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On Diversity in Image Captioning: Metrics and
Methods

Qingzhong Wang, Jia Wan and Antoni B. Chan, Senior Member, IEEE

Abstract—Diversity is one of the most important properties in image captioning, as it reflects various expressions of important
concepts presented in an image. However, the most popular metrics cannot well evaluate the diversity of multiple captions. In this
paper, we first propose a metric to measure the diversity of a set of captions, which is derived from latent semantic analysis (LSA), and
then kernelize LSA using CIDEr [1] similarity. Compared with mBLEU [2], our proposed diversity metrics show a relatively strong
correlation to human evaluation. We conduct extensive experiments, finding there is a large gap between the performance of the
current state-of-the-art models and human annotations considering both diversity and accuracy; the models that aim to generate
captions with higher CIDEr scores normally obtain lower diversity scores, which generally learn to describe images using common
words. To bridge this “diversity” gap, we consider several methods for training caption models to generate diverse captions. First, we
show that balancing the cross-entropy loss and CIDEr reward in reinforcement learning during training can effectively control the
tradeoff between diversity and accuracy of the generated captions. Second, we develop approaches that directly optimize our diversity
metric and CIDEr score using reinforcement learning. These proposed approaches using reinforcement learning (RL) can be unified
into a self-critical [3] framework with new RL baselines. Third, we combine accuracy and diversity into a single measure using an
ensemble matrix, and then maximize the determinant of the ensemble matrix via reinforcement learning to boost diversity and
accuracy, which outperforms its counterparts on the oracle test. Finally, inspired by Determinantal Point Processes (DPP), we develop
a DPP selection algorithm to select a subset of captions from a large number of candidate captions. The experimental results show
that maximizing the determinant of the ensemble matrix outperforms other methods considerably improving diversity and accuracy.

Index Terms—Image captioning, diverse captions, reinforcement learning, policy gradient, adversarial training, diversity metric.
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1 INTRODUCTION

R ECENTLY, the task of image captioning has drawn much
attention from researchers in the fields of computer

vision and natural language processing, and a wide range of
captioning models have been developed [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], the performance of which has
even overtaken human performance based on the most pop-
ular metrics, such as BLEU [26], METEOR [27], ROUGEL
[28], CIDEr [1], and SPICE [29]. However, the above metrics
only account for the similarity between human annotations
and the generated captions, which reflects the accuracy of
the generated captions. Another property, the diversity of
multiple generated captions, receives less attention from
the community of image captioning. Generally, diversity
refers to the differences among a set of captions from an
image, such as expressing different concepts and different
sentence structures. Hence, the diversity of a set of captions
is categorized as follows:

• Word diversity. the same concepts can be expressed
using different words. Thus, single words are mod-
ified (e.g., using synonyms to describe an object) to
obtain a different caption.

• Syntactic diversity. Generally, the syntax of a sentence
represents the organization of words and phrases,
which indicates different grammars. For example,
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applying pre-, post-modifications, clauses, redun-
dant and concise descriptions change the organiza-
tion of the caption, while not changing the semantics.

• Semantic diversity. An image is worth a thousand
words. Hence, an image could contain multiple con-
cepts, and different captions could express different
concepts that are relatively more important for the
particular annotator. For example, in Fig. 1, Caption
3 of the Human annotations uses “lush dry grass”
but treats “trees” and “bushes” as unimportant ob-
jects. In contrast, Captions 4, 5 describe “trees” and
“bushes”. Also, the captions generated by Model 1
show multiple concepts, and therefore, the diversity
score of the set of captions is relatively high.

Our motivations for accounting for the diversity of mul-
tiple captions are threefold. First, an image contains many
concepts and different people could be interested in differ-
ent concepts, which results in diverse descriptions for one
image. Therefore, there is diversity among captions due to
the diversity among humans. To describe like humans, the
automatic captioning methods should reflect this important
property—diversity of captions. However, diversity receives
less attention than accuracy.

Second, focusing only on accuracy could bias a caption-
ing model towards common words and phrases. Generally,
a captioning model learns a projection from image space
to caption space (see Fig. 2). For a dataset that provides
multiple human annotation for an image, the model will
converge to the “average” captions that employs common
words and phrases. For example, the captions generated
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1.a zebra standing alone
 in a field next to trees    

2.a zebra is walking 
through the wild dry 

3.a zebra stands in a 
field in tall grass       

4.a zebra standing in 
tall dry grass in trees   

5.a zebra walking in 
a dry terrain field and       

Model 1
1.a zebra is standing in the 
forest        

1.a zebra standing in 
the middle of a field

2.a zebra standing in 
a field of grass

3.a zebra standing in 
a field of grass

4.a zebra standing in 
the middle of a field

5.a zebra standing in 
the grass of a field

Model 2

 

2.a zebra standing near a 
tree in a field       

3.a zebra standing on a lush 
dry grass field 

4.a zebra standing on all four
legs near trees and bushes 
with hills in the far distance       

5.a zebra is standing in the
grass near a tree 

Human

Similarity Matrix

SVD SVD SVDDecomposition

0.859 0.423 0.835Diversity Scores

1.225 2.141 1.443Accuracy ScoresAvg. CIDEr
Avg. L2E ���������������

Fig. 1. An overview of our diversity metric. Given a set of captions
from a method, we first construct the self-similarity matrix K, consisting
of CIDEr [1] scores between all pairs of captions. The diversity score
is computed from the singular values of K. A higher diversity score
indicates more variety in the set of generated captions, such as changes
in the level of descriptive detail and inclusion or removal of objects.
The accuracy (average CIDEr and average L2E [32]) of the captions
with respect to the human ground-truth is on the bottom. For human
annotations, this is the leave-one-out accuracy.

by Model 2 in Fig. 1 obtain a relatively high accuracy
score (average CIDEr), but all captions roughly employ the
same words and same concepts. In contrast, for captions
generated by Model 1, the action of the zebra is described
differently as “standing” and “walking”. Since this is a
static image, “walking” should be a plausible description.
Moreover, Model 1 also recognizes the concept of “dry”,
which also occurs in human annotations, while Model 2
cannot achieve this. Thus, to imitate the ability of humans, a
captioning model is supposed to generate diverse captions.

Third, from the viewpoint of machine learning, caption-
ing models should generate multiple captions, since they
are typically trained on datasets that provide at least 5
ground-truth captions for one image, such as MSCOCO
[30] and Visual Genome [31]. Hence, a trained captioning
model should be evaluated on how well the learned condi-
tional distribution of captions given an image approximates
the ground-truth distribution. Furthermore, the captioning
models that obtain high accuracy score typically employ
beam search to generate a caption for an image, which
reflects the mode of the learned distribution. Thus, in this
case, the accuracy metrics evaluate the differences in the
modes of the distributions. However, this ignores another
property, the variance of the distribution, which is also a
reflection of caption diversity.

