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Kernel-based Density Map Generation for
Dense Object Counting

Jia Wan, Qingzhong Wang, and Antoni B. Chan

Abstract—Crowd counting is an essential topic in computer vision due to its practical usage in surveillance systems. The typical
design of crowd counting algorithms is divided into two steps. First, the ground-truth density maps of crowd images are generated from
the ground-truth dot maps (density map generation), e.g., by convolving with a Gaussian kernel. Second, deep learning models are
designed to predict a density map from an input image (density map estimation). The density map based counting methods that
incorporate density map as the intermediate representation have improved counting performance dramatically. However, in the sense
of end-to-end training, the hand-crafted methods used for generating the density maps may not be optimal for the particular network or
dataset used. To address this issue, we propose an adaptive density map generator, which takes the annotation dot map as input, and
learns a density map representation for a counter. The counter and generator are trained jointly within an end-to-end framework. We
also show that the proposed framework can be applied to general dense object counting tasks. Extensive experiments are conducted
on 10 datasets for 3 applications: crowd counting, vehicle counting, and general object counting. The experiment results on these
datasets confirm the effectiveness of the proposed learnable density map representations.

Index Terms—Crowd counting, vehicle counting, object counting, density map generation, density map estimation, deep learning
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1 INTRODUCTION

Dense object counting tasks, including crowd counting, vehicle
counting, and general object counting, aim to estimate the number
of objects in the image. Counting tasks have practical usage
for understanding crowded scenes. For example, crowd counting
can be used to prevent accidents caused by overcrowding and
estimate the crowd flows in station. And vehicle counting can be
used for traffic management on roads or in parking lots. General
object counting is useful for the management of goods in the
supermarket, farms and factories.

Although counting tasks are important and useful, the real
usage is still limited since dense object counting is challenging.
One of the main challenges is scale variation. Since the scale of
people varies dramatically in images and across different images,
it is difficult to extract features for density regression. Another
challenge is the occlusions among people since only a small
part of each person may be visible in crowd images. Complex
backgrounds may also hurt the counting performance, and the
domain gap between scenes in datasets and the real world scenes
also limits the usage of counting algorithms.

Current state-of-the-art methods use crowd density maps to
achieve superior counting performance [1, 2, 3]. Density maps
are an intermediate representation, where the sum over any region
in the density map indicates the number of people in the region.
First, the density maps are generated from the dot annotations,
where each dot indicates a person’s location. Second, given the
input image, algorithms are designed to predict the density map
(see Figure 1), which is then summed to obtain the count. In
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this paper, we call these two steps density map generation and
density map estimation, respectively. Most works focus on density
map estimation and ignore density map generation. Many different
deep networks have been proposed to improve density map esti-
mation, e.g., using different kernel sizes [4] or image pyramids [5]
to handle scale variations, or using context [6] or prior information
[7] to handle occlusions. Although density map estimation is
well-studied, the generation of density maps is often overlooked
and uses handcrafted designs without adequate investigation and
analysis. The simplest approach to obtain a density map is to
convolve the annotation dot map with a Gaussian with fixed width
[8], i.e., place a Gaussian on each dot. Other works scale the
Gaussian bandwidth according to the scene perspective [9], or
adaptively use the local congestion level (or distance to nearest
neighbors) [4]. [9] uses human-shaped kernels, composed of two
Gaussians, but is less popular since the body of the person is often
occluded in crowd images.

In practice, the method for generating the density maps is
crucial for crowd counting. Improperly generated density maps
may dramatically hurt the counting performance – the choice of
the kernel bandwidth or kernel shape used to generate the density
map is often dataset dependent, and such choices often do not
work across different datasets. In the era of deep learning, we
may consider current density maps as a hand-crafted intermediate
representation, which is used as a target for training deep networks
to count. From the standpoint of end-to-end training, these hand-
designed intermediate representations may not be optimal for the
particular network architecture and particular dataset.

In this paper, we take the first step towards learnable density
map representations, which are jointly trained with the density
map estimator (counter). In particular, we first generate a unique
normalized kernel for each object (e.g. a person or a vehicle)
given an image as the input. The scale and shape of kernels are
automatically learned during the joint optimization with a counter.
The proposed method can potentially produce adaptive density
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Fig. 1. Counting by crowd density maps: the ground-truth density map is
generated from a dot annotation map. Then, algorithms are designed to
predict the density map, which is summed to obtain the predicted global
count. Current approaches treat the density map as a fixed intermediate
representation, which is based on hand-crafted. The proposed algorithm
jointly learns the density map generator and density map estimator.

maps for different counters, datasets and objects.
In summary, the contributions of this paper are:

1) We study the impact of density maps on different datasets,
and confirm through experiments that proper selection of
density maps is essential for counting.

2) To improve manually-generated density maps, we propose
to refine traditional density maps and achieve superior per-
formance, which confirms the intermediate representation of
density maps can be improved.

3) We propose an adaptive density map generator, which takes
the dot map as input, and produces a learnable density map
representation. The density map generator and density map
estimator (counter) are jointly trained.

4) We extend density map generation framework to general
object counting problem. A novel generation method which
can generate unique density kernels for individual objects is
proposed. The proposed method is easy to analyze since we
can visualize each individual kernel.

5) With the proposed framework, we achieve state-of-the-art
performance on 10 datasets for 3 applications: crowd count-
ing, vehicle counting, and general object counting without
modifying the structure of the counter.

The remainder of this paper is organized as follows. The
related works of crowd counting algorithms and density map
generation methods are briefly reviewed in Section 2. The details
of the proposed methods are introduced in Section 3, followed by
experimental results and analysis in Section 4. The conclusion is
presented in Section 5.

2 RELATED WORKS

We first briefly review related crowd counting algorithms, and then
introduce the typical density map generation methods.

2.1 Crowd Counting
Traditional crowd counting algorithms are based on individual
detection and tracking [10, 11], but these methods do not work
well for dense scenes. Thus, global regression based methods
are proposed to avoid the detection of individuals by directly
regressing the number of people [12, 13, 14]. However, global
regression ignores the spatial distribution of people, and thus
density map based methods are proposed to further predict the
spatial density map in images [8] and have achieve the outstanding
performance [15].

