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Fig. 7. Comparison of different density maps. From left to right: learned density maps from KDMG and ADMG, density maps generated by fixed
kernel (o = 16), density maps generated by fixed kernel (¢ = 4), and density maps generated by adaptive-bandwidth Gaussian kernels.
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Fig. 8. Comparison of learned kernels from KDMG (red) and fixed kernel with bandwidth 16 (blue). Best viewed in color.
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Fig. 6. MAE vs. (a) kernel size and (b) weight for cosine regularizer.

4.6.3 Regularization

The cosine similarity is used as a regularizer for spatial con-
sistency. The effect of the weight A in (10) is investigated on
ShanghaiTech A and ShanghaiTech B, and the results are shown
in Figure 6 (b). On ShanghaiTech A, larger weights tend to
generate better performance since people are close to each other in
ShanghaiTech A. Under this circumstance, spatial regularization is
effective to learn the spatial density distribution. On ShanghaiTech

B, smaller weights tend to achieve better performance since people
are separated from each other.

4.6.4 Generalization Ability

To evaluate the generalization ability of the learned density
maps, we conducted an experiment on ShanghaiTech A and
ShanghaiTech B using the generated density maps trained for
CSRNet as the ground-truth density maps to train MCNN, FCN,
and SFCN. The results are shown in Table 10, where “ADMG
(jointly trained)” is the generator-estimator jointly trained together
and “ADMG for CSRNet” uses the density maps generated for
CSRNet to train other estimators. The results show that density
maps generated for one estimator (CSRNet) do not generalize
well to other estimators (MCNN, FCN, SFN), as the error for
“ADMG for CSRNet” is higher than the jointly-trained generator,
and in general similar to fixed/adaptive kernels. This demonstrates
that the generated density maps are matching particular properties
(e.g., receptive field size, network depth) of the estimators to
improve the counting accuracy. In this case, as CSRNet is a large
complex network, the density maps for CSRNet might be too
complex for simpler networks (MCNN, FCN) to predict correctly.
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Fig. 9. Error maps (prediction - truth) for different types of density maps.
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Fig. 10. The quadratic coefficient magnitudes of kernels vs. their x-coordinate (SKU-110K dataset) and y-coordinate (other datasets). The best-fit
line is in red, and the title shows the p-values for testing for significant correlations.

4.6.5 Self-attention module

To evaluate the effectiveness of the self-attention module in
ADMG, we compare using the self-attention module with three
variants: 1) “image-att” generates attention from the input image;
2) “direct fusion” directly fuses without attention; 3) “naive-
fusion” directly sums all density maps. As shown in Tab. 11,
the fusion is more effective with self-attention (“self-att”) than
with the input image (“image-att”). The possible reason is that the
crowd information is directly obtainable from the density maps,
whereas this information needs to be decoded and interpreted from
the image, which introduces additional complexity and noise.

4.6.6 Local Counting Performance

To investigate the local counting performance, we evaluate the
frameworks based on GAME metric on UCF-QNRF. The result is
shown in Table 12. The local counting performance of ADMG is
worse than the traditional method, while KDMG achieves better
local counting performance than the baseline CSRNet. KDMG has
better local performance because it composites a set of kernels
with fixed & x k size, which keeps the local density regions

smooth. In contrast, ADMG uses a series of convolution layers
that tends to make the density regions more compact (see Fig. 7),
which cause errors near boundaries of the GAME image patches.

4.6.7 Visualization

To better understand the generation framework, we compare the
learned density maps on different datasets with traditional density
maps in Figure 7. For small-bandwidth density maps (fourth col-
umn) and ADMG density maps (second column), the density only
appear on part of the object, which results in sparse density maps.
For density maps generated by adaptive kernels (last column),
the density is too smooth for sparse objects. The density maps
generated by fixed kernel with bandwidth 16 (3rd column) are
similar to KDMG density maps (1st column), which can better
cover the whole objects with less leakage to the background.

We next visualize the learned individual kernels for KDMG
and fixed kernels with bandwidth 16 in Figure 8. Overall, the
learned kernels are more flat than fixed kernels especially for very
dense images in UCF-QNREF. Since the counters use max-pooling
layers which will produce translation invariant features, it will be
better to have the same density value for shifted patches.
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TABLE 9
Comparison of traditional and generated density maps, evaluated with
MAE. ¢ is the bandwidth for the fixed kernel.

Counter Density Map ShTech A | ShTech B
Fixed kernel (c=16) 954 18.7
Fixed kernel (o=4) 96.0 17.9
MCNN Adaptive kernel 103.3 17.9
ADMG (ours) 93.5 17.7
KDMG (ours) 91.0 16.6
Fixed kernel (0=16) 90.7 18.8
Fixed kernel (0=4) 88.9 13.8
FCN Adaptive kernel 95.4 16.0
ADMG (ours) 87.1 139
KDMG (ours) 84.7 12.8
Fixed kernel (o=16) 70.8 9.9
Fixed kernel (o=4) 70.8 10.6
SFCN Adaptive kernel 73.1 9.7
ADMG (ours) 68.4 8.4
KDMG (ours) 67.5 8.3
Fixed kernel (0=16) 67.8 12.1
Fixed kernel (o=4) 70.1 9.5
CSRNet Adaptive kernel 66.4 10.6
ADMG (ours) 64.7 8.1
KDMG (ours) 63.7 7.9

TABLE 10
The experiment results on the generalization ability of generated
density maps. Results are for MAE on ShanghaiTech.