Previous works that endeavor to generate diverse cap-
tions [2], [33] have measured diversity by analyzing the
statistics of words, n-grams and the number of novel cap-
tions, which just roughly reflects the diversity of captions,
since they treat all captions of the test images as a whole,
but ignore the relationship between captions. In addition,
it is difficult to define the novelty of a caption. In this
paper, we proposed a novel diversity metric that considers
the pairwise similarities (e.g. CIDEr similarity) between
captions. We first construct a similarity matrix and then
use singular value decomposition (SVD) to calculate the
diversity score (see Fig. 1). Our proposed diversity metric
can be interpreted as latent semantic analysis (LSA), and
we further kernelize LSA to enable using any similarity
function. Thus we can extract the latent semantics to show
the semantic diversity of multiple captions. In addition,
examining the topic vectors show the common concept
structures between captions, similar to principle component

analysis (PCA) [34], [35]. The contributions of this paper are
summarized as follows:

1) We proposed a novel diversity metric to evaluate the
diversity of a set of captions, and we re-evaluate a
wide range of existing image captioning models ac-
counting for both diversity and accuracy. We show
that there is a large gap between the performance
of the existing models and that of humans. We con-
duct human evaluation on the diversity of multiple
captions, and our proposed diversity metric shows
relatively strong correlation to human evaluation.

2) We develop a framework that enables a tradeoff
between diverse and accurate captions via balancing
the rewards in reinforcement learning (RL) and the
cross-entropy loss. To further improve the perfor-
mance of a captioning model considering diversity
and accuracy, we directly maximize the proposed
diversity metric and CIDEr score via reinforcement
learning, and we show that our approach employs
new baselines to calculate policy gradients during
training. The experimental results show that our
approaches are superior to CGAN and CVAE.

3) We combine accuracy and diversity into an ensem-
ble matrix, and show that maximizing the determi-
nant of the ensemble matrix via reinforcement learn-
ing leads to generating both diverse and accurate
captions. Moreover, inspired by determinantal point
processes [36], we propose an algorithm to select a
subset of captions that have relatively high quality
and diversity from a large number of generated
captions.

4) We conduct extensive experiments to demonstrate
the effectiveness of the diversity metric and the
effect of the loss function on diversity and accuracy.
In terms of the oracle performance, our proposed
method outperforms its counterparts, which obtains
1.696 on CIDEr and 0.309 on SPICE when we sample
20 captions from the learned model.

The organization of the rest of this paper is as follows.
In Section 2, we present related works, including metrics
and image captioning methods. We propose our diversity
metrics in Section 3, and our RL-based methods to generate
diverse captions in Section 4. The experimental settings
and results are presented in Sections 5 and 6. Finally, we
conclude and discuss future directions in Section 7.

2 RELATED WORK

In this section we review image captioning methods and
their evaluation metrics. Compared with our preliminary
conference version [37], this paper has the following ad-
ditions: 1) we propose approaches that directly maximize
accuracy and diversity rewards using reinforcement learn-
ing, which performs relatively well on both diversity and
accuracy; 2) we propose a DPP selection method to select a
subset of captions that obtains high quality and diversity
from a large number of candidate captions; 3) we con-
duct more experiments to analyze the effects of the hyper-
parameters and the combinations of different loss functions;
4) we report more evaluation metric scores, such as L2E [32]
and word mover distance (WMD) [38], [39].
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Image Caption

Fig. 2. An illustration of captioning models. A captioning model learns a
projection from image space to caption space (solid arrows). Methods
focusing only on accuracy will predict “average” captions (represented
by F) that contain common words and concepts among the human
annotations (represented by •). In contrast, a diverse captioning model
predicts a set of captions (represented by N) that span all the concepts
present in the human annotations. The dashed arrows represent image
retrieval, which can improve the distinctiveness of the generated caption.
The color indicates the image-caption correspondence.

2.1 Image Captioning Methods

Image captioning combines computer vision and natural
language processing [40]. Generally, there are two stages in a
captioning model: (1) concept detection—object recognition,
detection, localization, attribute and relationship detection,
(2) language generation—translating visual information into
sentences. Earlier works typically train the two stages sep-
arately. First, concepts are detected using support vector
machines [41], conditional random fields [4], [5] or convo-
lutional neural networks (CNNs) [13]. Next, the detected
concepts are used to construct sentences using templates
[4] or sequence models, such as n-gram models [41]. The
quality of the captions generated by these models is highly
related to the quality of concept detection, and detecting
object relationships and object attributes is difficult.

Recently, encoder-decoder models have become more
popular in the field of image captioning, and most of them
are trained in an end-to-end manner. The encoder in m-RNN
[42] is a CNN [43], [44], [45] and the decoder is a vanilla
recurrent neural network (RNN) for modeling sentences –
in each time-step, language features and image features are
fused to predict the current word. Neural image captioning
(NIC) [6] employs a more powerful CNN [46] to extract
image features, which are then fed into an LSTM [47] to
predict a sequence of words. However, different words
should correspond to different image areas, and NIC and
m-RNN cannot learn this correspondence. To address this
problem, [7] presents a captioning model that uses visual
attention, which is able to learn the correspondence between
words and image regions, and thus, image captioning mod-
els become more interpretable. [17] shows that employing
semantics is able to improve the performance, and presents
a semantic attention-based captioning model. However, it
requires an additional branch to predict semantics and the
generated captions could be highly related to the predicted
semantics. Also, [10], [11] apply semantics to generate high
quality captions. There is an issue in visual attention-based
models—some words correspond to image regions while
some depend on the context. To address this issue, [48]
introduces a sentinel gate to decide whether the image
feature or the context feature should be used to predict the
current word. Although LSTMs are popular decoders in the
encoder-decoder captioning models, language CNNs [49],
[50] can alternatively be employed as decoders, and the
advantages are (1) faster training [19], and (2) multi-level

representations for sentences [18], [22]. [16] applies LSTMs
and language CNNs, where language CNNs enhance the
long-term dependency of LSTMs.

The above models are typically trained by minimizing
cross-entropy loss and using beam search [6] for infer-
ence. However, cross-entropy is not directly related to the
evaluation metrics used for captioning, such as BLEU [26]
and CIDEr [1]. Reinforcement learning (RL) can be used
to directly maximize the metric scores [3], [20]. However,
RL-based methods could lead to the problem of readability,
such as bad endings [51]. To mitigate the issue, [51] employ
an n-gram prior to constrain sentence generation, which
also reduces the action space of RL, accelerating training.
Another drawback of RL-based methods is that the gen-
erated captions tend to use common words and phrases,
resulting in many images having the same caption, which
reduces distinctiveness. Visual-semantic embedding reward
encourages the distinctive words given an image, and [52]
develops a decision-making framework that uses embed-
ding reward and reinforcement learning. Similarly, [23], [24],
[53] present the self-retrieval reward to improve distinctive-
ness. Alternatively, [54] combines SCST [3] and GAN [55]
to train captioning models that are able to describe images
that contain objects that do not usually co-occur together,
which alleviates the problems of using common words.
However, the models trained by minimizing cross-entropy
or maximizing the metric scores via RL just learn projections
from the image space to caption space, which does not
preserve the image-caption structure and the inter-caption
structure for one image (see Fig. 2). Although employing
self-retrieval reward is able to preserve the image-caption
structure, the inter-caption structure is still ignored because
the goal of these captioning models is to generate only one
caption given an image, which cannot reflect the diversity of
human annotations. In contrast, generating diverse captions
reflects both the inter-caption structure and the distribution
of captions (see Fig. 2).

