uate distinctiveness. Although generating multiple captions
could cover distinctive concepts, it is difficult to summarize
them into one human-like description.

Currently, the retrieval approach is the most popular
evaluation metric for distinctiveness, where a generated
caption is used as the query and a pre-trained image-text
embedding model, e.g., VSE++ [62], is employed to rank the
given images. Recall at k (R@k) is normally used to measure
the distinctiveness of captions in this approach. Ideally, a
correct and distinctive caption should retrieve the image
that was used to generate the caption. The drawback of
retrieval-based metrics is that they are time-consuming since
it uses the deep retrieval model when evaluating. Moreover,
different trained models could result in different R@k. In
contrast, our proposed CIDErBtw metric for distinctiveness
is fast and easy to implement, allowing it to be incorporated
into various training protocols and captioning models.

3 BETWEEN-SET CIDER

In this paper, we aim to obtain a distinctive caption that
describes the important, specific, and detailed aspects of an
image. To achieve this goal, we train the captioning model
to focus on important details that would distinguish the
target image from semantically similar images. Our work
involves two main components: the Between-Set CIDEr
(CIDErBtw) value that measures the distinctiveness of an
image caption from those of similar images; and several
reweighting strategies for training distinctive models. We
will describe the first component in this section, and the
second component will be included in the next section.

The captioning model aims to generate a sentence c∗ to
describe the semantics of the target image I0. In the image
captioning dataset, the image I0 is usually provided with
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N annotated ground-truth captions C0 = {c01, c02, . . . , c0N}.
We first find K similar images {I1, I2, . . . , IK} that are
semantically similar to I0, and then calculate the CIDErBtw
values of C0 using these similar images. CIDErBtw values
indicate the distinctiveness of the captions.

3.1 Similar images set

According to the split of the training, validation, and test
dataset, we measure the similarity of the target image I0
to every image within the same split. Similar images sets
in the training split are used when calculating the loss and
the reward during training, while those in the validation
and test split are used to evaluate the distinctiveness of
generated captions. For each image I0 in the dataset, we
find the top K images {I1, I2, . . . , IK} with the highest
semantic similarity to form a similar images set. There could
be several ways to measure the similarity between two
images, e.g., VSE++ [62], SCAN [63], Vilbert [64], CLIP [65]
and CIDEr [24] similarity. We describe two effective ways
in this section, i.e., VSE++ [62] similarity and CIDEr [24]
similarity.
VSE++ similarity. Given every target image, we generate
its similar images set according to an image-to-caption re-
trieval process. We encode images and captions into a joint
semantic space, and obtain similar image sets via the VSE++
retrieval model. Given target image I0, a set of closest
captions {c′1, c′2, . . . , c′Nr} in the joint space is obtained by
image-to-caption retrieval, where Nr = N(K +1) to ensure
that there are at least K+1 images in the similar images set.
The top K images corresponding to this captions set are
considered as similar to the target image I0. In this way, the
VSE++ similarity of Ii to Ij is denoted as Sv(Ii, Ij),

Sv(Ii, Ij) = max
k∈{1,··· ,N}

gr(Ii, c
j
k), (1)

gr(Ii, c
j
k) =

φ(Ii)
T θ(cjk)

‖φ(Ii)‖‖θ(cjk)‖
, (2)

where φ(·) and θ(·) are the image and caption encoders from
VSE++, and gr(Ii, c

j
k) represents the retrieval score between

the image Ii and the k-th ground-truth caption of Ij .
CIDEr similarity. Since the semantics of an image is ex-
pressed in its ground-truth captions, we can directly use
the similarity of ground truth captions to represent the
similarity of images. In this case, the CIDEr similarity of
Ii to Ij can be calculated by the averaged CIDEr value of
their ground-truth captions as

Sc(Ii, Ij) =
1

N2

N∑
k=1

N∑
l=1

gc(c
i
k, c

j
l ) , (3)

where cjl is the l-th ground-truth caption of Ij , and gc(cik, c
j
l )

is the CIDEr value between two ground-truth captions cik
and cjl .

3.2 CIDErBtw

Next, we introduce the definition of Between-set CIDEr
(CIDErBtw), and why we use CIDErBtw as a metric to
measure the distinctiveness of a generated caption.

3.2.1 CIDErBtw definition
A caption is regarded as distinctive, if it contains specific de-
tails of its target image, rather than being general enough to
describe other similar images. The CIDErBtw value reflects
the distinctiveness of a caption c by measuring the similarity
of c to the ground-truth captions of similar images. Specif-
ically, given a caption c for image I0, we have its similar
images set {I1, I2, . . . , IK} constructed in Section 3.1 and
their ground-truth captions C(s) = {ckn}

N,K
n=1,k=1. We define

the CIDErBtw value of the caption c as

CIDErBtw(c) =
1

KN

K∑
k=1

N∑
n=1

gc(c, c
k
n), (4)

where N is the number of ground-truth captions provided
for each image, gc(c, ckn) represents the CIDEr [24] value
between c and ckn. CIDErBtw measures the averaged se-
mantic similarity between the target caption and other
ground-truth captions. A lower CIDErBtw value indicates
the caption contains less commonality with the captions of
its similar images. Here we use CIDEr because it focuses
more on the low-frequency words (through TF-IDF vectors)
that could be more distinctive; it is efficient to compute; it is
the most frequently used metric to evaluate the performance
of image captioning models. Besides CIDEr, our methodol-
ogy could be extended to other caption metrics to measure
between-set similarity.

3.2.2 CIDErBtw evaluation metric
CIDEr metric measures the similarity between the gener-
ated caption c∗ and its ground-truth captions C0, and has
become an important evaluation metric in image captioning.
We believe the distinctiveness should also be measured
when evaluating the quality of generated captions. Thus we
propose to use CIDErBtw as a complementary evaluation
metric for image caption models. We hope that the caption
c∗ generated by the model is closer to the semantics of the
target image I0, while far from the semantics of other K
similar images {I1, I2, . . . , IK}. Therefore, the c∗ generated
by a more distinctive captioning model will have a lower
CIDErBtw on the validation or test split. CIDEtBtw requires
human annotations to evaluate the generated captions, sim-
ilar to other captioning metrics, e.g., CIDEr [24], BLEU [23],
METEOR [56], and ROUGE [57]. Note that for evaluation,
the similar images sets are computed using the validation or
test split, where appropriate. Another distinctiveness metric,
the retrieval metric based on VSE++, also needs ground-
truth captions to train the VSE++ model. Compared to the
retrieval metric, our advantage is that we are fine-grained
since we use similar images set to measure the distinc-
tiveness, while VSE++ uses irrelevant images in the same
batch. Apart from acting as a metric for distinctiveness,
CIDErBtw can be applied in the training strategy to improve
the distinctiveness of image captioning. We will introduce
the application methods in the following sections.

