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Fig. 3. Correlation plots between the diversity scores of computed metrics and human evaluation. Red lines are the best fit lines to the data.

Fig. 4. The performance of different models considering accuracy and
diversity. Left: using LSA-based diversity, which employs BoW features.
Right: using CIDEr kernelized diversity (Self-CIDEr). The marker shape
indicates the caption model, while the marker color indicates the diver-
sity generator or training method.

Att2in(C). This motivates our method to fill the performance
gap by balancing between the two losses.

Comparing the diversity generators, SS and GNC are
more promising for generating diverse captions. Captions
generated using RCI have higher accuracy, while those
using RS have higher diversity. Interestingly, in the top-
left of the DA plot, using RS, a more advanced model
can generate more accurate captions without reducing the
diversity, This shows that an advanced model is able to learn
a better p̂(c|I), which is more similar to the ground-truth
distribution p(c|I). However, there is a long way to go to
reach the accuracy of human annotations.

6.3 The Performance of Our Proposed Methods

We use Self-CIDEr metric to evaluate the diversity of the
proposed approaches (see Fig. 5). In addition, we show the
oracle performance (upper bound) based on each accuracy
metric (see Table 2) and compared with the existing models,
our proposed approaches perform much better, obtaining
CIDEr(best@20) of 1.696 and CIDEr(best@100) of 1.924. In-
stead of generating diverse captions for one image, the
proposed models are able to generate single caption for one
image using beam search, which performs relatively well on
MSCOCO test split (see Table 3). Tables 2 and 3 only show
the best results based on CIDEr and we show full experi-
mental results in Tables A.2 and A.3 in our supplemental.

6.3.1 Diversity by Random Sampling

Fig. 5 (top) shows the performance of our proposed meth-
ods on accuracy and Self-CIDEr diversity. Human annota-
tions obtain relatively high diversity and accuracy scores
and compared to CGAN, CVAE models, our proposed
approaches are relatively promising and efficient to bal-
ance diversity and accuracy. The proposed UDA dominates
other methods, obtaining higher accuracy scores without

Fig. 5. The performance of our proposed models. Top: using random
sampling. Bottom: using DPP selection, where the dashed lines denote
using L2E [32] as the quality function (DPP-L2E) and the solid lines
represent using CIDEr as the quality function (DPP-CIDEr).
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Fig. 6. Qualitative results. For DPP selection, we randomly sample 100
captions from the trained UDA-m-ζ, where m = 8 and ζ = 1, then apply
DPP to select 5 captions that have both high quality and diversity.

reduction of diversity scores, e.g., UDA-m obtains (accu-
racy, diversity) of (1.111, 0.548) using m = 3, whereas
CIDEr+γ1mCIDEr(m = 5) obtains (1.007, 0.543) using γ1 =
0.06 and CIDEr+γEPC(m = 5) obtains (1.036, 0.543). The
reason is that CIDEr+γEPC only considers the largest eigen-
value λ1 of K, but ignores the other eigenvalues. Although
reducing λ1P

i λi
is able to encourage diversity, it could in-

troduce randomness, since the model reduces the largest
eigenvalue, but does not know which eigenvalues should
be enlarged. Thus CIDEr+γEPC cannot well preserve the
inter-caption structure of human annotations. In contrast,
the UDA maximizes the determinant of L, which unifies
accuracy and diversity, thus accounting for all eigenvalues
of K. Hence, UDA is more effective in balancing diversity
and accuracy.
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TABLE 2
The oracle (upper bound) and average performance based on each metric. #samples denotes the number of samples, best denotes the highest

score and avg denotes the average score. B stands for BLEU [26], M for METEOR [27], R for ROUGEL [28], C for CIDEr [1] and S for SPICE [29].