Some researchers have considered generating diverse
captions, developing a large variety of methods to generate
both accurate and diverse captions given one image. We cat-
egorize these methods into 4 classes: (1) distribution approx-
imation methods, such as conditional generative adversarial
nets (CGAN) [21], which applies adversarial training [55]
to better approximate the conditional distribution; (2) extra
information guidance, such as conditional variational auto-
encoder with Gaussian mixture model prior (GMM-CVAE)
[33], where the tags of an image are used to control the
diversity. Similarly, [56] also employ detected concepts in
the image to guide image captioning and using different
concepts could lead to different captions, whereas part-of-
speech (POS) guidance [57] employs POS to guide image
captioning, which first generates a sequence of POS tags
and then uses different words for each POS tag; (3) inter-
caption structure preserving methods, such as multi-model cap-
tioning (GroupTalk) [58], where a weak classifier is applied
to discriminate the captions, and captioning with struc-
ture relevance and diversity constrains (GroupCap) [59],
where similarity matrices are used to represent relevance
and diversity; (4) multi-approach fusion, such as CGAN with
diversity objective [2] and comparative adversarial learning
(CAL) [60], which fuse GAN and inter-caption structure
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preserving methods.

2.2 Evaluation Metrics
Accuracy evaluation. To evaluate the accuracy of a generated
caption, the overlap between one generated caption and
human annotations is normally considered in metrics, such
as BLEU [26], METEOR [27], ROUGEL [28] and CIDEr [1].
BLEU accounts for the n-gram precision, METEOR con-
siders both precision and recall of uni-grams and applies
synonym matching, ROUGEL also considers precision and
recall of n-grams, which benefits long texts, and CIDEr
applies TF-IDF weighted n-grams, which reduces the score
of common n-grams and assigns higher scores to the distinc-
tive words. SPICE [29] is another metric specific to image
captioning, which first parses one generated caption and
human annotations into scene graphs that are composed
of object categories, attributes and relationships [61], [62],
and then computes F1-score between the two scene graphs.
Although SPICE shows higher correlation to human judg-
ment, it depends on the quality of the scene graph parsing
results. Since measuring the overlap between captions could
ignore semantic similarity, to better evaluate semantic sim-
ilarity WMD [39] projects words into a semantic space via
word2vec [63], and computes the distance between captions.
Inspired by [21], L2E [32] assigns a score to an image-caption
pair which is similar to the evaluator in [21]. However,
these learning-based metrics could be highly related to the
training dataset and corpus.

Diversity evaluation. Vocabulary size is able to roughly re-
flect diversity [37] and a large vocabulary normally indicates
more diverse captions. [2], [33] also employ the percentage
of novel sentences that have not been seen in the training set
to evaluate diversity, but it is difficult to define the novelty.
Another diversity metric is mBLEU [2], [57], [58], which
is the average of the BLEU scores between each caption
and the remaining captions. However, mBLEU cannot well
reflect the semantic diversity and the inter-caption structure,
since mBLUE is not able to extract latent semantics and it
treats the remaining captions as a whole instead of comput-
ing pairwise similarity. Our previous work [37] shows that
mBLEU is less correlated to human judgment.

3 MEASURING DIVERSITY OF IMAGE CAPTIONS

In this section, we present our proposed diversity metrics—
LSA-based metric and the kernelized metric Self-CIDEr. To
evaluate a set of captions C = {c1, c2, · · · , cm} requires
two dimensions: accuracy and diversity. For accuracy, the
standard approach is to use the average similarity scores,
acc = 1

m

∑
i si, where si = sim(ci, CGT ) is the similarity

measurement (e.g., CIDEr) between caption ci and ground-
truth caption set CGT . For diversity, we will consider the
pairwise similarity between captions in C, which reflects the
inter-caption structure, i.e., the structure between captions.

3.1 Latent Semantic Analysis (LSA)
Latent semantic analysis (LSA) [64] is widely applied in in-
formation retrieval and topic analysis. As a linear model,
LSA first constructs a term-document matrix, each element
of which represents the frequency of a term that occurs in
a document and then singular value decomposition (SVD) is
applied to obtain low-dimensional representations of doc-
uments in terms of topic vectors. To analyze the diversity

of a set of captions via LSA, each caption is represented by
a bag-of-word (BoW) vector, which is composed of word
frequency, and using SVD we can obtain the latent topics.
More latent topics indicate a more diverse set of captions,
while only one topic indicates a non-diverse set.

Formally, given a set of captions C = {c1, · · · , cm} that
describe an image, and a dictionary D = {w1, w2, · · · , wd},
we use the word-frequency vector to represent each caption
ci, fi = [f i1, · · · , f id]T , where f ij denotes the frequency of
word wj occurring in caption ci. The caption set C can be
represented by a “word-caption” matrix, M = [f1 · · · fm].

Applying SVD, we decompose M into three matrices,
e.g., M = USVT , where U is composed of the eigenvectors
of MMT and S = diag(σ1, · · · , σm) is a diagonal matrix
consisting of singular values σ1 ≥ σ2 ≥ · · · ≥ 0 , and V is
composed of the eigenvectors of MTM.

Each column of U represents the words in a topic vector
of the caption set, while the singular values in S represent
the strength (frequency) of the topics and each column of V
represents a caption and its correlation to all latent topics. If
all captions in C are the same, then only one singular value
is non-zero, i.e., σ1 > 0 and σi = 0,∀i > 1. If all the captions
are different, then all the singular values are the same,
i.e., σ1 = σi,∀i. Hence, the ratio r = σ1∑m

i=1 σi
represents

how diverse the captions are, with larger r meaning less
diverse (i.e., the same caption), and smaller r indicating
more diversity (all different captions). The ratio r is within
[ 1
m , 1]. Thus we map the ratio to a value in [0, 1], to obtain

our diversity score div = − logm(r), where larger div means
higher diversity.

Looking at the matrix K = MTM, each element
kij = fTi fj is the dot-product similarity between the BoW
vectors fi and fj . As the dimension of fi may be large, a
more efficient approach to computing the singular values is
to use the eigenvalue decomposition K = VΛVT , where
Λ = diag(λ1, · · · , λm) are the eigenvalues of K, which are
the squares of the singular values, σi =

√
λi. Note that K is

a kernel matrix, and here LSA is using the linear kernel.

3.2 Kernelized Method via CIDEr (Self-CIDEr)
In LSA-based metric, a caption is represented by BoW
features fi. However, this only considers word frequency
and ignores phrases and sentence structures. To address this
problem, we use n-gram or p-spectrum kernels [65] with
LSA. The mapping function from the caption space to the
feature space associated with the n-gram kernel is

φn(c) = [fn1 (c) · · · fn|Dn|(c)]T , (1)

where fni (c) is the frequency of the i-th n-gram in caption
c, and Dn is the n-gram dictionary.