4 IMPROVING DISTINCTIVENESS VIA COMPARING
AND REWEIGHTING

In this section, we propose our training method
Distinctiveness via Comparing and Reweighting (DCR).
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Our training method consists of three strategies to improve
distinctiveness. First, the CIDErBtw strategy reweights each
ground truth caption according to its distinctiveness for
MLE and RL training. We further improve the distinctive-
ness by applying a Long-Tailed Weight (LTW) strategy, which
applies larger weights to long-tailed (infrequent) words. Fi-
nally, we propose the Negative Samples (NS) strategy, which
uses negative samples from similar images set to perform
contrastive learning.

4.1 Model architecture
Figure 2 shows the overall framework of our image cap-
tioning model, which is composed of an image encoder
and a language decoder. These two modules can generate
a caption c∗ for input image I0.

Training processes such as MLE and RL maximize the
likelihood and reward for the given ground-truth captions
C0 = {c01, c02, . . . , c0N}, which achieve state-of-the-art perfor-
mance on image captioning tasks [29], [35]. Following this
idea, we apply two objective functions to update the param-
eters of our image captioning model, the cross-entropy (XE)
loss LXE and the Reinforcement Learning (RL) loss LRL. A
hyperparameter αl controls the weight of these two criteria,

L = αlLXE + (1− αl)LRL . (5)

Following SCST (self-critical sequence training) [21], the
training process of our model can be divided into two
steps. The first step only trains with the cross-entropy loss
LXE , setting αl = 1, and the second step only trains with
reinforcement learning LRL, setting αl = 0. Note that our
contribution lies in new training strategies that promote the
distinctiveness of captions, thus our method is applicable to
many baseline models trained with XE loss and RL loss.

4.2 CIDErBtwStrategy
In previous models, each ground-truth caption c0i is treated
equally when calculating the XE loss and RL reward,
whereas these captions might have different distinctive-
ness. In this work, we focus more on distinctive ground-
truth captions by reweighting XE loss and RL reward (i.e.,
CIDErBtwReweight) and using CIDErBtw as a part of RL
reward (i.e., CIDErBtwReward). For every training image
I0, we provide its N ground-truth captions C0 with dif-
ferent weights W = {w1, w2, . . . , wN}, according to their
CIDErBtw scores V = {v1, v2, . . . , vN},

vi = CIDErBtw(c0i ), (6)

wi = λw − αw
vi

max
i

(vi)
, (7)

where λw and αw are hyperparameters. Here wi indicates
the contribution of the i-th ground-truth caption during
model training. A distinctive caption c0i will have a lower
vi, thus lead to higher weight wi during training.

4.2.1 CIDErBtw weighted XE loss
Given the words in a ground-truth caption c0i =
{d1, d2, . . . , dT }, XE loss can be expressed as

LXE(c
0
i ) = −

T∑
t=1

log pθ(dt|d1:t−1, I0), (8)

where pθ(dt|d1:t−1, I0) denotes the probability of choosing
the word dt given the word sequence d1, . . . , dt−1 and
image I0. The CIDErBtw weighted XE loss is then

LXE =
N∑
i=1

wiLXE(c
0
i ) . (9)

4.2.2 CIDErBtw weighted RL
Our CIDErBtwStrategy is also applied to reinforcement
learning (RL) by: 1) reweighting the reward of each ground
truth captions of the target image, and 2) directly using
CIDErBtw as a reward.
CIDErBtw weighted reward. In RL, we can reweight the
reward according to the CIDErBtw to focus more on distinc-
tive captions, resulting in a new reward,

R̃(c∗) =
1

N

N∑
i=1

wigc(c
∗, c0i ), (10)

where gc(c∗, c0i ) is the CIDEr value between generated c∗

and ground-truth c0i .
CIDErBtwReward. When performing RL, our CIDErBtw
can also be used as a part of the reward related to distinc-
tiveness. We combine the CIDErBtw score with the previous
reward R̃(c∗) and obtain the final RL reward R(c∗)

R(c∗) = R̃(c∗)− αrCIDErBtw(c∗), (11)

and RL loss LRL
LRL = −Ec∗∼pθ [R(c∗)], (12)

where CIDErBtw(c∗) represents CIDErBtw score of the
generated caption c∗ defined in (4), αr is a hyperparameter
controlling the relative contributions, and the single Monte-
Carlo sampling is used as the RL policy pθ .

4.3 Long-tailed weight strategy
In image captioning, the frequent words are trained on
sufficiently (even over-training), while the rare words are
trained on less, even though they might contain higher
information entropy [20]. This problem can be addressed
by giving higher weights to rare words via our Long-Tailed
Weight (LTW) strategy. We first calculate the frequency of
words in the vocabulary using the training data. The words
are then sorted in descending order by their frequency,
where ft indicates the frequency index for the t-th word.

We propose a long-tailed weight wLTW
t for the t-th word,

based on its word frequency index ft,

wLTW

t =

{
1, ft ≤ Fb

1 +A ft−Fb
Fe−Fb , Fb < ft ≤ Fe

(13)

where Fb and Fe denote the beginning and ending fre-
quency indices for words that will be emphasized, and A
controls the amplitude of the Long-Tailed Weights. Figure 3
displays an example plot of the word frequency distribution,
the long-tailed weights, and some example words with
different frequency. The LTW strategy is applied to XE loss,
so that (8) is extended to

LXE(c
0
i ) = −

T∑
t=1

wLTW

t log pθ(dt|d1:t−1, I0). (14)
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Figure 2: The framework of our proposed method, Distinctiveness via Comparing and Reweighting (DCR). C∗ and C0 indicate
the generated caption and the ground-truth captions. The similar images set is retrieved by the input image, and CIDErBtw
is computed for each ground-truth captions of the input image. The blue shade in the ground-truth image captions indicates
word frequency, i.e., dark blue represents Long-Tail words and vice versa. The green box outlining each sentence denotes the
distinctiveness, i.e., dark green represents distinctive caption, and vice versa.
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Figure 3: Word frequency distribution (orange line) and the
long-tailed weights (blue line) assigned to each word. The be-
ginning and ending word frequency indices to be emphasized
with the long-tailed weights are Fb (5,000) and Fe (9,487). We
show several example words with different frequencies.

4.4 Negative samples strategy
In order to suppress the generic words that also describe
other similar images, we form a set of positive and negative
caption samples for a given target image I0. Specifically, the
ground-truth captions c0i of I0 form the positive samples,
while the captions cki from its similar image set form the
negative samples (NS). Our model is trained to give higher
probabilities to positive samples, and lower probabilities to
negative samples, as computed in (8). In this case, the XE
loss of (9) is extended to

LXE =
N∑
i=1

wiLXE(c
0
i )− αNS

K∑
k=1

N∑
i=1

wki LXE(c
k
i ) , (15)

where cki is the i-th ground-truth caption of the k-th similar
image, wki is the CIDErBtw weight of cki , and αNS is a
hyperparameter. This loss will encourage the use of words

in the positive captions, while avoid using words in the NS,
thus improving distinctiveness.