Model #samples B-4 M R C S L2E WMD Self-CIDErbest avg best avg best avg best avg best avg best avg
human 5 - - - - - - - - - - 0.884 0.761 1.0 0.895

CVAE [33] 20 0.312 - 0.244 - 0.541 - 0.910 - 0.176 - - - - 0.193

AG-CVAE [33] 20 0.471 - 0.309 - 0.638 - 1.308 - 0.244 - - - - -100 0.557 - 0.345 - 0.690 - 1.517 - 0.277 - - - -

GMM-CVAE [33] 20 0.449 - 0.299 - 0.624 - 1.251 - 0.232 - - - - 0.710100 0.527 - 0.329 - 0.670 - 1.430 - 0.263 - - - -

POS [57] 20 0.449 - 0.357 - 0.678 - 1.468 - 0.277 - - - - -100 0.578 - 0.423 - 0.739 - 1.710 - 0.322 - - - -
SCT [71] 20 0.448 - 0.366 - 0.689 - 1.565 - 0.309 - - - - -
XE loss 20 0.329 0.045 0.325 0.192 0.621 0.399 1.208 0.509 0.266 0.128 0.895 0.579 0.651 0.904

CIDEr reward 20 0.335 0.238 0.323 0.283 0.631 0.575 1.385 1.161 0.245 0.206 0.623 0.428 0.618 0.223
XE+αCIDEr α = 10 20 0.464 0.192 0.371 0.264 0.689 0.538 1.568 0.984 0.290 0.187 0.865 0.520 0.650 0.611

CIDEr+ζ2RETr ζ2 = 1 20 0.347 0.240 0.332 0.288 0.639 0.575 1.420 1.164 0.260 0.213 0.653 0.426 0.626 0.278
CIDEr+ηJPC η = 1 20 0.360 0.225 0.345 0.292 0.640 0.563 1.473 1.190 0.272 0.218 0.554 0.277 0.634 0.331
CIDEr+γEPC m = 5, γ = 0.02 20 0.404 0.218 0.359 0.289 0.659 0.560 1.528 1.134 0.284 0.214 0.645 0.278 0.642 0.449

CIDEr+γ1mCIDEr m = 5, γ1 = 0.04 20 0.406 0.220 0.360 0.290 0.661 0.560 1.531 1.149 0.285 0.215 0.657 0.296 0.642 0.445
UDA-m m = 5 20 0.524 0.174 0.403 0.269 0.716 0.536 1.696 1.034 0.309 0.196 0.868 0.552 0.667 0.665

UDA-m-ζ m = 5, ζ = 1 20 0.521 0.158 0.400 0.264 0.714 0.527 1.681 0.990 0.311 0.194 0.876 0.591 0.672 0.703
m = 5, ζ = 5 20 0.430 0.097 0.363 0.238 0.670 0.474 1.479 0.792 0.298 0.176 0.896 0.711 0.670 0.799

Looking at CIDEr+γEPC with CIDEr+ηJPC, the per-
formance of CIDEr+γEPC is much better. As we have
mentioned in Section 4.2.2, CIDEr+ηJPC treats a set of
captions as a whole, ignoring the inter-caption structure,
while CIDEr+γEPC considers the pairwise similarity, which
is capable of reflecting the inter-caption structure. Inter-
estingly, CIDEr+γ EPC and CIDEr+γ1mCIDEr show sim-
ilar performance. As we showed in Section 4.2.2, the
gradient of CIDEr+γEPC has the same form as that of
CIDEr+γ1mCIDEr. Normally, the model is first trained us-
ing cross-entropy loss, and the captions drawn from this
learned distribution are very different. Hence, K could be
a diagonal matrix and ∂Rd

∂kij
= 0 if i 6= j, ∂Rd∂kij

< 0 if i = j
(see Eq. 23). In this case the gradient of CIDEr+γEPC could
be the same as that of CIDEr+γ1mCIDEr, and thus, the two
approaches have similar performance.

Interestingly, diversity can be improved by increasing
m (see Fig. 5). UDA-2 obtains diversity of 0.424, while
UDA-8 boosts diversity up to 0.741. Also, CIDEr+γEPC and
CIDEr+γ1mCIDEr show the same trend with the increase
of m. However, a large m results in low accuracy, e.g., the
average CIDEr score reduces from 1.150 to 0.874 with m
increasing from 2 to 8 for UDA. Another drawback of using
a large m is the computational complexity. Compared to
SCST [3] that only samples one caption during training, the
proposed models require m captions to compute diversity,
which is around m times slower than SCST in the training
phase (e.g., UDA-5 takes 5.3s per batch on a M40 GPU with
batch size 128, while SCST takes ∼1s per batch). Note that
SCST cannot generate diverse captions and the inference
times of the proposed models are the same as SCST.