CIDEr first projects the caption c into a weighted feature
space, Φn(c) = [ωni f

n
i (c)]i where the weight ωni is the

inverse document frequency for the i-th n-gram. The CIDEr
score is the average of the cosine similarities for each n,

CIDEr(ci, cj) =
1

4

4∑
n=1

CIDErn(ci, cj), (2)

where

CIDErn(ci, cj) =
Φn(ci)

TΦn(cj)

||Φn(ci)|| ||Φn(cj)||
. (3)
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In (3), CIDErn is written as the cosine similarity kernel and
the corresponding feature space is spanned by Φn(c). As
CIDEr is the average over n of CIDErn, it is also a kernel
function that accounts for uni-, bi-, tri- and quad-grams.

Since CIDEr can be interpreted as a kernel function, we
reconsider the kernel matrix K in LSA, by using kij =
CIDEr(ci, cj). The diversity according to CIDEr can then
be computed by finding the eigenvalues of the kernel ma-
trix {λ1, · · · , λm}, computing the ratio r =

√
λ1∑m

i=1

√
λi

, and
applying the mapping function, div = − logm(r). Here, we
are computing the diversity by using LSA to find the caption
topics in the weighted n-gram feature space, rather than
the original BoW space. Other caption similarity measures
could also be used in our framework to compute diversity
if they can be written as positive definite kernel functions.

3.3 Considering Both Accuracy and Diversity
To measure both diversity and accuracy of a set of captions,
we can compute an F-measure [66],

Fβ =
(β2 + 1) · acc · div
β2 · acc+ div

, (4)

where β is a weight to balance the accuracy and diversity
scores, acc and div respectively. However, the scales of acc
and div are different. The accuracy score is the average of
the CIDEr scores between each generated caption and the
human annotations, ranging from 0 to 10 and the diversity
score is − logm(r) (see 3.1), ranging from 0 to 1, and it is
difficult to select a β.

Inspired by determinantal point processes (DPPs) [36],
which accounts for the quality and diversity of samples, we
present a metric that is able to reflect both accuracy and
diversity. Generally, the goal of DPPs is to find a subset
Y = {y1, · · · , ym} of items that maximizes the determinant
of the matrix L = [lij ] with entries lij = qis̃ijqj , where
qi represents the “quality” of the ith element in Y and s̃ij
denotes the similarity between the ith and jth elements. The
determinant of L is

det(L) = det(̃s)
m∏
i=1

q2i (5)

where s̃ = [s̃ij ] is a positive semi-definite matrix. Thus, a set
of items that has both high quality and high diversity leads
to large value of det(L).

In this paper, we define the caption quality as the CIDEr
score to the ground-truth, qi = CIDEr (ci, CGT ), and the
similarity as the CIDEr score between two captions, s̃ij =
CIDEr (ci, cj). Thus, L is computed as

L = qqT �K, (6)

where q = [CIDEr (c1, CGT ) , · · · ,CIDEr (cm, CGT )]
T , �

represents element-wise multiplication and K denotes the
kernel matrix in Section 3.2.

4 GENERATING DIVERSE CAPTIONS VIA REIN-
FORCEMENT LEARNING

In this section, we present our proposed frameworks for
generating diverse captions via reinforcement learning. Our
experiments (see Section 6) show that the captions randomly
drawn from the model trained by cross-entropy loss obtain a

relatively high diversity score but low accuracy score, while
the captions randomly drawn from the self-critical model
[3] obtain a much higher accuracy score but lower diversity
score – there is a large gap between the models trained by
cross-entropy loss and CIDEr reward. Thus, it is promising
to generate diverse captions via balancing the reward and
the cross entropy loss in reinforcement learning. Similar to
SCST [3] that directly maximizes CIDEr score, we propose
RL-based methods that maximize CIDEr and our proposed
Self-CIDEr scores to further improve accuracy and diversity.

4.1 Combining Cross-entropy Loss and CIDEr Reward
(XE-CIDEr)

The cross-entropy loss is defined

LXE(cgt, I; θ) = −
T∑
t=1

log pθ(w
gt
t ), (7)

where cgt = (wgt1 , · · · , w
gt
T ) represents the ground-truth

caption composed of words wgt1:T for the image I , wgtt
denotes the t-th ground-truth token, and T denotes the
caption length. The caption model is represented by pθ,
which is the conditional probability distribution of caption
c = (w1, · · · , wT ) given the input image I1, where θ repre-
sents its learnable parameters. The gradient of LXE is

∇θLXE = −
T∑
t=1

∇θ log pθ(w
gt
t ), (8)

which encourages predicting words that occur in human
annotations. Note that as there are multiple captions for an
image, the ground-truth conditional distribution could have
multiple modes and applying cross-entropy loss to train
a model would force the learned distribution to cover all
modes2. Therefore, if we randomly draw samples from the
learned distribution, the variance could be very large.

The loss function in reinforcement learning is the nega-
tive expectation of the reward, which is computed as

LRL(c; θ) = −Ec∼pθ [R(c)− b] , (9)

where R(c) is the reward for the caption c and b is a baseline
that can be an arbitrary function. If b does not depend on c,
e.g., in [3], b = CIDEr(cg, CGT ), where cg represents the
caption generated via greedy search, it will not change the
expected gradient but reduce the variance. We assume that
b is not a function of θ.3 The gradients of LRL are

∇θLRL = −Ec∼pθ [(R(c)− b)∇θ log pθ(c)] , (10)

which encourages captions that obtain rewards higher than
b, and suppresses captions that have lower rewards. Using
b can reduce the variance of the gradient, making the
training process more stable. However, it also significantly
reduces the diversity of the captions. For example, self-
critical method [3] employs the CIDEr score of cg as the
baseline, which is the elitist strategy, and after training, the
samples will converge to the elitist, yielding low diversity.

1. We do not explicitly write the conditional dependence on I to
reduce clutter.

2. The quality of the learned distribution is related to the model.
3. A baseline b as a function of θ is still valid.
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Our approach uses a weight α to balance LXE and LRL,
giving a new loss function

LRXE = LXE + αLRL, (11)

which has gradient (suppose we draw one sample):

∇θLRXE = −
T∑
t=1

(
∇θ log pθ(wgtt ) + α̃∇θ log pθ(wt)

)
, (12)

where α̃ = α · (R(c)− b). Eq. 12 shows that the probabilities
of the words that both occur in human annotations and
obtain high reward are improved.4

4.2 Maximizing Accuracy and Diversity Rewards
In Section 3, we develop two metrics that are able to
measure the diversity of captions. Similar to [3], we can
directly maximize the diversity metrics via reinforcement
learning. Here we consider 3 methods: 1) we treat the set
of captions as a whole and use the joint probability in re-
inforcement leaning, 2) since our diversity reward function
is differentiable w.r.t. the pairwise similarity, we compute
the derivatives of the diversity reward w.r.t. the pairwise
similarity, which indicates whether the similarity should
be enlarged or reduced, resulting in a new method that
considers each pair of captions, 3) instead of considering
diversity and accuracy separately, we unify them using an
ensemble matrix and maximize its determinant, improving
both diversity and accuracy [36].