2.1.1 Detection-based counting
Individual detection and tracking based counting algorithms rely
on the detection algorithms that do not work well under con-
gested scenes. Most of these algorithms detect human heads

and shoulders by detection or tracking algorithms. Li et al. [10]
propose to count the number of people by detecting human heads
and shoulders based on foreground segmentation. A shape based
detection algorithm is proposed to detect individuals in [11].
Although the performance of detection algorithms have been
improved significantly, the detection of individuals under very
dense scenes is still challenging.

2.1.2 Regression-based counting
To avoid explicit detection of individuals, regression methods are
proposed to estimate the number of people directly from low-level
features like texture, color, and gradient. Chan et al. [12] propose
to count by directly regressing from global features to crowd
number using Gaussian process regression. A prior distribution
is proposed in [13] to estimate homogeneous crowds. Multiple
features are combined in [14] to improve the performance of
crowd counting. However, the performance of traditional counting
algorithms are still limited due to scale variation and occlusion in
crowd images.

2.1.3 Density map based counting
Density map based methods are currently the most popular ap-
proach to crowd counting since the performance can be dramat-
ically improved by utilizing spatial information. Density maps
are typically generated by blurring dot maps in which each dot
indicates a person in an image [8]. Since density maps are inter-
mediate representations, most algorithms generate density maps
beforehand by convolving the dot maps with Gaussian kernels
with either fixed or adaptive bandwidths. Then, different network
architectures are designed to handle various challenges, such as
scale changes, improving the quality of density maps, encoding
more contextual information, or adapting to new scenarios.

Scale variation: To handle with scale variation of people,
[4] proposes a multi-column neural network (MCNN) where each
column has different kernel sizes to extract multi-scale features.
Similarly, SANet [16] proposes to extract multi-scale features with
scale aggregation modules, while Kang and Chan [5] propose to
use image pyramid to deal with scale variation in crowd counting.
Instead of fusing multi-scale features, switch-CNN [17] proposes
to select a proper column with appropriate receptive field. A tree-
structured CNN is proposed to handle the diversity of people
in crowds [18]. [19] proposes a hierarchical encoder-decoder
framework to encode multi-scale features, while [20] proposes an
attention based framework to filter background and [21] proposes
a novel feature fusion strategy.

Refinement-based: Another way to improve the quality of
density maps and the performance of crowd counting is to use
refinement-based algorithms. Ranjan et al. [22] propose a two
stage counting framework in which the high-resolution density
map is estimated based on the low-resolution density map gen-
erated in the initial stage, while Sam and Babu [23] propose a
feedback mechanism to refine the predicted density map. Besides
image-based refinement framework, [24] proposes a region-based
refinement method. Related to refinement based methods are
ensemble methods, such as [25], which uses CNN boosting, or
[26], which uses multiple negative correlated regressors.

Context: Contextual information is also useful for crowd
counting. Sindagi and Patel [6] propose a contextual pyramid CN-
N, while Xiong et al. [27] propose to utilize temporal contextual
information. To exploit unlabelled data, [7] propose a ranking
based method. Other works have also shown that density maps
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are useful for pedestrian detection and tracking in crowd scenes
[28]. [29] proposes to localize individuals and estimate the density
map simultaneously. [30] proposes a Context-Aware network
by exploiting the difference between local features and global
features, while [31] investigates the effectiveness of perspective
map for crowd counting. [32] proposes to count crowd people by
multi-camera settings.

Multi-task: Multi-task learning can improve counting per-
formance through better learning of features. Idrees et al. [33]
propose a composition loss for crowd counting, density map
estimation and localization tasks. [34] proposes to deal with
counting and localization using RGB-D data. [35] proposes to
improve counting performance in cooperating with auxiliary tasks.

Cross-scene: One challenge with applying counting algo-
rithms in real application is the domain gap between the training
datasets and the new scene, i.e., the cross-scene problem. [9]
proposes a cross-scene algorithm to adapt the trained model to
new scenes. Wang et al. [36] propose a synthetic dataset and a
domain adaptation algorithm to boost counting performance with
the proposed dataset. More related works can be found in [37].

These density estimation methods are trained directly using
hand-crafted density maps as supervision. Our proposed density
map generator can be jointly trained with any of these density
estimation methods in order to tune the density maps to the
specific capabilities of the estimator.

2.2 Density Map Generation
Previous crowd counting research mainly concentrates on densi-
ty map estimation but ignores density map generation. Current
generation approaches convolve the dot map with a Gaussian
kernel with fixed bandwidth [8] or an adaptive bandwidth based on
crowdedness [4] or scene perspective [9]. However, the hyperpa-
rameters are manually selected without full investigation. In con-
trast to these hand-crafted methods, our proposed approach jointly
learns the density map generator with the counting algorithm in
an end-to-end manner.

A preliminary version of this work appears in [38]. The exten-
sions over the conference version are three-fold. First, we propose
a new generation method that can generate unique density kernels
for individual objects, and outperforms our previous methods in
[38] that are based on refining or fusing density maps based
on Gaussian kernels. The new method is easy to analyze since
it is possible to visualize each individual’s kernel. Second, we
apply our proposed methods to general object counting tasks,
such as vehicle counting and general object counting. The new
extensive experiment results show that the proposed method is
effective at the dense object counting tasks. Third, analyzing the
learned kernels, we discover that the kernels are sometimes flatter
compared to traditional Gaussian kernels, which provides insight
into better design of density map generation methods.

Finally, we note that some methods avoid using density maps
altogether; [39] proposes a detection based framework without the
use of density map, while [15] proposes a novel loss function
based on point annotation.

3 DENSITY MAP GENERATORS

In this section, we first briefly introduce traditional generation
methods, and then present our density map generation framework
which learns to make density maps from dot annotation maps as
inputs. We consider three methods for density map generation:

Counter

Refiner

Refinement lossCounting loss

Input image

Density map Refined density map

Estimation 

Fig. 2. Density map refinement framework. The Counter is a network
that estimates the density map of an input image. The Refiner is another
network that takes a density map as input and produces a better density
map as the ground truth to train the Counter. Both the Counter and
Refiner are trained jointly.