5 EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the effectiveness of our DCR method in generating
distinctive captions. Note that our motivation is to generate
distinctive captions as well as achieve high caption quality.

5.1 Implementation details

5.1.1 Dataset and models
We use the MSCOCO dataset [67] with Karpathy split [66].
The numbers of images are 113,287 for training, 5,000 for
validation, and 5,000 for test. There are five annotated
captions for each image.

For the image encoder, following Luo et al. [16], we use
two types of features in the experiments, ResNet features
and spatial features. The ResNet features are extracted from
ResNet-101 [27], and each image is encoded as a vector with
dimension 2,048. The spatial features are extracted from the
output of a Faster-RCNN [28] following UpDown [29].

Our experiments are performed on four baseline models:
FC [21], Att2in [21], UpDown [29], and Transformer [1].
FC model only uses the ResNet features, Att2in and
Transformer only use the spatial features, and UpDown
uses both types of features. Each model is trained us-
ing two settings: 1) Baseline model trained with or-
dinary MLE/SCST [21] with standard XE/RL loss, de-
noted as “model” and “model+SCST”; 2) Baseline model
trained with our DCR method, denoted as “model+DCR”
or “model+SCST+DCR”.

5.1.2 Training details and evaluating metrics
All the hyperparameters are selected on the evaluation set
of Karpathy split. For different models, we set λw = 1.5,
αw between 0.5 to 1.0 when reweighting the loss and

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3159811

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XX XX 8

Method CIDEr↑ CIDErBtw↓ BLEU3↑ BLEU4↑ METEOR↑ ROUGE-L↑ SPICE↑ R@1↑ R@5 ↑ R@10↑
FC [21] 97.90 83.35 41.81 31.58 25.22 53.34 17.99 15.44 40.36 55.08
FC+DCR (ours) 98.88 83.16 41.87 31.77 25.39 53.45 18.19 16.18 41.67 56.68
Att2in [21] 110.04 83.19 46.36 35.75 26.79 56.18 19.91 17.44 43.88 58.02
Att2in+DCR (ours) 111.39 82.33 46.82 36.27 27.36 56.47 20.16 17.88 44.96 59.13
UpDown [29] 111.25 79.46 45.64 35.93 27.54 56.24 20.54 20.10 47.58 61.92
UpDown+DCR (ours) 113.60 78.67 46.64 36.32 27.78 56.46 20.67 21.18 49.84 63.36
Transformer [1] 110.13 80.98 44.80 34.46 26.98 55.30 20.18 21.52 49.88 64.70
Transformer+DCR (ours) 113.98 75.75 46.29 35.82 27.94 56.34 20.85 22.80 51.56 65.28
FC+SCST [21] 104.43 90.09 43.10 31.59 25.46 54.33 18.67 11.44 33.16 48.04
FC+SCST+DCR (ours) 104.61 89.31 43.42 31.42 25.56 54.56 18.74 13.16 36.44 51.14
Att2in+SCST [21] 117.96 87.40 47.22 35.31 27.17 56.92 20.57 16.00 41.55 56.66
Att2in+SCST+DCR (ours) 118.52 87.11 47.35 35.62 27.30 56.98 20.83 17.27 44.58 59.14
UpDown+SCST [29] 121.94 86.82 48.82 36.12 27.95 57.61 21.29 18.50 46.34 61.70
UpDown+SCST+DCR (ours) 123.10 86.02 49.83 37.45 28.36 58.56 21.75 21.44 50.44 65.54
Transformer+SCST [1] 125.13 86.68 50.26 38.04 27.96 58.60 22.30 23.38 54.34 68.44
Transformer+SCST+CIDErBtwStrategy [22] (ours) 127.78 82.74 50.97 38.52 29.09 58.82 22.96 26.46 57.98 71.28
Transformer+SCST+DCR (ours) 128.53 83.98 51.74 39.42 29.23 59.34 22.97 25.84 56.10 70.56
COS-CVAE (consensus re-ranking) [41] 112.9 81.3 47.6 35.8 27.6 56.8 20.8 15.1 37.7 51.0
Stack-Cap [42] 120.4 88.7 47.9 36.1 27.4 56.9 20.9 21.9 49.7 63.7
DiscCap [16] 120.1 89.2 48.5 36.1 27.7 57.8 21.4 21.6 50.3 65.4
VisPara-Cap [12] 86.9 - - 27.1 - - 21.1 26.3 57.2 70.8
CL-Cap [17] 114.2 81.3 46.0 35.3 27.1 55.9 19.7 24.1 52.5 67.5
PSST [9] 111.9 - - 32.2 26.4 54.4 20.6 45.3† 79.4† 89.9†

Table 1: Comparison of caption accuracy and distinctiveness on MSCOCO test split: (top) baseline models trained with MLE
using standard or DCR weighted XE loss (denoted as DCR); (middle) models trained with SCST using standard or DCR weighted
loss/reward (denoted as DCR); (bottom) SOTA methods for generating distinctive/discriminative captions. CIDEr, BLEU3/4,
METEOR, ROUGE-L, and SPICE measure caption accuracy, while CIDErBtw and R@k measure distinctiveness. ↑ or ↓ show
whether higher or lower scores are better for each metric. CIDErBtw could not be computed for some models because the
captions are not publicly available. Our self-retrieval results (R@k) and those of [12], [16], [17], [42] use the pre-trained VSE++
model and the same protocol. † Note that [9] reports self-retrieval results using a different retrieval model/protocol – they use
their own model for retrieval – which makes it not directly comparable. We re-implement COS-CVAE [41] on the Karpathy
split [66] with publicly available code.

the reward. We set αr between 0.1 to 0.8 when using
CIDErBtwReward, and 0 otherwise. We set A = 1, Fb =
5, 000, Fe = 9, 487 (the size of vocabulary list) in LTW
strategy, and set αNS between 0.02 to 0.10 for the negative
samples strategy. We use Adam [68] to optimize the training
parameters with an initial learning rate 5 × 10−4 and a
decay factor 0.8 every three epochs. During testing, we
apply beam search with size five to generate captions. Our
default similar images sets in experiments are generated
using a pre-trained VSE++ [62] to perform the image-to-
caption retrieval (see Section 3.1). On an NVIDIA V100,
our transformer-based DCR model takes 31.5 min/epoch
and 110.6 min/epoch for its two training stages, compared
with 18.9 min/epoch and 102.6 min/epoch for the baseline
model [1]. The test-time inference has the same computation
as the baseline model, which needs 17 minutes for 5,000 test
images.