4.2.1 Using the Joint Probability of Captions (JPC)
To measure the diversity, we draw m samples C =
{c1, · · · , cm} from pθ(c). We use two reward functions,
accuracy reward Ra = CIDEr(c, CGT ) and diversity reward
Rd = − λ1∑m

i=1 λi
, to generate both accurate and diverse

captions, where λi denotes the i-th eigenvalue of the kernel
matrix K. The accuracy loss La is computed using (9).
Likewise, the diversity loss is

Ld = −
∑
C
Rd · pθ(C). (13)

Considering that {c1, · · · , cm} are independent and identically
distributed (i.i.d), the joint distribution pθ(C) =

∏m
i=1 pθ(ci).

Therefore, the holistic loss is computed as (suppose we only
sample one set of captions):

LJ = −
m∑
i=1

(Ra − b)pθ(ci)︸ ︷︷ ︸
La

−ηRd
m∏
i=1

pθ(ci)︸ ︷︷ ︸
Ld

, (14)

where η is the weight to balance accuracy and diversity.
The gradient of La is calculated using (10), and the

gradient of Ld is computed as

∇θLd = −ηRd
m∑
i=1

(
∇θ log pθ(ci) · pθ(C\i) · pθ(ci)

)
, (15)

where C\i represents the set of captions without the i-th
caption. Finally,

∇θLJ = −
m∑
i=1

Ra − (b− ηRd · pθ(C\i))︸ ︷︷ ︸
baseline

∇θ log pθ(ci)pθ(ci), (16)

4. The generated and ground-truth captions could have different
lengths, and we use padding and masks to make the lengths equal.

where we employ a new baseline, which pushes the sam-
pled captions far away from the caption generated by
greedy search. Although pθ(C\i) is a function of θ, the
value is not that important, because we can adjust the value
of η adaptively to be η/pθ(C\i). Hence, we can simplify
ηRd · pθ(C\i) as ηRd and the expected gradient becomes

∇θLJ = −E [(Ra − (b− ηRd))∇θ log pθ(c)] . (17)

4.2.2 Considering Each Pair of Captions (EPC)
Recall the diversity reward Rd = − λ1∑m

i=1 λi
where λi de-

notes the eigenvalue of K = [kij ], which is differentiable
w.r.t. kij . Generally, we can apply gradient ascent to maxi-
mize Rd and the derivatives w.r.t. θ can be computed using
the chain rule ∂Rd

∂kij
· ∂kij∂θ . Note that kij is not differentiable,

but we can still apply reinforcement learning to train θ. Thus
we introduce a new reward function to maximize Rd.

Reconsidering the derivative ∂Rd
∂kij

, if ∂Rd∂kij
> 0, we should

enlarge kij and if ∂Rd
∂kij

< 0, we should reduce kij to maxi-
mize Rd. The sign of the derivative of Rd w.r.t. kij indicates
whether we should enlarge or reduce kij to maximize Rd.
Thus, we define the new reward as sign

(
∂Rd
∂kij

)
kij , where

sign(x) = 1, if x > 0, and sign(x) = −1, if x < 0. Given a
set of captions C = {c1, · · · , cm} the loss function is

Ld = −
m∑
i=1

m∑
j=1

sign
(
∂Rd
∂kij

)
kij · pθ(ci, cj), (18)

where kij is the similarity between ci and cj , such as
CIDEr(ci, cj) and pθ(ci, cj) = pθ(ci)pθ(cj). Eq. 18 shows
that our new loss function considers each pair of captions in
C, which contains more details of the inter-caption structure
than (13), since (13) treats the captions as a whole. The policy
gradient can be computed as

∇θLd =−
m∑
i=1

m∑
j=1

sign
(
∂Rd
∂kij

)
kij∇θ log pθ(ci)pθ(ci, cj)

−
m∑
i=1

m∑
j=1

sign
(
∂Rd
∂kij

)
kij∇θ log pθ(cj)pθ(ci, cj),

(19)

since kij = kji and ∂Rd
∂kij

= ∂Rd
∂kji

, (19) can be rewritten as

∇θLd = −2
m∑
i=1

∇θ log pθ(ci)pθ(ci)
m∑
j=1

sign
(
∂Rd
∂kij

)
kijpθ(cj)︸ ︷︷ ︸

E
[

sign
(
∂Rd
∂kij

)
kij

]
. (20)

Similar to (16), which unifies the policy gradients of
accuracy loss and diversity loss, we can fuse the policy
gradient of our new diversity loss function with that of the
accuracy loss function,

∇θLJ =−
m∑
i=1

(Ra − b)∇θ log p(ci) · pθ(ci)

− 2γ
m∑
i=1

∇θ log pθ(ci)pθ(ci)E
[
sign

(
∂Rd
∂kij

)
kij
]

=−
m∑
i=1

(Ra −B)∇θ log p(ci) · pθ(ci),

(21)

where γ is a hyperparameter to balance the diversity and
accuracy rewards, and B = b − 2γ · E

[
sign

(
∂Rd
∂kij

)
kij
]

is
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a new baseline. Compared with the baseline in (17), B con-
siders the similarity between one caption and the remaining
captions in C instead of treating C as a whole. Thus, it
encourages a caption that is similar to human annotations
and different with the other sampled captions.

Alternatively, to consider each pair of captions in C,
we first define mCIDEr as the average of the CIDEr
scores between each caption and the remaining captions
mCIDEr(ci) = 1

m

∑m
j=1 CIDEr(ci, cj), and then the diver-

sity loss Ld becomes

Ld =
m∑
i=1

mCIDEr(ci) · pθ(ci). (22)

Using this new diversity loss, the gradient of LJ is writ-
ten as (21), where the baseline is now B = b + 2γ ·
1
m

∑m
j=1 CIDEr(ci, cj), which is similar to using the loss

in (18)5, except that the weight in mCIDEr is always 1. In
contrast, in (18), the weight could be {1, 0,−1}, depending
on ∂Rd

∂kij
, which is computed as [67]

∂Rd
∂kij

= − 1

(
∑m
l=1 λl)

2

(
∂λ1

∂kij

m∑
l=1

λl − λ1

m∑
l=1

∂λl
∂kij

)

= − 1

(
∑m
l=1 λl)

2

(
ui1uj1

m∑
l=1

λl − λ1

m∑
l=1

uilujl

)
,

(23)

where K = UΛUT , U = [uij ], Λ = diag(λ1, · · · , λm) and
UUT = I. Hence,

∑m
l=1 uilujl = 1, if i = j, otherwise,∑m

l=1 uilujl = 0. We conduct experiments to compare these
two approaches (see Section 6), and they obtain similar per-
formance, but note that the reward functions are different.

4.2.3 Unifying Diversity and Accuracy (UDA)
In Sections 4.2.1 and 4.2.2, the accuracy and diversity re-
wards are considered separately, resulting in new baselines
for policy gradient. In this section, we unify diversity and
accuracy via maximizing the determinant of L = [lij ] in (6).