Density map ShanghaiTech A ShanghaiTech B
MCNN FCN SFCN | MCNN FCN SFCN
Fixed kernel (0=16) 95.4 90.7 70.8 18.7 18.8 9.9
Fixed kernel (o=4) 96.0 88.9 70.8 17.9 13.8 10.6
Adaptive kernel 103.3 95.4 73.1 17.9 16.0 9.7
ADMG (jointly trained) 93.5 87.1 68.4 16.6 12.8 8.3
ADMG for CSRNet 95.2 94.8 70.1 17.0 14.0 8.8

We also show the error maps (prediction — ground-truth) for
different types of density maps in Figure 9. Density maps that are
too smooth, such as “Fixed (¢ = 16)” and “Adaptive”, usually
have more false positive since many background pixels are treated
as the positive samples during the training of the counter. Density
maps that are too sparse, such as “ADMG (ours)” and “Fixed
(o = 4)”, will have more false negatives since many object pixels
are treated as the negative samples during the training. For the
learned kernels of KDMG, most errors occur inside the kernel
with smaller values at the center and larger values at the boundary.
These errors will complement each other and result in accurate
global count. This also explains why flat kernels achieve better

TABLE 11
Ablation study of self-attention module on ShanghaiTech A. MAE] is
used as the metric.

self-att | image-att | direct-fusion | naive-fusion
MAE] | 64.7 66.9 67.5 68.6
TABLE 12
The evaluation of local counting performance on UCF-QNRF.
GAMEO GAMEl GAME2 GAME3
MCNN [4] 177.38 220.01 257.56 296.33
CSRNet [50] 148.12 179.73 220.66 267.98

ADMG 100.99 129.66 166.54 207.71
KDMG 99.54 116.91 134.95 160.19
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performance than tradition Gaussian kernels.

We also fit the profiles of the learned kernels from KDMG
to quadratic functions. In particular, we randomly selected 70
images for each dataset. Then, the images are split into several
regions based on the height or width, and the average coefficient
is calculated for each region. The correlation statistics and p-value
are calculated using data from the 70 images. The magnitude of
the quadratic coefficient (the coefficient is always negative) can
be used to represent the flatness of a kernel. For each dataset, the
magnitude of the quadratic coefficient of a kernel versus its x-
coordinate (SKU-110K dataset) or y-coordinate (other datasets) is
shown in Figure 10, where the origin (0,0) is the top-left corner of
the image. We also plot the best fit line (via linear regression),
and test whether there is a significant correlation between the
coefficient magnitude and the y-coordinate (or x-coordinate), i.e.,
whether the line’s slope is significantly different from zero.

When the images contain dense crowds under perspective ef-
fects (as in ShTech A, UCF-QNRF, PUCPR+, and TRANSCOS),
we found that the quadratic coefficient’s magnitude is negatively
correlated with kernel’s y-coordinate. In other words, for these
scenes, the curvature of the kernel adapts to placement of peo-
ple in the scene. For small people far from the camera (small
y-coordinates), the quadratic coefficient has larger magnitude,
yielding a sharper kernel. In contrast, for large people close
to the camera (large y-coordinates), the coefficient has smaller
magnitude, yielding a flatter kernel. A possible explanation for
using flatter kernels closer to the camera is that flat structures
are easier to predict through the max-pooling layer (as discussed
above), and the kernels are less likely to overlap since close people
are more spread out in the image space. On the opposite, far
people are more likely to have overlapping kernels, and thus
a sharper kernel is used so that the densities in overlapping
regions does not get too large, compared to the peak value on
the person. For the overhead-view images (DOTA, CARPK) or
side-on view (SKU-110K), there was no significant correlation
between the kernel shape and its location, mainly because the
object density and inter-object distance do not change significantly
within the image. Finally, for ShTech B, there was a small positive
correlation between the coefficient magnitude and the y-coordinate
— people closer to the camera (large y-coordinates) had slightly
sharper kernels (larger coefficient magnitude), compared to people
further away. Perhaps this is a side-effect caused by the large
variations in camera orientations and heights for images in ShTech
B (compared to the other datasets that are more homogenous),
which also explains the small effect size (r=0.099). In summary,
we found that the kernel-shape changes within the image, based
on properties of the scene, and thus KDMG is able to optimize
the kernel shape to match the scene and the particular density
estimation network.

5 CONCLUSION

In this paper, a general density map generation framework is
proposed to learn effective density kernels for different objects.
Traditional density maps are manually generated by either fixed
Gaussian kernels or adaptive-bandwidth Gaussian kernels, which
is not optimal. A density map generation framework is proposed to
jointly learn a density map generator and density map estimator.
The proposed framework can potentially learn effective density
maps matching specific capabilities of the counter and specific
properties of the objects in the dataset. We evaluate the proposed

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

JOURNAL OF IATEX CLASS FILES, VOL. X, NO. X, XXX XXXX

framework on 10 datasets for 3 applications. The best performance
is achieved on these datasets, which confirms the effectiveness of
the proposed methods.
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