For evaluation, we consider two groups of metrics. The
first group includes CIDEr, BLEU3/4, METEOR, ROUGE-
L, and SPICE for evaluating the accuracy and quality of
generated captions. The second group assesses the distinc-
tiveness of captions, and includes our CIDErBtw metric
and retrieval metrics (i.e., R@{1,5,10}). When calculating
CIDErBtw, we use default similar images set with K = 5
unless otherwise specified. Thus, the CIDErBtw score mea-
sures the similarity between the generated caption and 25
captions from the similar images set, where lower values
indicating more distinctiveness. For the retrieval metrics,

we follow the protocol in [12], [16], [17]. Given a generated
caption, images are retrieved in the joint semantic space of
the pre-trained VSE++, with the goal to retrieve the original
image. The retrieval metric, recall at k (R@k), measures
the caption-to-image retrieval performance, where a higher
recall represents a better distinctiveness.

5.2 Main results

In this section, we present the quantitative experimental
results to show the effectiveness of our DCR method at
improving caption distinctiveness, and compare with state-
of-the-art (SOTA).

5.2.1 Effect of DCR
We first present the results on the effectiveness of our DCR
method on XE loss and RL reward.
DCR on XE loss. The main results of the model trained with
XE loss and DCR are shown in Table 1 (top). All baseline
models obtain better performances when using DCR in
the training process, which suggests that our method is
widely applicable to many existing models. Specifically, our
method both reduces the CIDErBtw score and improves
other accuracy metrics, such as CIDEr, BLEU, etc. This
shows that the generated captions become more similar to
ground-truth captions, while more distinctive from other
images’ captions since redundancy is suppressed. We will
further analyze the effect of the three strategies in DCR
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(i.e., CIDErBtw, LTW, and NS) separately in Section 5.3.1.
Among the four basic models, DCR has the largest effect
on Transformer [1]. The reason could be the multi-head
attention and larger receptive field of the Transformer allow
it to extract distinctive details and context from the image.
DCR on RL reward. The main results of the model trained
additionally with RL (denoted as SCST) and DCR are
shown in Table 1 (middle). Our DCR method reweights
the RL reward for each ground truth captions as (10), and
also directly uses CIDErBtw as a part of the final reward
as (11). Similar to the former analysis on models trained
with XE loss, adding the CIDErBtw (weighted) reward in
RL improves both the distinctiveness (i.e., CIDErBtw and
retrieval metrics), and the accuracy (i.e., CIDEr and BLEU)
significantly. Based on Transformer+SCST, we increase the
scores of the quality metrics, leading to an improvement of
3.4 in CIDEr, 1.5 in BLEU3, and 1.3 in METEOR, etc. As for
the distinctiveness, the CIDErBtw score of the models under
these three strategies decreases from 86.68 to 82.74 or 83.98.

We observe one disadvantage of SCST that directly op-
timizing CIDEr reward improves the fluency of captions
but also leads to common and generic words. Consistent
with [12], [18], the baseline models trained with SCST
obtain higher CIDEr but also perform worse in CIDErBtw
and R@k, compared with models trained only with MLE.
Optimizing the model with CIDErBtw weighted reward
will relieve this problem, and the distinctiveness of captions
will be promoted while maintaining or even improving the
overall quality of the captions.

5.2.2 Comparison with SOTA methods
We list the performance of the state-of-the-art captioning
models that focus on distinctiveness at the bottom of Table 1.
Compared to these models, our model based on Trans-
former+SCST generally achieves superior results in both
accuracy and distinctiveness (i.e., higher CIDEr score and
retrieval score) at the same time. Specifically, Stack-Cap [42]
and DiscCap [16] have lower accuracy (CIDEr 120.4) and
less distinctiveness (CIDErBtw 89, R@1 22), compared to
our model. By using visual paraphrases to describe details
in captions, VisPara-Cap [12] achieves high distinctiveness,
which is comparable to our model, while the accuracy
(CIDEr 86.9) is much worse than ours. CL-Cap [17] directly
optimize the retrieval loss to improve the distinctiveness,
while the R@k and CIDEr value is lower than ours. 1

5.2.3 Reasons for improving CIDEr
Results in Table 1 show that models trained with DCR
obtain better performance for both distinctiveness metrics
and accuracy metrics. Given that our training method puts
higher weights on distinctive ground-truth captions, it is
expected that we will obtain lower CIDErBtw and higher
R@k scores. However, the reason why our method also im-
proves caption accuracy (CIDEr) is less obvious, especially
for SCST, which directly optimizes CIDEr using RL. Note
that CIDEr is based on the cosine similarity between TF-
IDF vectors, and thus low-frequency words (with higher

1We could not compare distinctiveness with PSST since their cap-
tions are not publicly available, and they use a different evaluation
protocol for R@k.

IDF weights) will have a higher impact on the CIDEr score.
Since rare words are also distinctive, their usage in a caption
should increase CIDEr. If using distinctive words can in-
crease CIDEr, then why does RL with CIDEr reward not use
distinctive words? We speculate that RL gets stuck in a local
minimum of models that only use frequent words because
of two reasons: 1) equal weighting of an image’s ground-
truth captions encourages the model to predict the common
words that match all captions, and 2) regularization en-
courages models to use smaller vocabularies – using fewer
words means less non-zero weights in the network, and
lower model complexity. By reweighting the reward with
CIDErBtw, more reward is obtained when using diverse
words, which effectively moves the learning process out of
this local minimum.

5.3 Ablation study

In the ablation study, we investigate the role of the three
strategies of DCR, the effect of the CIDErBtw weight param-
eters, and consider different settings of the similar image set.

5.3.1 Three strategies of DCR

In Table 2, we gradually add three strategies of DCR
method (i.e., CIDErBtwStrategy, LTW, and NS) on two base-
line models (i.e., Transformer and Transformer+SCST). The
CIDErBtwStrategy, which uses both CIDErBtwReweight
(reweighted XE loss and RL reward) and CIDErBtwReward
(additional reward of CIDErBtw value), has the most obvi-
ous effect on both accuracy and distinctiveness among the
three strategies. As shown in Table 2, CIDErBtwStrategy im-
prove the CIDEr performance (increase 2.3 in Transformer
and 2.6 in Transformer+SCST) and CIDErBtw performance
(decrease 5.6 in Transformer and 3.9 in Transformer+SCST)
at the same time. CIDErBtwReward leads to the best re-
trieval metric score based on Transformer+SCST.

The Long-Tailed Weights (LTW) and Negative sam-
ples (NS) strategies tend to increase the CIDEr score and
CIDErBtw score at the same time. LTW encourages models
to generate long-tailed words, improving CIDEr perfor-
mance. On the other hand, the CIDErBtw score is also
increased, which suggests that these long-tailed words also
appear in ground-truth captions from similar images. The
NS strategy of contrastive learning on the similar image
set yields additional improvements. Compared with the
CIDErBtwStrategy, one disadvantage of NS is that the
CIDEr increases, while CIDErBtw fluctuates. The reason
is that there are usually some overlap words between the
captions from the target image and similar images, which
could confuse the model.