Similar to Section 4.2.2, we first compute the derivative
of det(L) w.r.t. lij , thus

∂det(L)

∂lij
= l̂ij , (24)

where lij = CIDEr(ci, CGT )CIDEr(cj , CGT )︸ ︷︷ ︸
quality

·CIDEr(ci, cj)︸ ︷︷ ︸
similarity

and L̂ = [l̂ij ] = L−1.6 Then we define a new loss function
as follows:

LJ = −
m∑
i=1

m∑
j=1

sign(l̂ij)lijpθ(ci)pθ(cj). (25)

The gradient can be computed similar to (20),

∇θLJ =

− 2
m∑
i=1

∇θ log(pθ(ci))pθ(ci)
m∑
j=1

sign(l̂ij)lijpθ(cj)︸ ︷︷ ︸
E[sign(l̂ij)lij]

. (26)

5. Using (18), the second term of B is E
[

sign
(
∂Rd
∂kij

)
kij

]
=

1
m

∑m
j=1 sign

(
∂Rd
∂kij

)
kij and kij could be CIDEr(ci, cj).

6. Adding a small constant εI to L ensures invertability.

Algorithm 1 DPP Selection
1: Input: C = {c1, · · · , cN}, and m, where N � m
2: Output: C {subset composed of m captions}
3: C = ∅ {initialization}
4: for each i ∈ 1 : m do
5: Compute L
6: {if i == 1, c∗ is the the caption with the highest

quality score}
7: c∗ = arg maxc∈C log det (L(C ∪ c))
8: C = C ∪ c∗
9: C = C\c∗ {remove c∗ from C}

10: end for

To further improve the quality of the generated captions,
we employed the linear combination of CIDEr and retrieval
rewards [23] and the quality function is as follows:

qi = CIDEr(ci, CGT ) + ζ · RETr(ci, I), (27)

where ζ is a hyperparameter and RETr(ci, I) represents the
retrieval score. Hence, lij = qiqj · CIDEr(ci, cj). Although
there is no baseline in the proposed UDA model, the vari-
ance of the loss is relatively small during training, since the
reward in (26) is estimated using multiple samples, and thus
the training is stable.

4.3 DPP Selection

In Section 4.2, we presented our RL approaches to gen-
erate diverse captions. Typically, the captions are randomly
sampled from the learned conditional distribution p̂(c|I)
and to further improve diversity-accuracy performance, we
employ DPP selection [36], [68] (see Alg. 1) to select a subset
of captions from a large number of random samples. First,
given an image I , N captions are randomly drawn from the
learned distribution p̂(c|I), then we use Alg. 1 to select one
caption in each iteration to enlarge the determinant of L,
which is a greedy search algorithm.

Note that to compute L, the quality of each caption
in C should be given. If we apply CIDEr(ci, CGT ) as the
quality score, then the ground-truth captions CGT are re-
quired, however, in most cases CGT is inaccessible. Hence,
we use L2E metric [32], which is similar to retrieval models
but trained using adversarial samples. In this paper, DPP-
CIDEr and DPP-L2E denote DPP selection methods that use
CIDEr and L2E as quality functions. As DPP-CIDEr uses the
ground-truth captions for the quality metric at test time, it
can be considered as an upper-bound performance of DPP.

5 EXPERIMENT SETUP

In this section, we present the settings for the experiments,
including the dataset, captioning models and metrics.

5.1 Dataset

We conduct our experiments on MSCOCO [30], which con-
tains 122,218 training and validation images, with at least 5
human annotations for each image. We split the dataset as
[69]—5,000 images for validation, 5,000 images for testing
and the remaining images for training. The words that occur
less than 6 times in the training split are ignored, resulting
in a vocabulary composed of 9,489 words. During inference,
we set the maximum length of the generated caption to 16.
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5.2 Diverse Captioning

Since most of the existing models are used to generate one
caption for an image, we first extend these models to gen-
erating multiple captions for one image. Four approaches
are adopted in this paper. (1) Random Sampling (RS):
we randomly draw a sample from the learned distribution
p̂(c|I). (2) Randomly Cropped Images (RCI): first the given
images are resized to 256× 256 and then we randomly crop
224× 224 patches to generate different captions using beam
search algorithm. (3) Gaussian Noise Corruption (GNC):
a given image is resized to 224 × 224, after that Gaussian
noise with different standard deviations is added to the
image to predict captions. (4) Synonym Switch (SS): RCI
and GNC try to generate different captions by changing the
input image, while SS directly manipulates the generated
caption. We first train a word2vec model7 [63] using the
texts in the training split. For each word in a given caption,
we retrieve its top-10 synonyms using the trained word2vec
model and assign a weight to each synonym based on the
similarity scores. After that, with probability p, each word
is randomly replaced by one of its 10 synonyms, where the
synonyms are sampled according to their weights.

We also employ conditional variational auto-encoders
(CVAEs), conditional generative adversarial nets (CGNs)
and their variants to generate diverse captions. For these
models that use Gaussian noise to control the diversity
among the generated captions, we draw Different Random
Vectors (DRV) from Gaussian distributions with different
standard deviations to generate captions.

In terms of our proposed approaches and other rein-
forcement learning based models, we use Random Sam-
pling (RS) to generate multiple captions. For DPP selection,
we first generate 100 captions using the diverse-captioning
models and then we respectively employ DPP-CIDEr and
DPP-L2E to select 10 captions for evaluation.

5.3 Caption Models

We re-evaluate the following existing captioning models: (1)
NIC [6] with VGG16 [44]; (2) SoftAtt [7] with VGG16; (3)
AdapAtt [48] with VGG16; (4) Att2in [3] with cross-entropy
loss (XE) loss and CIDEr reward, denoted as Att2in(XE)
and Att2in(C); (5) FC [3] with cross-entropy loss (XE) and
CIDEr reward, denoted as FC(XE) and FC(C); (6) Att2in and
FC with retrieval reward [23], demoted as Att2in(D5) and
FC(D5), where the retrieval reward weight is 5 (the CIDEr
reward weight is 1) and likewise for D10; (7) CVAE and
GMMCVAE [33]; (8) CGAN [21].

The models are trained using the training split men-
tioned in Section 5.1. For models (1)-(7), we randomly
sample 10 captions from the trained models, and for (7)
and (8), the random noise vectors are drawn from Gaussian
distributions with standard deviations {1.0, 2.0, · · · , 10.0}
and beam search is used to generate captions. The stan-
dard deviations of Gaussian noise for GNC are also
{1.0, 2.0, · · · , 10.0}. For SS, we first generate one caption
using beam search with beam-width 3 and then generated
the other 9 captions by switching words with probabilities
p ∈ {0.1, 0.15, · · · , 0.5}. Models and diversity generators
are denoted as “model-generator”, e.g., “NIC-RS”.