In terms of different combinations of XE, RETr and
CIDEr, XE+αCIDEr is more effective at balancing diversity
and accuracy, obtaining wider ranges of diversity and ac-
curacy scores, e.g., the diversity score ranges from 0.223
to 0.904 and accuracy score ranges from 0.495 to 1.131.
In contrast, RETr plays the role of local search (see the
curves of XE+5CIDEr+ζ3RETr and XE+10CIDEr+ζ3RETr).
The reason is that RETr reward is relatively smaller than XE
and CIDEr reward, and thus, XE and CIDEr could dominate
the trend of the curve. It is believed that RETr is important
for improving the distinctiveness of the generated captions
[53], and introducing RETr reward to captioning models is
able to improve diversity (see the curves of CIDEr+ζ2RETr

and UDA-m-ζ). However, using a large weight of RETr
could result in repetition problems—a caption repeats the
distinctive words for several times, yielding less fluency.

6.3.2 Diversity by DPP Selection
To further improve diversity and accuracy, we apply DPP
selection (Alg. 1) to select 10 captions from 100 candidates.
Looking at Fig. 5 (bottom), both diversity and accuracy
could be significantly improved using CIDEr as the qual-
ity function in DPP selection (solid lines). Compared to
random sampling (left), the (accuracy, diversity) score of
the model that only employs CIDEr reward increases from
(1.131, 0.223) to (1.142, 0.430) using DPP-CIDEr, which is
comparable to UDA-m using m = 2. For the model trained
by XE loss, the accuracy score of which surges from 0.495 to
1.087, while the diversity score decreases by 0.1.

However, DPP-CIDEr requires human annotations at
test time, which is difficult and expensive. Instead of using
CIDEr as the quality function, we employ L2E [32] as the
quality function to select a subset of caption (dashed lines),
yielding a rise in diversity scores and drop in accuracy
scores. In particular for the models that have low diversity
scores, DPP-L2E is more effective at improving the diversity
scores, e.g., the diversity score of the model that train by
CIDEr reward soars from 0.223 to 0.437, which nearly dou-
bles. Interestingly, for the models that obtain low diversity
scores using random search (see Fig. 5 (top, left)), DPP-
CIDEr and DPP-L2E could obtain similar diversity score,
e.g., CIDEr+ζ2 (ζ2 = 1), CIDEr+ηJPC (η = 1) and UDA-m
(m = 2) have the diversity scores of 0.491, 0.537 and 0.616 by
using DPP-CIDEr, while using DPP-L2E, the three models
obtain the diversity scores of 0.503, 0.532 and 0.632, respec-
tively. The possible reason is that both DPP-CIDEr and DPP-
L2E employ Self-CIDEr matrix and most of the captions in
a less diverse set could be the same, thus, the quality of
captions is less important and DPP selection algorithm pays
more attention to the difference among captions. Whereas,
for the models that have high diversity scores, DPP-CIDEr
and DPP-L2E lead to quite different diversity scores, the
reason for which is that in this case, quality plays a more
important role during selection. Note that the accuracy score
that we use is the average CIDEr, thus DPP-L2E generally
results in less accuracy than DPP-CIDEr.

Fig. 6 shows qualitative results. Our DPP-L2E is able
to recognize “vintage train engine” (first row), “sofas”,
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“chairs”, “table” (second row), and “windows” (third row),
which are correct. However, these concepts do not occur
in human annotations, thus the captions obtain low CIDEr
(compared to DPP-CIDEr). In contrast, DPP-CIDEr obtains
relatively high CIDEr, since it directly uses CIDEr as the
quality function. However, DPP-CIDEr prefers common
words, e.g., “a black and white train at a train station”,
achieving the highest CIDEr score (first row), but the impor-
tant information “old fashioned steam engine” is missing,
which is more distinctive for the image. More examples can
be found in the appendix.

6.3.3 Comparison with state-of-the-art
Table 2 shows the oracle (best) and average performance
based on each metric and higher scores indicate that a model
is able to sample more accurate captions. Compared to the
most models that focus on generating diverse captions, our
proposed methods are capable of obtaining higher scores
using 20 and 100 samples. In particular, our proposed UDA-
m (m = 8) obtains BLEU-4(best@20) of 0.528, 17.9% higher
than SCT [71], BLEU-4(best@100) of 0.655, 13.3% higher than
POS [57], CIDEr(best@100) of 1.942, 12.5% higher than POS
[57], SPICE(best@20) of 0.311, 0.6% higher than SCT [71] and
SPICE(best@100) of 0.351, 9.0% higher than POS [57]. Note
that POS [57] and SCT [71] use other information, such as
part-of-speech tags and the order of image regions to guide
the captioning procedure, while UDA-m does not require
any external information. Moreover, POS/SCT require beam
search during inference, while our methods employ random
sampling, which considerably reduces the inference time.