To show the effect of each strategy in DCR on the word
usage, we compute the word frequency statistics in the
generated captions on the test set. As shown in Figure 4,
giving higher weight to the long-tailed words significantly
improves the frequency of rare words in the generated
captions. Using negative samples further improves both the
frequency of rare words and vocabulary size. Compared to
the baseline model TFRL (Transformer+SCST) with a 593-
word vocabulary, our final model TFRL+DCR increases the
vocabulary size by 17.2%.
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Method CIDEr↑ CIDErBtw↓ BLEU3↑ BLEU4↑ METEOR↑ ROUGE-L↑ SPICE↑ R@1 R@5 R@10
Transformer [1] 110.13 80.98 44.80 34.46 26.98 55.30 20.18 21.52 49.88 64.70

+CIDErBtwReweight [22] 112.44 75.35 45.44 35.01 27.59 55.66 20.74 21.52 49.88 64.70
+LTW 113.21 75.44 45.89 35.61 27.90 56.22 20.95 22.26 51.34 65.76

+NS 113.98 75.75 46.29 35.82 27.94 56.34 20.85 22.80 51.56 65.28
Transformer+SCST [1] 125.13 86.68 50.26 38.04 27.96 58.60 22.30 23.38 54.34 68.44
+CIDErBtwReweight [22] 128.11 84.70 51.29 39.00 29.12 59.24 22.92 24.46 55.22 69.02

+CIDErBtwReward [22] 127.78 82.74 50.97 38.52 29.09 58.82 22.96 26.46 57.98 71.28
+LTW 128.12 83.02 51.43 39.34 29.36 59.08 23.03 26.53 58.03 71.36

+NS 128.24 82.87 51.31 39.13 29.42 58.83 22.75 26.65 58.12 71.44

Table 2: Ablation study of Transformer baseline trained with different XE loss functions and reinforcement learning. “Trans-
former” means the baseline model trained with XE loss, “+CIDErBtwReweight” represents the CIDErBtw weighted XE
loss. “LTW” represents Long-Tailed Weights, and “NS” means negative samples. These three strategies are added gradually
to the baseline models. Accordingly, “Transformer+SCST” means the baseline model trained with XE loss and RL, and
“+CIDErBtwReweight” represents the CIDErBtw weighted XE loss and weighted RL reward, “+CIDErBtwReward” represents
directly optimizing CIDErBtw as a part of the RL reward.

Method Condition CIDEr↑ CIDErBtw↓ BLEU3↑ BLEU4↑ METEOR↑ ROUGE-L↑ SPICE↑ R@1↑ R@5↑ R@10↑
Ours (αw = 1.25) 125.02 83.29 49.50 37.11 28.72 58.37 22.56 24.54 54.76 69.34
Ours (αw = 1.00) 127.54 83.35 50.70 38.36 29.09 59.05 23.04 25.74 55.90 70.12
Ours (αw = 0.875) 127.38 82.48 50.77 38.34 29.04 58.77 22.85 26.34 57.16 71.14
Ours (αw = 0.75) 127.78 82.74 50.97 38.52 29.09 58.82 22.96 26.46 57.98 71.28
Ours (αw = 0.50) 127.61 83.54 51.22 38.82 29.10 59.08 23.09 25.94 57.16 71.04
Ours (αw = 0.25) 127.96 83.85 51.33 38.94 29.12 59.13 22.90 25.72 56.04 70.56
Ours (αw = 0) 125.38 85.73 50.39 38.28 28.42 58.93 22.61 25.30 56.74 70.54

Table 3: The performance of our model under different CIDErBtwReweight parameter αw. Our model here is Trans-
former+SCST+CIDErBtwStrategy.
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Figure 4: Statistics of word frequency in generated captions on
the test split. The x-axis represents the word frequency f in log
scale, and the y-axis is the number of words with frequency
smaller than f . TFRL denotes Transformer+SCST. The total
vocabulary sizes for the four models are 695, 640, 603, 593,
which is indicated by the maximum height of each curve.

5.3.2 Analysis of αw
We use Transformer+SCST trained with CIDErBtwStrategy
as a baseline model to evaluate the influence of αw. When
αw = 0, the XE loss treats each ground truth equally. A
larger αw means more effect of CIDErBtw weight to the
training process. As shown in Table 3, the distinctiveness
related metrics are first improved by increasing αw; how-
ever, a large αw (greater than 0.875) is not conducive for
learning the general language, which degrades the model
performance. The model performs best in terms of distinc-

tiveness when αw = 0.75, while it performs best in terms
of accuracy when αw = 0.25. As αw increases, the training
weight for those distinctive ground truth captions increases,
which leads to distinctive captions, at the expense of the
CIDEr score. This reflects the model’s trade-off between
accuracy and distinctiveness among different αw. Generally
speaking, our model performs well when αw is between 0.25
and 0.875, reflecting that our strategies are robust.

5.3.3 Effect of LTW
The effect of LTW on accuracy and distinctiveness is shown
in Table 2. After introducing LTW, the CIDEr score in-
creased (from 112.44 to 113.21 for Transformer, from 127.78
to 128.12 for Transformer+SCST), and the R@{1,5,10} are
also increased (especially for Transformer). Since LTW does
not directly optimize the CIDErBtw score, thus its effect on
CIDErBtw metric is not that obvious. However, we found
that LTW significantly improves the vocabulary size of the
generated captions. Transformer+SCST+CIDErBtwStrategy
uses 4,102 words on the MSCOCO training set, and the
number increases to 4,323 (a 5.4% increase) if LTW is addi-
tionally used. We perform an ablation study on the long-tail
threshold Fb using values {4000, 5000, 6000}. Table 4 shows
that models with different Fb values have similar perfor-
mance on accuracy (e.g. CIDEr, BLEU), while the model with
Fb = 5, 000 has the best performance on distinctiveness
according to R@{1,5,10}.