1) density map refinement, which modifies a traditional density
map; 2) adaptive density map generation, which adaptively fuses
together traditional density maps with different kernel bandwidths;
3) kernel-based density map generation, which learns arbitrary
kernels for each annotation and is suitable for general object
counting.

3.1 Traditional Density Map Generation
Traditional density map generation approaches treat generation
and estimation as two separate steps. Usually, a dot annotation
map (the input) is convolved with a Gaussian kernel to form a
smooth heat map which is called a density map.

Formally, given a dot map D, where the spatial location of
each annotated person takes the value 1, (and 0 otherwise), the
density map Y is the convolution of D with a Gaussian kernel,

Y = D ∗ kσ, (1)

where kσ is a 2D Gaussian kernel with bandwidth σ, and ∗ is 2D
convolution. This is equivalent to placing a Gaussian on each dot
annotation,

Y (p) =
∑

{p′|D(p′)=1}

N (p|p′, σ2I), (2)

where p is a pixel location in the image, p′ is the location of an
annotated person, and N (p|µ,Σ) is a multivariate Gaussian with
mean µ and covariance Σ. For adaptive kernels, σ changes with
pixel location based on the perspective [4] or crowdedness [4].
The counter is then trained with images and the corresponding
density maps.

3.2 Density Map Refinement
To confirm that traditional density maps can be improved to
produce better counting performance, we first propose a density
map refinement framework that jointly refines the density map
and trains a counter from the refined density map (see Figure 2).

Formally, let (Xi, Yi) be the i-th image and traditional density
map pair. We denote f(Xi) as the predicted density map for image
Xi, and g(Yi) as the refined density map for Yi. The refiner g is
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Algorithm 1 Training using density map refinement

1: Input: Set of image and density map pairs {(Xi, Yi)}Ni=1.
2: Initialize parameters of counter f and refiner g.
3: for epoch = {1, . . . , Ne} do
4: for i = {1, . . . , N} do
5: Estimate density map f(Xi) by the counter.
6: Produce refined ground truth g(Yi) by the refiner.
7: Update counter f using the counting loss in (3).
8: Update refiner g using the refinement loss in (3).
9: end for

10: end for
11: Output: a counter and a refiner.

a fully convolutional network. The counter f and refiner g are
jointly trained using a combined loss,

L =

counting loss︷ ︸︸ ︷∑N

i=1
‖f(Xi)− g(Yi)‖2 +α‖g(Yi)− Yi‖2︸ ︷︷ ︸

refinement loss

, (3)

whereN is the number of training pairs. The first term in (3) trains
the counter to predict the refined density map, and vice versa,
trains the refiner to produce density maps that favor the counter’s
architecture. The second term in (3) constrains the refined density
map to be close to the original density map Yi, so that the
global count and spatial distribution of the crowd are preserved. In
another interpretation, g(·) is trained like an auto-encoder, where
the 2nd term is the reconstruction loss and the 1st term is a task
loss that allows the “reconstruction” g(Yi) to deviate in order to
better match the predicted density map f(Xi). The joint training
is summarized in Algorithm 1. Note that the refiner is only needed
for training, i.e., to find the optimal intermediate representation –
at inference time, only the counter is used to predict the density
map from a novel image.

3.3 Adaptive Density Map Generation

The method in the previous section refines an existing density
map. We next consider how to generate a density map directly
from the dot annotation map. With this density map generation
framework, the whole system can be end-to-end trained without
any intermediate density maps (see Figure 3). This approach
adaptively fuses together density maps constructed from different
kernels, and then refines it to generate a new density map.

3.3.1 Generation via Self-attention and Fusion
Given a dot map as the input, the generation of a density map is
divided into 3 steps: Gaussian blurring, self-attention, and fusion.
First, the input dot map Di is convolved with k Gaussian kernels
with different bandwidths, resulting in a stack of k blurred density
maps Bi = {Bji }j ,

Bji = Di ∗ kσj
, (4)

which is equivalent to a convolutional layer with a different
Gaussian kernel for each filter channel. Second, a self-attention
module uses the blurred maps Bi as input to select the best kernel
size for each region, based on the density of people in the region.
For example, this gives the generator flexibility to focus on the
density maps using small-sized kernels for small people (in the

Algorithm 2 Training using adaptive density map generation

1: Input: Set of image and dot map pairs {(Xi, Di)}Ni=1.
2: Initialize parameters of counter and refiner.
3: for epoch = {1, . . . , Ne} do
4: for i = {1, . . . , N} do
5: Estimate density map M̂i by the counter.
6: Produce ground truth Mi by the generator.
7: Update the counter using the counting loss in (7).
8: {update generator every Ng epochs.}
9: if mod (epoch,Ng) = 0 then

10: Update parameters of generator using (7).
11: end if
12: end for
13: end for
14: Output: a counter and a generator.

background), and those using large-sized kernels for large people
(in the foreground). In particular, the attention map is

Ai = Fa(Bi), (5)

where Fa is a small convolutional network, and each channel of
Ai is an attention map for the corresponding blurred density map.
Third, the blurred density maps are adaptively fused based on the
attention maps,

Mi = Ff (Ai ⊗Bi), (6)

where ⊗ is the pixel-wise multiplication, Mi is the final learned
density map that is used to supervise the counter, and Ff is the
fusion network.

3.3.2 Loss Functions
Given a training set of images and corresponding ground-truth dot
maps {(Xi, Di)}Ni=1, the density map generator and counter are
jointly trained using the loss function,

L =

counting loss︷ ︸︸ ︷∑N

i=1
‖M̂i −Mi‖2 +β(1TMi − 1TDi)

2︸ ︷︷ ︸
generation loss

(7)

where M̂i is the density map predicted by the counter, Mi is the
generated density map, and 1TM is the sum over entries inM , i.e.
the count fromM . The first term in (7) trains the counter to predict
the generated density map, while also training the generator to
produce density maps that the counter can predict well. The second
term in (7) encourages that the generated density maps have counts
that are close to the ground-truth count. Algorithm 2 summarizes
the training procedure for the counter and generator.