In this experiment we also observe similar trend that
is shown in Fig 5(top)—increasing diversity could re-
duce the average accuracy scores based on BLEU-4, ME-
TEOR, ROUGEL, CIDEr and SPICE. For example, for
UDA-m, when m ranges from 2 to 8, the diversity score
surges from 0.424 to 0.741, while BLEU-4(avg@20), ME-
TEOR(avg@20) , ROUGEL(avg@20), CIDEr(avg@20) and
SPICE(avg@20) gradually drop by 38.3%, 11.2%, 9.9%, 23.5%
and 12.9%, respectively. In contrast, improving diversity
could encourage the highest accuracy scores – for UDA-m,
BLEU-4(best@20), METEOR(best@20), ROUGEL(best@20),
CIDEr(best@20) and SPICE(best@20) increase by 19.5%,
9.8%, 5.6%, 6.9% and 11.1%, respectively, which means that
improving diversity could lead to a model that has strong
exploration ability, and thus, it is able to find the “best”
caption. See Supplemental Table A.2 for more details.

We also report the L2E and WMD scores of human anno-
tations, since both the candidate and reference captions are
human annotations – the WMD score is 1.0. Looking at the
average L2E scores, human annotations obtain the highest
score (0.761) and much better than that obtained by using
CIDEr reward (0.428). In terms of our proposed methods,
UDA model obtains the highest L2E (0.711) and WMD
(0.674) scores. Also, the model trained by cross-entropy
loss obtains a relatively high score, L2E(avg@20) of 0.579,
while the proposed models CIDEr+ηJPC, CIDEr+γEPC and
CIDEr+γ1mCIDEr obtain much lower L2E scores. The rea-
son is that to train L2E, we treat human annotations as
positive samples and the captions generated by Softatt
[7] with beam search, using random words and word
permutation [32] as negative samples. Thus using CIDEr

TABLE 3
The performance on generating single caption for one image. bw

represents beam width and length denotes the average length of the
generated captions. Full results are shown in supplemental Table A.3.

Model bw length B-4 M R C S L2E WMD
Adaptive-XE [48] 3 - 0.322 0.266 - 1.085 - - -
Updown-XE [14] 5 - 0.362 0.270 0.564 1.135 0.203 - -
Updown-RL [14] 5 - 0.363 0.277 0.569 1.201 0.214 - -

DISC-RL [23] 2 - 0.363 0.273 0.571 1.141 0.211 - -
SCST [3] - - 0.333 0.263 0.553 1.114 - - -

Att2in-XE [3] - - 0.313 0.260 0.543 1.013 - - -
Hieratt-XE [72] 3 - 0.362 0.275 0.566 1.148 0.206 - -
Hieratt-RL [72] 3 - 0.376 0.278 0.581 1.217 0.215 - -

baseline XE loss 3 9.0 0.364 0.274 0.569 1.117 0.203 0.446 0.602
CIDEr reward 3 9.0 0.367 0.273 0.577 1.177 0.208 0.428 0.604

XE+αCIDEr α = 10 3 8.9 0.378 0.276 0.580 1.174 0.207 0.447 0.604
CIDEr+ζ2RETr ζ2 = 1 3 9.4 0.368 0.278 0.578 1.185 0.216 0.421 0.610
CIDEr+ηJPC η = 1 3 10.0 0.332 0.286 0.569 1.219 0.222 0.271 0.616
CIDEr+γEPC m = 5, γ = 0.02 3 10.8 0.335 0.285 0.570 1.182 0.219 0.266 0.616

CIDEr+γ1mCIDEr m = 5, γ1 = 0.06 3 11.4 0.317 0.284 0.561 1.120 0.216 0.240 0.616

UDA-m m = 2 3 9.3 0.371 0.279 0.578 1.223 0.213 0.428 0.610
m = 5 3 9.5 0.357 0.278 0.568 1.179 0.212 0.494 0.610