5.3.4 Analysis of the similar images set
Here we investigate how different settings of similar images
set will influence the evaluation (value of CIDErBtw metric),
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Method Condition CIDEr↑ CIDErBtw↓ BLEU3↑ BLEU4↑ METEOR↑ ROUGE-L↑ SPICE↑ R@1↑ R@5 ↑ R@10↑
Fb = 4, 000 113.84 75.92 46.31 35.76 27.91 56.47 20.83 22.72 51.21 65.18
Fb = 5, 000 113.98 75.75 46.29 35.82 27.94 56.34 20.85 22.80 51.56 65.28
Fb = 6, 000 113.85 76.56 46.43 35.95 27.93 56.48 20.89 22.38 50.37 64.94
without LTW 112.82 75.28 45.67 35.20 27.61 55.89 20.75 21.81 50.16 64.83

Table 4: Ablation study of Fb on model Transformer+DCR.

and the training process (the performance of our CIDErBtw-
Strategy). We evaluate various K (i.e., the number of similar
images in our similar images set), as well as several meth-
ods to construct the similar images set (including retrieval
similarity and CIDEr similarity). We use CBV to denote
CIDErBtw calculated from similar images set constructed by
VSE++, and use CBC to denote CIDErBtw calculated from
similar images set constructed by CIDEr similarity. We use
Transformer+SCST trained with CIDErBtwReweight [22] as
the baseline.
CIDErBtw metric evaluation. We first evaluate how differ-
ent numbers of images will affect the CIDErBtw value. As
shown in Table 5 (middle), CBV(K) decreases asK increases.
The reason is that the semantic similarity between target
image I0 and the k-th similar image Ik will decrease as the
k increases, which results in a smaller CIDEr value between
their ground-truth captions. Although the CIDErBtw score
varies for different K , the score difference between the
two models is stable, which indicates the stability of our
CIDErBtw metric.

Next we compare the CIDErBtw metric constructed by
VSE++ (CBV) and CIDEr (CBC) similarity. The distinctive-
ness evaluation result using CBC is also shown in Table 5
(right). In general, CBC scores are higher than CBV scores,
because CBC finds images that share almost the same GT
caption with the target image. However, our aim is not
to compare the slight differences between the two captions
that are almost the same. We intend to calculate CIDErBtw
among images with similar semantics, but not with exactly
the same captions. Thus, CBV is a more appropriate choice
for measuring distinctiveness.
Effect of the similar image number K. We next study
the effect of using different numbers of images K in the
similar image sets. We train our model using similar image
set with different K , and the results are presented in Table
5. Using K from 3 to 7 yields similar results (CIDEr from
127.96 to 128.12). Increasing the number of similar image
sets to K = 10 cannot improve the results further, since
7 similar images already well depict the distinctiveness of
each ground truth caption. The reason is that higher K intro-
duces similar images that are far from the target image, e.g.,
images that have different semantic meanings. The captions
for those “far-away” similar images may be too different
from all the ground truth captions of target image, thus
they cannot well evaluate the distinctiveness of target image
captions, which introduces noise to our model. On the other
hand, reducing K to 1 results in CIDEr of 125.45, which
is only slightly better than the baseline (Transformer+SCST)
of 125.13. The top-1 similar image usually shares too much
semantics with the target, and thus cannot well distinguish
between different ground truth captions.
Effect of the image-text retrieval model. We next perform

an ablation study on using different image-text retrieval
models to construct the similar image sets for training.
Specifically, we consider four additional retrieval methods:
CIDEr similarity, SCAN [63], Vilbert [64], CLIP [65], and
randomly selecting images. The results are presented in
Table 5 (middle), and indicate that different image-text
retrieval models work on par with each other. Retrieving
similar images with VSE++ [62], i.e., CBV(7), yields the
best CIDEr of 128.12, while retrieving similar images with
SCAN, Vilbert, and CLIP achieves on par CIDEr value at
127.98, 128.09, and 127.81 respectively. The results indicate
that our model performance is not sensitive to the image-
text retrieval method as long as images in the similar image
set have similar semantic meaning.

Another method to reweight each sentence is to measure
the CIDErBtw of each caption with respect to the other four
captions of the target image (denoted as CB-GT-Caption).
In essence this is selecting the most diverse ground-truth
caption for the image. This model only achieves on par
accuracy and distinctiveness with the CBV(1) model. We
also directly compare the images’ feature similarity with
CLIP model and generate similar image sets (indicated by
CB-Image). CB-Image method does not achieve as good
performance as those retrieval methods.

The reason that CBC weighting performs slightly
worse (i.e., 127.54 with CIDEr) is that the similar images
retrieved by CIDEr share almost the same GT captions as
the target image. Thus, using CBC as loss/reward weight
will reduce the influence of all the ground-truth captions.
In contrast, CBV finds similar images with closer semantic
meaning, instead of an image with the same ground-truth
captions as CBC does. Since CBV(5) is a more reasonable
approach for the similar image set, we make CBV(5) the
default setting in our experiments. On the other hand,
selecting random images to form similar images sets harms
the model performance, resulting in worse results than
the baseline model without CIDErBtw training strategy –
Transformer+SCST+CB-Random obtains 123.67 with CIDEr
compared to 125.13 for the baseline transformer+SCST. This
indicates that weighting the ground-truth captions for the
target image according to its similarity with random image
captions will introduce noise to the model and harm the
training process.

6 USER STUDY

We conduct two user studies to evaluate the quality of
generated sentences, and verify the consistency between
the proposed distinctiveness metric and human judgment.
The influence of our DCR method is evaluated in the first
user study. The comparison between our model and the
state-of-the-art distinctiveness models is conducted in the
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Models CIDEr↑ CBV(1)↓ CBV(5)↓ CBV(7)↓ CBV(10)↓ CBV(15)↓ CBC(5)↓
Transformer+SCST 125.13 93.10 86.68 83.75 79.89 74.08 135.35
Transformer+SCST+CBV(5) 128.11 92.23 84.70 80.82 77.01 71.08 135.16

Table 5: The evaluation results for different similar images settings. We use Transformer+SCST as the baseline model. Here
CBV(K) represents the CIDErBtw metric with K similar images constructed by VSE++ similarity. CBC(K) represents the
CIDErBtw metric with K similar images retrieved by CIDEr similarity. Note that these models are trained under CBV(5) when
using Transformer+SCST trained with CIDErBtwReweight.