3.4 Kernel-based Density Map Generation
The adaptive generation method presented in the previous subsec-
tion has three disadvantages:

1) The summation of the generated density map is not always
equal to the people count since the fusion network may cause
the sum to deviate.

2) Gaussian kernels are not suitable for density map generation,
especially for objects like vehicles since the shape of vehicles
is not match with Gaussian kernels.

3) It is difficult to analyze the kernel shape of individuals since
the density map is generated directly.
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Fig. 3. Adaptive density map generation framework. The input dot map is convolved with different Gaussian kernels, yielding a set of blurred density
maps. The blurred density maps are adaptively masked using a self-attention module, and then passed through a fusion module to produce the
final density map. The generated density map serves as the ground truth for training the density map estimator (counter).
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Fig. 4. Kernel-based density map generation framework. Given an image as the input, we first learn density kernels for all spatial locations (a
w × h × k2 tensor). Then, object kernels are retrieved, normalized and reshaped based on their coordinates. The density map is generated by
sticking all the kernels together based on their locations. The generated density map then serves as the ground-truth to train a counting network.

We propose a novel generation framework to overcome these
problems. In particular, we generate density kernels for each
object and form the density map based on the positions of these
objects. The kernels are always normalized (sum to 1) so that
the summation of the learned density map is always equal to the
number of objects. Furthermore, the kernel shapes are easy to
analyze since they are generated explicitly for each object. Finally,
the shape of kernels can adapt to different objects so the proposed
framework can naturally apply to general object counting tasks.

The pipeline of the proposed method is shown in Figure 4.
Given an input image X1, kernels are learned for each spatial
position by a generator, resulting in a w × h× k2 kernel map K,
where w × h is the image size and k is the kernel width,

K = Fk(X), (8)

where Fk is the Kernel Generator which is modeled by a neural
network. The output of the Kernel Generator is a set of predicted
kernels K, which is a w × h × k2 tensor. For each spatial
location p = (x, y), the vector Kp in K is a k2 vector that
represents a k × k kernel. Let D = {pj}Aj=1 be the set of A
annotated 2D coordinates of the person/object, pj = (xj , yj),

1. Here we do not explicitly write the dependence on i to reduce clutter.

in image X . For each annotation in D, we retrieve the corre-
sponding kernel Kpj from K. We then reshape and normalize
Kpj to sum to 1, resulting in the location-specific k × k kernel
K̃pj = vec−1(Kpj )/sum(Kpj ), where vec−1 is the vector-to-
matrix reshaping from k2-dim vector to k×k matrix, and sum(z)
is the sum of the entries in the vector z. Finally, the generated
density map is obtained by placing the location-specific kernels
on top of each annotation,

M(p) =
A∑
j=1

K̃pj (p− pj), (9)

where the indexing of K̃pj (p) is on p ∈ {−r, · · · , r} ×
{−r, · · · , r} where r = (k − 1)/2. Note that (9) is analogous
to placing Gaussians on each annotation to generate a traditional
density map, except that now the kernels are learned, and could be
different for each position and each image. The learned density
map M is then used as the ground-truth to train a counter.

3.4.1 Loss Functions

Given a training set of images and corresponding ground-truth dot
maps {(Xi, Di)}Ni=1, the density map generator and counter are
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Algorithm 3 Training using kernel-based density map generation

1: Input: Set of image and dot map pairs {(Xi, Di)}Ni=1.
2: Initialize parameters of counter and refiner.
3: for epoch = {1, . . . , Ne} do
4: for i = {1, . . . , N} do
5: Estimate density map M̂i by the counter.
6: Produce ground truth Mi by the generator.
7: Update the counter using the counting loss in (10).
8: Update parameters of generator using (10).
9: end for

10: end for
11: Output: a counter and a generator.

jointly trained using the loss function,

L =

counting loss︷ ︸︸ ︷∑N

i=1
‖M̂i −Mi‖2 + λ(1− CS(M̂

′

i ,M
′

i ))︸ ︷︷ ︸
generation loss

, (10)

where M̂i is the density map predicted by the counter, and Mi is
the generated density map. M̂

′

i and M
′

i are vectorized versions of
M̂i and Mi. CS(M̂

′

i ,M
′

i ) is the cosine similarity between two
vectors,

CS(M̂
′

i ,M
′

i ) =
M̂

′

i ·M
′

i

max(‖M̂ ′
i‖2 · ‖M

′
i‖2, ε)

, (11)

where ε = 10−8. We use the cosine similarity for spatial regular-
ization of the density map. The normalized vectors M̂ ′i/||M̂ ′i ||2
and M ′i/||M ′i ||2 represents the spatial distribution of the crowd
regardless of the count. Thus, the cosine similarity in (11) encour-
ages similar spatial distributions of crowd and non-crowd between
the GT and predicted density maps. Algorithm 3 summarizes the
training procedure for the counter and generator. The generator
and dot maps are only used to train the counter. At test time, the
counter predicts the density map from the input image.

4 EXPERIMENTS

In this section we present experiments evaluating our proposed
density map generation frameworks. We first present detailed
experimental setup including applications, datasets and evaluate
metrics. Then, we compare the proposed framework with state-
of-the-art approaches. Finally, we investigate hyper-parameter
settings and analyze the proposed method through visualization
of individual kernels and density maps.

TABLE 2
The architectures of the density map refiner, adaptive density map
generation, and kernel-based density map generation. C(K,S) is a
convolution layer with K features and kernel size S. P is average
pooling that decreases the spatial size by half, k is the size of the

generated kernels. Each conv layer is followed by a ReLU, except the
last layer.

Subnetwork Architecture
Refiner C(512,3)-C(512,3)-C(256,3)-C(128,3)-C(64,3)-C(1,3)

Self-attention C(128,3)-C(32,3)-C(5,3)-Softmax
Fusion C(128, 3)-P-C(32, 3)-P-C(8, 3)-P-C(1,3)-PReLU2

Kernel Generator C(32, 3)-P-C(64, 3)-P-C(128, 3)-P-C(128,3)-P-C(k2,3)

2. In practice, we find that occasionally the output of the Fusion network
is always 0 and the network cannot be optimized properly if we use ReLU as
the final activation. Therefore, we change the last layer activation to PReLU to
mitigate this problem.