7. In this paper, we use continuous bag-of-word model.

Our proposed approaches use reinforcement learning
with different reward functions: (1) cross entropy and
CIDER, denoted as XE + α · CIDEr (Section 4.1); (2) CIDEr
and joint probability of captions, denoted as CIDEr+η · JPC
(Section 4.2.1); (3) CIDEr and caption pairs, denoted as
CIDEr + γ · EPC(m) and CIDEr + γ1 ·mCIDEr(m) (Section
4.2.2). During training we sample m ∈ {2, 5, 8} captions
to calculate diversity; (4) unified diversity and accuracy,
denoted as UDA-m-ζ (Section 4.2.3), where m ∈ {2, 5, 8}
and ζ ∈ {1, 3, 5, 10}. Note that the proposed UDA model
can only use CIDEr as the quality function, denoted as
UDA-m and m ∈ {2, 3, · · · , 8}. We consider different val-
ues of the hyperparameters to balance the loss functions,
α ∈ {5, 10, 20}, η ∈ {1, 2, 3, 5}, γ ∈ {0.02, 0.03, · · · , 0.07}
and γ1 ∈ {0.04, 0.06, · · · , 0.14}.

We also investigate different combinations of the loss
functions, such as cross-entropy loss and retrieval reward,
denoted as XE + ζ1 · RETr, where ζ1 ∈ {10, 20, · · · , 50},
CIDEr reward and retrieval reward, denoted as CIDEr +
ζ2 · RETr, where ζ2 ∈ {1, 3, 5, 10}, and cross-entropy loss,
CIDEr and retrieval rewards, denoted as XE +α1 ·CIDEr +
ζ3 ·RETr, where α1 ∈ {5, 10} and ζ3 ∈ {10, 20, · · · , 50}. The
caption model that we use is ATTN proposed by [23].

The models are first trained using cross-entropy loss for
100 epochs with the batch size of 128, and then we apply
reinforcement learning to train the model for another 100
epochs. We employ Adam optimizer [70] to update the
learnable parameters and the initial learning rate is 0.0004,
which decays every 15 epochs with the rate of 0.8. To
accelerate the training process, we use Bottom-up features
[14], where each image contains 10-100 objects.

5.4 Evaluating Diversity
To evaluate the diversity, we generate 10 captions using the
above trained models. For DPP selection, we first randomly
sample N = 100 captions, and then select 10 captions.
We also show the results that use CIDEr as the quality
function to select captions, which can be treated as the oracle
performance in the diversity-accuracy space. The accuracy
of the generated captions C is the average CIDEr score, thus
acc = 1

m

∑m
i=1 CIDEr(ci, CGT ), where ci denotes the i-th

caption in C. For human annotations, we compute the leave-
one-out accuracy score: acc = 1

m

∑m
i=1 CIDEr(gi, CGT\i),

where gi ∈ CGT and CGT\i is the set of human annotation
without the ith annotation. To calculate the diversity score,
we use our proposed LSA-based and the kernelized (Self-
CIDEr) metrics (see Section 3).

For DPP selection (see Section 4.3), L2E [32] is trained
using the training data in MSCOCO and the adversarial
samples are generated by Softatt [7] using beam search.
During training, the model takes an image-caption pair as
input8 and the output is a probability indicates whether the
caption is a human annotation of the input image.

For the WMD metric [39], we first train a word2vec
[63] model using the human annotations in MSCOCO,
where each word is represented by a 300-D vector v.
Given a set of captions {c1, · · · , cm1} and human anno-
tations {ĉ1, · · · , ĉm2} for an image, we obtain two dic-

8. Note that in [32] the model also takes a human annotation as a
reference input, hence, the input is a triplet—(I, cGT , c), where I , cGT
and c represent an image, a human annotation and a generated caption.
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TABLE 1
Correlation between diversity metrics and human judgement: (top)
overall correlation; (bottom) correlation of per-image rankings of

methods. SC and mB denote Self-CIDEr and mBLEU, respectively.

Corr Coef SC LSA mB-mix mB-1 mB-2 mB-3 mB-4
overall Pearson ρ 0.616 0.601 0.585 0.567 0.576 0.581 0.585

overall Spearman ρ 0.617 0.602 0.575 0.564 0.575 0.574 0.572
avg. per image Spearman ρ 0.674 0.678 0.644 0.633 0.643 0.646 0.639

tionaries D = {(w1, T1), · · · , (wn1 , Tn1)} and DGT =
{(ŵ1, T̂1), · · · , (ŵn2

, T̂n2
)}, where Ti = ti∑n

j=1 tj
if a word

wi occurs ti times in the captions. Then the word
mover distance between the two sets of captions is d =
min{

∑n1

i=1

∑n2

j=1 Tijdist(wi, ŵj)}, where Tij is the flow
between wi and wj and dist(wi, ŵj) = 1 − cos(vi, v̂j) is
the distance between wi and wj . The minimization is over
the flow matrix Tij , which can be solved using the simplex
algorithm. Finally, the WMD score is e−d, which reflects
how the generated captions cover the concepts that occur
in human annotations but ignores the order of words. In
our implementation, we ignore the words contained in the
stop words list9 in the captions.

6 RESULTS

In this section, we present the experiment results. We first
show the correlation between our proposed diversity met-
rics and human judgment. Then we re-evaluate the existing
models using both diversity and accuracy metrics. Finally,
we show the performance of our proposed approaches, in-
cluding diverse-caption generation (randomly sample mul-
tiple captions) and single-caption generation (using beam
search to generate one caption for an image).

6.1 Correlation to Human Judgment

In human evaluation, we use 100 images, each of which
has 9 sets of captions generated by human and 8 models—
AdapAtt-SS, AdapAtt-GNC, AdapAtt-RCI, Att2in(XE)-RS,
Att2in(C)-RS, Att2in(D5)-RS, Att2in(D10)-RS and CGAN-
DRV. At each time we first show a worker our instructions—
“diversity refers to different words, phrases, sentence struc-
tures, semantics or other factors that impact diversity and
the score ranges from 0 to 1” — and then show an image
and its 9 sets of captions. A worker is required to read
all sets of captions and assign a diversity score to each
set. For each image, we employ 3 workers to evaluate the
diversity and we use the average score as the final human
evaluation score. We conduct human evaluation on Amazon
Mechanical Turk (AMT).

Fig. 3 (left, center) shows the correlation plots between
our proposed metrics and human evaluation. The overall
consistency between the proposed diversity metric and the
human judgment is quantified using Pearson’s (parametric)
and Spearman’s rank (non-parametric) correlation coeffi-
cients (see Table 1 top). Since the human annotator evalu-
ated the diversity scores for all methods on each image, they
were implicitly ranking the diversity of the methods. Hence,
we also look at the consistency between the human rankings
for an image and the rankings produced by the proposed
metrics, as measured by the average per-image Spearman
rank correlation (see Table 1 bottom). Both Self-CIDEr and

9. https://www.nltk.org/book/ch02.html

LSA-based metrics are largely consistent with human evalu-
ation of diversity, with Self-CIDEr having higher correlation,
while both have similar per-image ranking of methods.