Method CIDEr↑ CBV(5)↓ CBC(5)↓ BLEU3↑ BLEU4↑ METEOR↑ ROUGE-L↑ SPICE↑

transformer+SCST+

CBV(1) 125.45 86.24 140.39 50.43 38.24 28.18 58.84 22.46
CBV(3) 127.96 84.76 136.83 50.64 38.84 28.46 58.73 22.64
CBV(5) 128.11 84.70 135.16 51.29 39.00 29.12 59.24 22.92
CBV(7) 128.12 84.89 135.83 51.01 38.72 28.89 59.09 22.67

CBV(10) 127.69 85.73 137.42 50.97 38.68 29.01 59.11 22.82
CB-Image 126.23 85.92 137.14 50.71 38.46 28.48 58.76 22.54

CB-GT-Caption 125.50 86.21 137.84 50.39 38.19 28.41 58.63 22.41
CBC 127.54 84.81 134.07 51.26 38.89 29.00 58.93 22.93

CB-SCAN [63] 127.98 84.92 135.53 51.09 38.95 28.97 59.19 22.52
CB-Vilbert [64] 128.09 84.83 135.83 51.17 39.03 29.05 59.04 22.72
CB-CLIP [65] 127.81 84.72 135.02 50.94 38.66 28.93 58.87 22.65
CB-Random 123.67 86.42 139.75 49.79 37.59 27.95 58.57 22.25

transformer+SCST 125.13 86.68 135.35 50.26 38.04 27.96 58.60 22.30

Table 6: Top (Row 1 to 5): the models trained under different similar image set size. Here CBV(K) represents the CIDErBtw under
K similar images retrieved by VSE++ Retrieval similarity. Middle (Row 6 to 7): CB-Image indicates similar images set constructed
by images’ feature similarity. CB-GT-Caption indicates using the target image itself to reweight each caption. Bottom (Row 8 to 12):
the models trained with similar image sets constructed from four different image-text retrieval methods, CIDEr similarity (CBC),
SCAN [63] (CB-SCAN), Vilbert [64] (CB-Vilbert), CLIP [65] (CB-CLIP) and random sampling (CB-Random). The number of images
in the similar images set is K = 5. Note that “CBV(5)” after the model name means training strategies, while in the table header
it means evaluation metric. These models are Transformer+SCST trained with CIDErBtwReweight under different similar image
sets.

second user study. In total, twenty users participated in the
experiments.

6.1 Influence of DCR method

We perform the experiment on two baseline captioning
models: UpDown [29] and Transformer [1] trained by SCST.
Then we test the quality of the captions of both models
trained with and without our DCR method, where we
randomly sample 50 similar images pair from the test split.
This user study includes two parts: image retrieval game
and quality judgment.

6.1.1 Image retrieval game
In the image retrieval game, to evaluate the distinctiveness
of generated captions, we ask the user to distinguish the
target image from a similar image, according to the caption
that describes the target image. The target-similar image
pair are constructed by VSE++ (see Section 3.1). Following
the protocol in [16], the game involves displaying the target
image, a similar image with the same semantic meaning,
and a generated caption describing the target image. The
users are asked to choose the image that more closely
matches the caption.

The results for the image retrieval game are shown in
Table 7. Compared to the baseline model, our DCR method
increases the accuracy of human image retrieval perfor-
mance by 5.2% (on UpDown+SCST) and 4.6% (on Trans-
former+SCST). The results of user study are consistent with
the automatic image retrieval results (R@k), which indicates
that our model generates captions with more distinctive

Method image retrieval game
UpDown+SCST 68.7%

UpDown+SCST+DCR 73.9% ∗∗

Transformer+SCST 75.2%
Transformer+SCST+DCR 79.8% ∗

Table 7: User study on image retrieval to assess caption dis-
tinctiveness. Our models trained with DCR generated more
distinctive captions, enabling the user to more accurately select
the correct image, compared with the baselines (2-sample z-test
on proportions, ∗ p<0.05, ∗∗ p<0.01).
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Figure 5: User study comparing captions generated from mod-
els trained with and without our DCR method. Here UDRL and
TFRL denote UpDown+SCST and Transformer+SCST for short.
Users selected our models trained with DCR more frequently
when assessing accuracy and distinctiveness (Chi-Square test,
p<0.001 for each pair).

descriptions, which can help both machines and humans
to retrieve the target image.
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Method image retrieval distinctiveness accuracy
Stack-Cap [42] 72.6% 3.34 3.33
DiscCap [16] 73.9% 3.37 3.41
CL-Cap [17] 75.8% 3.41 3.12

TFRL+DCR(ours) 79.6% ? 3.57?? 3.45??

Table 8: User study results on image retrieval and caption
rating. Here TFRL denotes Transformer+SCST for short. Com-
pared with SOTA methods, our models achieve higher image
retrieval accuracy and rating scores (in statistical significant test
with all baselines, ? indicates 2-sample z-test on proportions
with p<0.05, ?? indicates paired t-test with p<0.05).

6.1.2 Quality judgment
In the quality judgment test, we compare captions generated
from a baseline model trained with and without DCR. In
each trial, an image and two captions are displayed, and the
user is asked to choose the better caption with respect to
two criteria: distinctiveness and accuracy. The interface can
be found in the supplementary material.

Figure 5 shows the results for the quality judgment test.
From the human perspective, captions from our models
are more distinctive than the baseline models: 68% (ours)
vs. 32% (UDRL baseline); 70% (ours) vs. 30% (TFRL base-
line). The human judgment also prefers captions from
our models over the baseline on accuracy: 61% (ours)
vs. 39% (UDRL baseline); 64% (ours) vs. 36% (TFRL base-
line). Again this is consistent with the observations from the
machine-based metrics (CIDErBtw and CIDEr).

6.2 Comparision with SOTA methods
In this section, we compare our method and other state-of-
the-art distinctive methods [16], [17], [42] through a user
study. Similar to the first user study above, we also perform
image retrieval game and quality judgment test. In this
experiment, we randomly sampled 50 images from the test
split. Firstly, we performed an image retrieval game with
captions generated by these models and report the accu-
racy in Table 8. The image retrieval accuracy is consistent
with other metrics reported in Table 1, where our method
achieves the most distinctive result, higher than the second-
best, CL-Cap, by a large margin (3.8% in retrieval accuracy).
In the quality judgment part, we compare captions gener-
ated by four methods, Stack-Cap [42], DiscCap [16], CL-
Cap [17], and our model (Transformer trained with SCST
and DCR method). In each trial, an image and four cap-
tions are displayed, and eight users are asked to rate these
captions from the 1-5 scale (higher is better) with respect to
two criteria (distinctiveness and accuracy). The results are
shown in Table 8. Our method achieves higher scores in
both distinctiveness and accuracy, which is consistent with
the automatic evaluation reported in Table 1.

6.3 CIDErBtw as a metric
In the third user study, we investigate the suitability of the
CIDErBtw metric for distinctiveness. It is believed that we
should evaluate the generated captions in different aspects
(e.g., accuracy, fluency, and distinctiveness, etc.), and none
of the existing metrics can well evaluate captions in all
aspects. The CIDErBtw metric works to complement the

Compared models Pearson Spearman Kendall
VR CB VR CB VR CB

DiscCap & StackCap 0.143 0.172 0.118 0.167 0.094 0.177
TFRL (w & w/o DCR) 0.016 0.106 0.246 0.208 0.213 0.240

TFRL+DCR (First & Second) 0.202 0.273 0.263 0.298 0.217 0.285
Overall correlation 0.134 0.187 0.215 0.223 0.169 0.176

Table 9: The correlation between human judgment and auto-
matic metrics, i.e., VSE++ Recall (VR) and CIDErBtw metric
(CB). We use three typical indicators (i.e., Pearson, Spearman,
and Kendall) to compare the correlation between human judg-
ment and the automatic metric on distinctiveness. The user
study is conducted for three model pairs, each with 200 caption
pairs. The overall correlation is computed on 600 numbers (3
conditions, 200 for each). TFRL denotes Transformer+SCST for
short, “w & w/o DCR” means the model trained with and
without DCR method, and “First & Second” means the first
and second captions in beam search.

existing metrics, as it can measure the distinctiveness of
captions. Note that the CIDErBtw metric evaluates the n-
gram distance between the generated caption and a set of
captions from other similar images. When evaluating the
quality of a generated caption, we should consider both
CIDEr and CIDErBtw, since the former metric evaluates the
similarity to all ground truth captions (accuracy), while the
latter represents how different are the generated captions
compared to other captions from similar images (i.e., dis-
tinctiveness).