TABLE 3
Experiment results on ShanghaiTech. MAE and RMSE are used to

evaluate the performance.

Method ShanghaiTech A ShanghaiTech B
MAE ↓ MSE ↓ MAE ↓ MSE ↓

Cross-scene [9] 181.8 277.7 32.0 49.8
MCNN [4] 110.2 173.2 26.4 41.3
FCN [46] 126.5 173.5 23.8 33.1
Cascaded-MTL [47] 101.3 152.4 20.0 31.1
Switching-CNN [17] 90.4 135.0 21.6 33.4
CP-CNN [6] 73.6 106.4 20.1 30.1
ASACP [48] 75.7 102.7 17.2 27.4
Top-Down [23] 97.5 145.1 20.7 32.8
L2R [7] 73.6 112.0 14.4 23.8
IG-CNN [22] 72.5 118.2 13.6 21.1
ic-CNN [22] 68.9 117.3 10.7 16.0
SANet [16] 67.0 104.5 8.4 13.6
SCNet [49] 71.9 117.9 9.3 14.4
Spatial-Aware [24] 69.3 96.4 11.1 18.2
Image Pyramid [5] 80.6 126.7 10.2 18.3
CSRNet† [50] 68.2 115.0 10.6 16.0
CSRNet 67.8 109.3 9.5 15.9
DMR (ours) [38] 64.2 99.7 9.1 14.4
ADMG (ours) 64.7 97.1 8.1 13.6
KDMG (ours) 63.8 99.2 7.8 12.7

TABLE 4
Experiment results on UCF-QNRF.

Method MAE↓ MSE↓
Multi-sources [14] 315 508
MCNN [4] 277 426
Encoder-decoder [51] 277 426
Cascaded-MTL [47] 252 514
Switching-CNN [17] 228 445
Resnet101 [52] 190 277
Densenet201 [53] 163 226
Composition Loss [33] 132 191
SFCN†[36] 115 192
CSRNet 148 234
DMR (ours) [38] 111 189
ADMG (ours) 101 176
KDMG (ours) 99.5 173

4.1 Applications & Datasets

We conduct experiments on three applications: crowd counting,
vehicle counting, and general object counting. For crowd count-
ing, five datasets are used for evaluation, including ShanghaiTech
(ShTech) A and B [4], UCF-QNRF [33], JHU-CROWD++ [40],
and NWPU-Crowd [41]. ShanghaiTech A contains 482 crowd
images with crowd numbers varying from 33 to 3139, and
ShanghaiTech B contains 716 high-resolution images with crowd
numbers from 9 to 578. UCF-QNRF and JHU-CROWD++ are two
large-scale datasets that contain 1,535 and 4,250 high resolution
images with very large crowds. NWPU-Crowd is the largest
benchmark and has 5,109 high-resolution images with large crowd
variation. For vehicle counting, TRANCOS [42], PUCPR+ [43],
and CAPRK [43] are used for evaluation. TRANCOS contains
1244 images in the traffic with vehicle varying from 9 to 107.
PUCPR+ and CARPK are used to count parking cars. PUCPR+
has 125 images with vehicle number from 0 to 331, while CARPK
has 1448 images with vehicle number from 1 to 188. We also
evaluate the proposed framework on general counting tasks on
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TABLE 1
Datasets used for evaluation.

Applications Datasets Min. Avg. Max. Total # of Image # of Class Avg. Resolution

Crowd Counting

ShanghaiTech A [4] 33 501 3,139 241,667 482 1 589×868
ShanghaiTech B [4] 9 123 578 88,488 716 1 768×1024

UCF-QNRF [33] 49 815 12,865 1,251,642 1,525 1 2013×2902
JHU-CROWD++ [40] 0 262 7,286 1,114,785 4,250 1 1450×900
NWPU-Crowd [41] 0 418 20,033 2,133,238 5,109 1 2311×3383

Vehicle Counting
TRANCOS [42] 9 38 107 46,734 1,244 1 480×640
PUCPR+ [43] 0 135 331 16,915 125 1 720×1280
CARPK [43] 1 62 188 89,772 1,448 1 720×1280

Object Counting SKU-110K [44] 1 147 718 1,733,708 11,762 110,712 3212×2473
DOTA [45] 10 57 618 39,450 690 6 1010×996

ShanghaiTech A ShanghaiTech B UCF-QNRF TRANCOS PUCPR+ CAPRK SKU-110K DOTA

ShanghaiTech A ShanghaiTech B UCF-QNRF

TRANCOS PUCPR+ CAPRK SKU-110K DOTA

NWPU-Crowd JHU-CROWD++

Fig. 5. Example images from the datasets.

TABLE 5
Experiment results on large-scale datasets NWPU-Crowd and

JHU-CROWD++.

NWPU-Crowd JHU-CROWD++
MAE MSE MAE MSE

CMTL [47] - - 157.8 490.4
LSCCNN [54] - - 112.7 454.4
MCNN [4] 232.5 714.6 188.9 483.4
CSRNet [50] 120.9 404.1 81.8 274.0
SANet [16] 190.6 491.4 91.1 320.4
DSSINet [55] - - 133.5 416.5
MBTTBF [21] - - 81.8 299.1
BL [15] 105.4 454.2 75.0 299.9
ADMG (Ours) 152.8 907.3 75.47 270.68
KDMG (Ours) 100.5 415.5 69.74 268.27

TABLE 6
Experiment results of vehicle counting on TRANCOS dataset.

Methods GAME(0) GAME(1) GAME(2) GAME(3)
Victor et al. [56] 13.76 16.72 20.72 24.36
Onoro et al. [8] 10.99 13.75 16.09 19.32
CSRNet† [50] 3.56 5.49 8.57 15.04

CSRNet 3.67 5.82 8.53 14.40
PSDDN [39] 4.79 5.43 6.68 8.40
ADMG (ours) 3.79 5.93 8.49 13.51
KDMG (ours) 3.13 4.79 6.20 8.68

SKU-110K [44] and DOTA [45], which contains more than one
semantic categories. SKU-110K contains 11,762 high-resolution
images with 110,712 classes. The object number varies from 1 to
718. For DOTA, we only use 690 images with 6 classes (Large-

TABLE 7
Experiment results on PUCPR+, CARPK, and SKU110k.