UDA-m-ζ m = 5, ζ = 1 3 9.3 0.358 0.278 0.570 1.169 0.212 0.518 0.609
m = 5, ζ = 10 3 10.6 0.272 0.263 0.526 0.950 0.199 0.589 0.608

reward to train a model could bias it to using common
words, which is similar to using beam search, and results
in lower L2E scores for CIDEr reward models. CIDEr+ηJPC,
CIDEr+γEPC and CIDEr+γ1mCIDEr force the generated
captions far away from the greedy search caption by in-
troducing a new baseline into SCST [3] model (see section
4), however, they could use random words, resulting in
non-fluency, hence, the captions generated by these models
can be easily recognized as non-human annotations. Inter-
estingly, CIDEr+ηJPC, CIDEr+γEPC and CIDEr+γ1mCIDEr
obtain relatively high WMD scores, which means that these
models are capable of capturing the concepts occur in hu-
man annotations.

Finally, retrieval reward significantly benefits L2E and
WMD scores, e.g., UDA-m (m = 5) obtains L2E(avg@20) of
0.552, whereas UDA-m-ζ (m = 5, ζ = 5) has L2E(avg@20) of
0.711, 28.8% higher. Although using retrieval reward could
improve the relevance of the generated captions, it leads to
repetition problems and reduces fluency.

6.3.4 Single Caption Generation

We evaluate the proposed models in the typical way focus-
ing only on accuracy—given one image we generate a cap-
tion using beam search, and the results are shown in Table
3. Using beam search to obtain the top-K captions based on
the probability is able to reflect how well a trained model
can capture the modes of the ground-truth distribution.

Compared to the state-of-the-art models, our proposed
approaches obtain comparable or better results in terms of
the most popular metrics, such as BLEU and CIDEr, e.g.,
UDA-m (m = 2) has CIDEr of 1.223, while Hieratt-RL [72]
obtains CIDEr of 1.217, which is slight worse.

Looking at the models that are able to generate diverse
captions, as diversity increases, BLEU, METEOR, ROUGEL,
CIDEr and SPICE scores typically decrease. For exam-
ple, CIDEr+ζ2RETr (ζ2=1) obtains CIDEr of 1.185, while
CIDEr+ζ2RETr (ζ2=10) has CIDEr of 0.989. In contrast, L2E
and WMD scores show different trends, and they are lower
than the corresponding average L2E scores and WMD scores
shown in Table 2. The reason is that we regard the captions
generated by beam search as negative samples to train L2E.
Moreover, encouraging diversity could benefit the length of
captions and a caption contains more words could provide
more information. Employing retrieval reward significantly
improves L2E score, e.g., UDA-m (m = 5) has L2E of 0.494,
whereas UDA-m-ζ (m = 5, ζ = 10) obtains L2E of 0.589.
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7 CONCLUSIONS

In this paper, we modelled the diversity of human anno-
tations via considering the similarity between each pair of
annotations, and presented a diversity metric derived from
latent semantic analysis and then kernelized it using CIDEr,
which are correlated to human judgment of diversity. We
re-evaluated the existing captioning models and found that
the models that focus on accuracy generally use common
words and obtain low diversity. To improve the diversity of
generated captions, we proposed a variety of methods based
on reinforcement learning with different reward functions.
Extensive experiments were conducted, showing that the
proposed methods are effective at balancing diversity and
accuracy. In particular, our proposed UDA significantly
improves the state-of-the-art oracle performance, and also
outperforms the other proposed methods in this paper.
UDA maximizes the determinant of the ensemble matrix,
which accounts for all eigenvalues of K, whereas the other
proposed methods only consider the largest eigenvalue.

Although we have proposed metrics and methods for
diverse image captioning, the following directions could be
considered in the future. First, the existing metrics can be
improved, as the overlap-based metrics, such as BLEU and
CIDEr, cannot reflect semantic relevance, while WMD that
employs word2vec cannot reflect fluency, and L2E is highly
related to the dataset and data augmentations. To well eval-
uate a captioning model, relevance, fluency, diversity and
descriptiveness should be considered. Second, note that the
proposed UDA employs unlearnable quality and similarity
functions – improvements could be obtained by extending
UDA by parameterizing the quality and similarity functions.
Third, the proposed methods can be extended to other text
generation tasks, such as dialogue and machine translation,
providing more choices to the users. Fourth, the existing
dataset could be limited on diversity, since the annotations
are normally composed of common words. Generating de-
tailed captions that contain more interesting concepts could
be an interesting direction for future work.
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