Following [53], we perform a user study to compare the
correlations of CIDErBtw metric (CB) and VSE++ Recall
(VR) to human judgment. To show the generalization of
our metric to varying degrees of model comparisons, we
run experiments on captions from three model pairs: 1)
two captions from different models (DiscCap and Stack-
Cap); 2) two captions from similar models trained with
two different conditions (Transformer+SCST models trained
with and without DCR); 3) two captions from the same
model (the 1st and 2nd results from beam search on Trans-
former+SCST+DCR). The first pair reflects a coarse compar-
ison between completely different models, while the third
pair is a fine-grained comparison within the same model.

For each of the three model pairs, we randomly sampled
200 images from the test split for each of the three model
pairs. For each caption pair generated from an image, six
participants were asked to score the more distinctive caption
(scoring from -6 to 6; the value -6 means the first caption is
absolutely more distinctive than the second in the caption
pair, and vice versa). The automatic metric is calculated
by subscribing to the value generated by CB (or VR) for
two captions. Finally, the correlation was calculated between
human judgment scores and the automatic metric with three
correlation indicators, Pearson, Spearman, and Kendall.

The user study results are shown in Table 9. Our
CIDErBtw metric has a higher overall correlation with hu-
man judgment compared to VR. Furthermore, our metric
has a higher correlation than VR on almost all the model
settings and under three indicators, which indicates that
CIDErBtw is more suitable as a distinctiveness metric, with
respect to human judgment.
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(59.0) A living room with a 
television and on the television

(56.6) A living room with a 
television and pictures on the wall.

(86.7) A man in a suit and 
tie.

(38.8) A man in a black suit 
and hat wearing a red tie.

(66.8) A stop sign on the side of 
a road.

(58.3) A stop sign on the side of 
a city street at night.

(90.2) A man standing on the beach 
with a surfboard.

(69.7) A man and a child standing on 
the beach with a surfboard.

Baseline:

Ours:

410855296231 287636388531

Figure 6: Example captions from the baseline model and our model. The distinctive words are highlighted. The number in
parenthesis is the CIDErBtw score, with lower values meaning more distinctive.

(122.3) A yellow train on the 
tracks at a train station.

(113.6) A green and yellow 
train is on the tracks.

(110.7) A yellow train on the 
tracks of a track.

(93.2) A yellow and black 
train is on the tracks at a 
train station.

(104.9) A yellow train on the 
tracks at a train station.

(83.2) a yellow train is on the 
tracks next to a building. 

(157.8) A train on the tracks 
of a track.

(141.7) A train is on the 
tracks in a forest.

(92.8) Two trains on the 
tracks at a train station.

(22.3) Two red trains parked 
next to each other on the 
tracks.

Baseline:

Ours:

299295241297 209388293907467031

Figure 7: Example captions for a set of similar images. The distinctive words are highlighted in red.

7 QUALITATIVE RESULTS

In this section, we show qualitative results for the base-
line model Transformer+SCST, and our model Trans-
former+SCST+DCR in Figure 6. The baseline model gen-
erates captions that accurately describe the main object, but
are quite generic and monotonous, while captions generated
by our model are more distinctive in the following aspects.
Our captions describe more properties of the main object,
such as “black suit”, “red tie” and “a man and a child”. Our
captions also describe backgrounds that are distinctive, such
as “pictures on the wall” and “city street at night”. Intuitively,
in order to increase a caption’s distinctiveness, the model
should focus on more properties that would distinguish the
image from others, such as properties of the most important
object, color, numbers, or other objects/background in the
image. Our method generates captions that focus on more
of these aspects and generates accurate results.

In order to show the distinctiveness of our model, we
present a similar images set with the same semantic mean-
ing in Figure 7. The baseline model generates captions that
follow templates like “train on the track” or “at a train station”.
Although the captions are correct, it is difficult to tell the
images apart according to the captions. Our model generates
more distinctive captions by enriching the description and
mentioning the environment around it. For example, the
colors such as “green and yellow” and “yellow and black”
distinguish the first two images. The background environ-
ment such as “ next to a building” and the “in a forest” is
also observed, which is quite encouraging. Furthermore, our
model is more sensitive to the relative positions of objects,
such as “next to each other on the tracks”. More details can be

found in the Appendices.

8 CONCLUSION

In this paper, we consider an important property, distinc-
tiveness of image captioning models, and proposed a metric
CIDErBtw to evaluate distinctiveness, which can be cal-
culated quickly and easily implemented. We found that
human-annotated captions for each image vary in distinc-
tiveness based on CIDErBtw. To improve the distinctive-
ness of generated captions, we developed a novel training
method, Distinctiveness via Comparing and Reweighting
(DCR), consisting of three strategies. In the first strategy,
each human ground-truth annotation is assigned a weight
based on its distinctiveness computed by CIDErBtw. Thus,
during training the model pays more attention to the cap-
tions that are more distinctive. We also consider using
CIDErBtw directly as part of the reward in RL. In the
second strategy, we propose Long-Tailed Weights (LTW)
to giving higher weights to rare long-tailed words that
might contain more information. In the third strategy, to
further promote the distinctiveness of generated captions,
we take the captions from similar images set as negative
samples in contrastive learning. In extensive experiments,
we showed that our method is widely applicable to many
captioning models. Experimental results demonstrate that
our training strategy is able to improve both accuracy and
distinctiveness, achieving state-of-the-art performance on
CIDEr, CIDErBtw, and retrieval metrics (R@k).

Distinctive image captioning requires generated captions
to be both accurate and distinct. In terms of problem defini-
tion, semantically closer images will make the comparison
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more valuable. In terms of model training, captioning mod-
els need to be clearly aware of the differences between these
similar images. In terms of evaluation, reasonable metrics
are needed to ensure achieving real distinctive models. Our
CIDErBtw metric and DCR training method aim to meet
these requirements. In future work, we will apply distinctive
methods on other tasks (e.g., Visual Question Answering
and Object Detection) to suppress generic performance.
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