Method PUCPR+ CARPK SKU110k
MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓

Faster R-CNN [57] 39.88 47.67 24.32 37.62 107.46 113.42
YOLO (2016) [58] 156.00 200.42 48.89 57.55 84.17 97.81
One-Look (2016) [59] 21.88 36.73 59.46 66.84 - -
LPN Counting (2017) [43] 22.76 34.46 23.80 36.79 - -
YOLO9000opt [60] 130.43 172.46 45.36 52.02 - -
RetinaNet (2018) [61] 24.58 33.12 16.62 22.30 16.58 30.70
IEP Counting (2019) [62] 15.17 - 51.83 - - -
Densely Packed (2019) [44] 7.16 12.00 6.77 8.52 14.52 23.99
ADMG (ours) 3.57 5.02 7.14 8.59 12.69 20.72
KDMG (ours) 3.01 4.38 5.17 6.94 11.20 19.88

vehicle, Helicopter, Plane, Ship, Small-vehicle, and Storage tank)
with object numbers larger than 10. Table 1 presents a summary
of the datasets, while Figure 5 shows a few example images.

4.2 Experiment Setup

Our baseline counters include CSRNet [50], SFCN [36], MCNN
[4], and FCN [5]. The training procedures for the counters follow
the original papers: SGD [63] is used to train CSRNet with
learning rate set to 5e-7; The Adam optimizer [64] is used to
train SFCN, FCN and MCNN with learning rate 1e-5. Traditional
Gaussian density maps are generated following [50]. The fixed
bandwidth is set to 4 and 16.

Our methods are denoted as Density Map Refinement (DMR,
Section 3.2), Adaptive Density Map Generation (ADMG, Sec-
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tion 3.3), and Kernel-based Density Map Generation (KDMG,
Section 3.4).3 The architectures of DMR, ADMG, and KDMG
are summarized in Table 2, and are designed as standard Fully
Convolutional Neural Networks. We use 3 pooling layers for the
fusion network so that the resolution of the generator output is
the same as the counter. We use 4 pooling layers for the Kernel
Generator to reduce computational cost. For our methods, Adam
optimizer is used for training with learning rate of 1e-7.

The methods are evaluated using mean absolute error (MAE)
and root mean squared error (RMSE):

MAE = 1
N

∑
i

|ŷi − yi|, RMSE =

√
1
N

∑
i

‖ŷi − yi‖2,

where N is the number of samples and ŷi, yi are the predicted and
ground truth counts. For vehicle counting, we also use the GAME
metric [42] on TRANCOS,

GAME(L) = 1
N

∑
i

4L∑
l=1

|ŷli − yli|,

where the images are divided into 2L non-overlapping regions.

4.3 Crowd Counting
We compare our proposed density map refinement and generation
frameworks with state-of-the-art methods on ShanghaiTech A [4],
ShanghaiTech B [4], UCF-QNRF [33], JHU-CROWD++ [40], and
NWPU-Crowd [41]. Here we use CSRNet [50] as the baseline
counting model to be trained with DMR, ADMG, and KDMG.
The experiment results are shown in Tables 3, 4, and 5. Note that
CSRNet† refers to results reported in [50], while CSRNet refers
to our baseline implementation.

On the ShanghaiTech A dataset, both proposed generation
frameworks (ADMG and KDMG) achieve superior performance
compared with state-of-the-arts on MAE. The proposed genera-
tion methods also outperform the baseline model, CSRNet [50],
which further confirms the effectiveness of learning the density
map representation. Similarly, On ShanghaiTech B, both of our
frameworks achieve better performance than the baseline CSRNet.
UCF-QNRF is a challenging crowd counting dataset, and our
proposed methods achieve the best performance on both MAE and
MSE. On the two large-scale datasets, NWPU-Crowd and JHU-
CROWD++, KDMG significantly outperforms ADMG by a large
margin; KDMG also performs favorably versus other state-of-the-
art methods such as BL [15]. Comparing the two generators, in
general, KDMG has lower MAE than ADMG. In summary, these
experiments demonstrate that the proposed density map generation
frameworks can produce learnable density map representations
that improve counting performance, especially on large datasets
such as ShanghaiTech A/B, UCF-QNRF, NWPU-Crowd and JHU-
CROWD++.

4.4 Vehicle Counting
We also evaluate the performance of the proposed method on
vehicle counting. The experiment results are shown in Tables 6
and 7. The proposed method outperforms CSRNet in both global
counting (GAME(0)) and local counting (GAME(1), GAME(2)
and GAME(3)), since the proposed framework can generate better
kernels. PSDDN [39] is a detection based approach, and thus

3. Code available at http://visal.cs.cityu.edu.hk/research/kdmg/

TABLE 8
Experiment results on DOTA.

Method MAE↓ MSE↓
CSRNet + Fixed kernel (σ=4) 4.82 10.17
CSRNet + Fixed kernel (σ=16) 5.10 9.02
CSRNet + Adaptive kernel 6.05 8.95
ADMG (ours) 4.42 8.38
KDMG (ours) 3.65 7.44

the precise localization performance (GAME(3)) is better than
the proposed approach. However, we achieve superior counting
performance, GAME(0), and rough localization, i.e., GAME(1)
and GAME(2). For the parked car counting on PUCPR+ and
CARPK, the proposed framework achieves the best performance
on both MAE and MSE, which confirms that the proposed method
is effective to count vehicle number on both road and parking lot
accurately.

4.5 General Object Counting

We evaluate general object counting performance on SKU-110K
and DOTA. For general object counting, following [62], we count
all objects at the same time, regardless of object type. The task
is more challenging since the shape and size varies dramatically
across different objects. We use the same setup for all comparison
methods. The results are shown in Tables 7 and 8. The density
map based approaches are better than detection based approaches,
demonstrating the advantages of density maps for dense counting.
The new KDMG achieves better performance than ADMG, which
demonstrates the necessity of learning the kernels directly.

4.6 Ablation Studies

We next present ablation studies to justify the design choices of
our framework.

4.6.1 Density Maps

We first compare the effectiveness of different traditional densi-
ty maps and our generated density maps. For fixed bandwidth
kernels, the bandwidths are set to 4 and 16. As shown in Table
9, the learned density maps from ADMG/KDMG generally out-
perform manually generated density maps including fixed kernels
and adaptive kernels. KDMG achieves superior performance over
ADMG, since the former preserves the true count in the learned
density map.

4.6.2 Kernel Size

The effect of kernel size k on the density maps produced by
KDMG is investigated on ShTech A and B, and the results are
presented in Figure 6 (a). For ShTech A, smaller kernels tend to
yield better performance since the crowd is dense. In ShTech B,
the best performance is achieved when kernel size is 7 since the
crowd is less dense. We thus set kernel size to 5 and 7 for ShTech
A and B, respectively. On the other crowd datasets, we use k=5
since they have similar average head size to ShTech A. We also
set k=5 for the vehicle and general object counting datasets.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2020.3022878

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX XXXX 9
Sh

an
gh

ai
Te

ch
A

D
O

TA
SK

U
-1

10
K

TR
A

N
C

O
S

C
A

R
PK

PU
C

PR
+

Sh
an

gh
ai

Te
ch

B
U

C
F-

Q
N

R
F

KDMG (ours) ADMG (ours) Fixed (𝜎 = 16) Fixed (𝜎 = 4) Adaptive

Fig. 7. Comparison of different density maps. From left to right: learned density maps from KDMG and ADMG, density maps generated by fixed
kernel (σ = 16), density maps generated by fixed kernel (σ = 4), and density maps generated by adaptive-bandwidth Gaussian kernels.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2020.3022878

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX XXXX 10

PUCPR+

CARPK
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Fig. 8. Comparison of learned kernels from KDMG (red) and fixed kernel with bandwidth 16 (blue). Best viewed in color.
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Fig. 6. MAE vs. (a) kernel size and (b) weight for cosine regularizer.

4.6.3 Regularization

The cosine similarity is used as a regularizer for spatial con-
sistency. The effect of the weight λ in (10) is investigated on
ShanghaiTech A and ShanghaiTech B, and the results are shown
in Figure 6 (b). On ShanghaiTech A, larger weights tend to
generate better performance since people are close to each other in
ShanghaiTech A. Under this circumstance, spatial regularization is
effective to learn the spatial density distribution. On ShanghaiTech

B, smaller weights tend to achieve better performance since people
are separated from each other.

4.6.4 Generalization Ability
To evaluate the generalization ability of the learned density
maps, we conducted an experiment on ShanghaiTech A and
ShanghaiTech B using the generated density maps trained for
CSRNet as the ground-truth density maps to train MCNN, FCN,
and SFCN. The results are shown in Table 10, where “ADMG
(jointly trained)” is the generator-estimator jointly trained together
and “ADMG for CSRNet” uses the density maps generated for
CSRNet to train other estimators. The results show that density
maps generated for one estimator (CSRNet) do not generalize
well to other estimators (MCNN, FCN, SFN), as the error for
“ADMG for CSRNet” is higher than the jointly-trained generator,
and in general similar to fixed/adaptive kernels. This demonstrates
that the generated density maps are matching particular properties
(e.g., receptive field size, network depth) of the estimators to
improve the counting accuracy. In this case, as CSRNet is a large
complex network, the density maps for CSRNet might be too
complex for simpler networks (MCNN, FCN) to predict correctly.
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KDMG (ours) ADMG (ours) Fixed (𝜎 = 16) Fixed (𝜎 = 4) Adaptive

Fig. 9. Error maps (prediction - truth) for different types of density maps.
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Fig. 10. The quadratic coefficient magnitudes of kernels vs. their x-coordinate (SKU-110K dataset) and y-coordinate (other datasets). The best-fit
line is in red, and the title shows the p-values for testing for significant correlations.

4.6.5 Self-attention module

To evaluate the effectiveness of the self-attention module in
ADMG, we compare using the self-attention module with three
variants: 1) “image-att” generates attention from the input image;
2) “direct fusion” directly fuses without attention; 3) “naive-
fusion” directly sums all density maps. As shown in Tab. 11,
the fusion is more effective with self-attention (“self-att”) than
with the input image (“image-att”). The possible reason is that the
crowd information is directly obtainable from the density maps,
whereas this information needs to be decoded and interpreted from
the image, which introduces additional complexity and noise.

4.6.6 Local Counting Performance

To investigate the local counting performance, we evaluate the
frameworks based on GAME metric on UCF-QNRF. The result is
shown in Table 12. The local counting performance of ADMG is
worse than the traditional method, while KDMG achieves better
local counting performance than the baseline CSRNet. KDMG has
better local performance because it composites a set of kernels
with fixed k × k size, which keeps the local density regions

smooth. In contrast, ADMG uses a series of convolution layers
that tends to make the density regions more compact (see Fig. 7),
which cause errors near boundaries of the GAME image patches.

4.6.7 Visualization
To better understand the generation framework, we compare the
learned density maps on different datasets with traditional density
maps in Figure 7. For small-bandwidth density maps (fourth col-
umn) and ADMG density maps (second column), the density only
appear on part of the object, which results in sparse density maps.
For density maps generated by adaptive kernels (last column),
the density is too smooth for sparse objects. The density maps
generated by fixed kernel with bandwidth 16 (3rd column) are
similar to KDMG density maps (1st column), which can better
cover the whole objects with less leakage to the background.

We next visualize the learned individual kernels for KDMG
and fixed kernels with bandwidth 16 in Figure 8. Overall, the
learned kernels are more flat than fixed kernels especially for very
dense images in UCF-QNRF. Since the counters use max-pooling
layers which will produce translation invariant features, it will be
better to have the same density value for shifted patches.
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TABLE 9
Comparison of traditional and generated density maps, evaluated with

MAE. σ is the bandwidth for the fixed kernel.

Counter Density Map ShTech A ShTech B

MCNN

Fixed kernel (σ=16) 95.4 18.7
Fixed kernel (σ=4) 96.0 17.9

Adaptive kernel 103.3 17.9
ADMG (ours) 93.5 17.7
KDMG (ours) 91.0 16.6

FCN

Fixed kernel (σ=16) 90.7 18.8
Fixed kernel (σ=4) 88.9 13.8

Adaptive kernel 95.4 16.0
ADMG (ours) 87.1 13.9
KDMG (ours) 84.7 12.8

SFCN

Fixed kernel (σ=16) 70.8 9.9
Fixed kernel (σ=4) 70.8 10.6

Adaptive kernel 73.1 9.7
ADMG (ours) 68.4 8.4
KDMG (ours) 67.5 8.3

CSRNet

Fixed kernel (σ=16) 67.8 12.1
Fixed kernel (σ=4) 70.1 9.5

Adaptive kernel 66.4 10.6
ADMG (ours) 64.7 8.1
KDMG (ours) 63.7 7.9

TABLE 10
The experiment results on the generalization ability of generated

density maps. Results are for MAE on ShanghaiTech.

Density map ShanghaiTech A ShanghaiTech B
MCNN FCN SFCN MCNN FCN SFCN

Fixed kernel (σ=16) 95.4 90.7 70.8 18.7 18.8 9.9
Fixed kernel (σ=4) 96.0 88.9 70.8 17.9 13.8 10.6

Adaptive kernel 103.3 95.4 73.1 17.9 16.0 9.7
ADMG (jointly trained) 93.5 87.1 68.4 16.6 12.8 8.3

ADMG for CSRNet 95.2 94.8 70.1 17.0 14.0 8.8

We also show the error maps (prediction − ground-truth) for
different types of density maps in Figure 9. Density maps that are
too smooth, such as “Fixed (σ = 16)” and “Adaptive”, usually
have more false positive since many background pixels are treated
as the positive samples during the training of the counter. Density
maps that are too sparse, such as “ADMG (ours)” and “Fixed
(σ = 4)”, will have more false negatives since many object pixels
are treated as the negative samples during the training. For the
learned kernels of KDMG, most errors occur inside the kernel
with smaller values at the center and larger values at the boundary.
These errors will complement each other and result in accurate
global count. This also explains why flat kernels achieve better

TABLE 11
Ablation study of self-attention module on ShanghaiTech A. MAE↓ is

used as the metric.

self-att image-att direct-fusion naive-fusion
MAE↓ 64.7 66.9 67.5 68.6

TABLE 12
The evaluation of local counting performance on UCF-QNRF.

GAME0 GAME1 GAME2 GAME3
MCNN [4] 177.38 220.01 257.56 296.33

CSRNet [50] 148.12 179.73 220.66 267.98
ADMG 100.99 129.66 166.54 207.71
KDMG 99.54 116.91 134.95 160.19

performance than tradition Gaussian kernels.
We also fit the profiles of the learned kernels from KDMG

to quadratic functions. In particular, we randomly selected 70
images for each dataset. Then, the images are split into several
regions based on the height or width, and the average coefficient
is calculated for each region. The correlation statistics and p-value
are calculated using data from the 70 images. The magnitude of
the quadratic coefficient (the coefficient is always negative) can
be used to represent the flatness of a kernel. For each dataset, the
magnitude of the quadratic coefficient of a kernel versus its x-
coordinate (SKU-110K dataset) or y-coordinate (other datasets) is
shown in Figure 10, where the origin (0,0) is the top-left corner of
the image. We also plot the best fit line (via linear regression),
and test whether there is a significant correlation between the
coefficient magnitude and the y-coordinate (or x-coordinate), i.e.,
whether the line’s slope is significantly different from zero.

When the images contain dense crowds under perspective ef-
fects (as in ShTech A, UCF-QNRF, PUCPR+, and TRANSCOS),
we found that the quadratic coefficient’s magnitude is negatively
correlated with kernel’s y-coordinate. In other words, for these
scenes, the curvature of the kernel adapts to placement of peo-
ple in the scene. For small people far from the camera (small
y-coordinates), the quadratic coefficient has larger magnitude,
yielding a sharper kernel. In contrast, for large people close
to the camera (large y-coordinates), the coefficient has smaller
magnitude, yielding a flatter kernel. A possible explanation for
using flatter kernels closer to the camera is that flat structures
are easier to predict through the max-pooling layer (as discussed
above), and the kernels are less likely to overlap since close people
are more spread out in the image space. On the opposite, far
people are more likely to have overlapping kernels, and thus
a sharper kernel is used so that the densities in overlapping
regions does not get too large, compared to the peak value on
the person. For the overhead-view images (DOTA, CARPK) or
side-on view (SKU-110K), there was no significant correlation
between the kernel shape and its location, mainly because the
object density and inter-object distance do not change significantly
within the image. Finally, for ShTech B, there was a small positive
correlation between the coefficient magnitude and the y-coordinate
– people closer to the camera (large y-coordinates) had slightly
sharper kernels (larger coefficient magnitude), compared to people
further away. Perhaps this is a side-effect caused by the large
variations in camera orientations and heights for images in ShTech
B (compared to the other datasets that are more homogenous),
which also explains the small effect size (r=0.099). In summary,
we found that the kernel-shape changes within the image, based
on properties of the scene, and thus KDMG is able to optimize
the kernel shape to match the scene and the particular density
estimation network.

5 CONCLUSION

In this paper, a general density map generation framework is
proposed to learn effective density kernels for different objects.
Traditional density maps are manually generated by either fixed
Gaussian kernels or adaptive-bandwidth Gaussian kernels, which
is not optimal. A density map generation framework is proposed to
jointly learn a density map generator and density map estimator.
The proposed framework can potentially learn effective density
maps matching specific capabilities of the counter and specific
properties of the objects in the dataset. We evaluate the proposed
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framework on 10 datasets for 3 applications. The best performance
is achieved on these datasets, which confirms the effectiveness of
the proposed methods.
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