We compare our metrics with mBLEUmix = 1 −
1
4

∑4
n=1mBLEUn, which accounts for mBLEU-{1,2,3,4},

and we invert the score so that it is consistent with our
diversity metrics (higher values indicate more diversity).
The correlation plot between mBLEU-mix and human judg-
ment is shown in Fig. 3 (right). mBLEU-mix has lower
correlation coefficient with human judgment, compared to
LSA and Self-CIDEr (see Table 1). Similar results are ob-
tained when looking at the individual mBLEU-n scores. Self-
CIDEr has better overall correlation with human judgment,
while the two methods are comparable in terms of per-
image consistency of method ranking. In terms of mBLEU-
{1,2,3,4,mix}, mBLEU-mix obtain equivalent or marginally
higher correlation coefficients, hence, considering n-grams
could benefit diversity evaluation.

Finally, the correlation plot shows the mBLEU scale is
not uniformly varying, with more points falling at the lower
and higher ends of the scale and less points in the middle.
In contrast, LSA and Self-CIDEr have more uniform scales.

6.2 Re-evaluating the Existing Captioning Models

We next re-evaluate the models accounting for both di-
versity and accuracy. Fig. 4 shows the diversity-accuracy
(DA) plots for LSA-based diversity and CIDEr kernelized
diversity (Self-CIDEr). The trends of LSA and Self-CIDEr are
similar, although LSA yields overall lower values. Since the
experiment in Section 6.1 shows that Self-CIDEr metric has
higher overall correlation coefficients (Table 1), we mainly
discuss the results of Self-CIDEr.

After considering both diversity and accuracy, we may
need to rethink what should be considered a good model.
We suggest that a good model should be close to human
performance in the DA space. Looking at the performance
of humans, the diversity is much higher than Att2in(C),
which is considered a state-of-the-art captioning model. On
the other hand, the diversity using randomly sampling (RS)
are closer to human annotations. However, the accuracy is
poor, which indicates that the descriptions are not fluent or
are off-topic. Therefore, a good model should well balance
between diversity and accuracy. From this point of view,
CGAN and GMMCVAE are among the best models, as they
are closer to the human annotations in the DA space.

Most of the current state-of-the-art models are located
in the bottom-right of the DA space, (high CIDEr score
but poor diversity), as they aim to improve the accuracy.
For example, directly improving CIDEr reward via RL is a
popular approach to obtain higher CIDEr scores [3], [20],
[23], [24], but it encourages using common words and
phrases, which lowers the diversity. Using retrieval reward
is able to improve diversity comparatively, e.g., Att2in(D5)
vs Att2in(C), because it encourages distinctive words and
semantic similarity, and suppresses common syntaxes that
do not benefit retrieval. The drawback of using retrieval
model is that the fluency of the captions could be poor [23],
and using a very large weight for the retrieval reward will
cause the model to repeat the distinctive words. Finally, note
that there is a large gap between using the cross-entropy
loss and the CIDEr reward for training, e.g., Att2in(XE) and
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Fig. 3. Correlation plots between the diversity scores of computed metrics and human evaluation. Red lines are the best fit lines to the data.

Fig. 4. The performance of different models considering accuracy and
diversity. Left: using LSA-based diversity, which employs BoW features.
Right: using CIDEr kernelized diversity (Self-CIDEr). The marker shape
indicates the caption model, while the marker color indicates the diver-
sity generator or training method.

Att2in(C). This motivates our method to fill the performance
gap by balancing between the two losses.

Comparing the diversity generators, SS and GNC are
more promising for generating diverse captions. Captions
generated using RCI have higher accuracy, while those
using RS have higher diversity. Interestingly, in the top-
left of the DA plot, using RS, a more advanced model
can generate more accurate captions without reducing the
diversity, This shows that an advanced model is able to learn
a better p̂(c|I), which is more similar to the ground-truth
distribution p(c|I). However, there is a long way to go to
reach the accuracy of human annotations.

6.3 The Performance of Our Proposed Methods

We use Self-CIDEr metric to evaluate the diversity of the
proposed approaches (see Fig. 5). In addition, we show the
oracle performance (upper bound) based on each accuracy
metric (see Table 2) and compared with the existing models,
our proposed approaches perform much better, obtaining
CIDEr(best@20) of 1.696 and CIDEr(best@100) of 1.924. In-
stead of generating diverse captions for one image, the
proposed models are able to generate single caption for one
image using beam search, which performs relatively well on
MSCOCO test split (see Table 3). Tables 2 and 3 only show
the best results based on CIDEr and we show full experi-
mental results in Tables A.2 and A.3 in our supplemental.

6.3.1 Diversity by Random Sampling

Fig. 5 (top) shows the performance of our proposed meth-
ods on accuracy and Self-CIDEr diversity. Human annota-
tions obtain relatively high diversity and accuracy scores
and compared to CGAN, CVAE models, our proposed
approaches are relatively promising and efficient to bal-
ance diversity and accuracy. The proposed UDA dominates
other methods, obtaining higher accuracy scores without

Fig. 5. The performance of our proposed models. Top: using random
sampling. Bottom: using DPP selection, where the dashed lines denote
using L2E [32] as the quality function (DPP-L2E) and the solid lines
represent using CIDEr as the quality function (DPP-CIDEr).
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Input Image Human annotation DPP-CIDEr DPP-L2E

Fig. 6. Qualitative results. For DPP selection, we randomly sample 100
captions from the trained UDA-m-ζ, where m = 8 and ζ = 1, then apply
DPP to select 5 captions that have both high quality and diversity.

reduction of diversity scores, e.g., UDA-m obtains (accu-
racy, diversity) of (1.111, 0.548) using m = 3, whereas
CIDEr+γ1mCIDEr(m = 5) obtains (1.007, 0.543) using γ1 =
0.06 and CIDEr+γEPC(m = 5) obtains (1.036, 0.543). The
reason is that CIDEr+γEPC only considers the largest eigen-
value λ1 of K, but ignores the other eigenvalues. Although
reducing λ1∑

i λi
is able to encourage diversity, it could in-

troduce randomness, since the model reduces the largest
eigenvalue, but does not know which eigenvalues should
be enlarged. Thus CIDEr+γEPC cannot well preserve the
inter-caption structure of human annotations. In contrast,
the UDA maximizes the determinant of L, which unifies
accuracy and diversity, thus accounting for all eigenvalues
of K. Hence, UDA is more effective in balancing diversity
and accuracy.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2020.3013834

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXX 11

TABLE 2
The oracle (upper bound) and average performance based on each metric. #samples denotes the number of samples, best denotes the highest

score and avg denotes the average score. B stands for BLEU [26], M for METEOR [27], R for ROUGEL [28], C for CIDEr [1] and S for SPICE [29].

Model #samples B-4 M R C S L2E WMD Self-CIDErbest avg best avg best avg best avg best avg best avg
human 5 - - - - - - - - - - 0.884 0.761 1.0 0.895

CVAE [33] 20 0.312 - 0.244 - 0.541 - 0.910 - 0.176 - - - - 0.193

AG-CVAE [33] 20 0.471 - 0.309 - 0.638 - 1.308 - 0.244 - - - - -100 0.557 - 0.345 - 0.690 - 1.517 - 0.277 - - - -

GMM-CVAE [33] 20 0.449 - 0.299 - 0.624 - 1.251 - 0.232 - - - - 0.710100 0.527 - 0.329 - 0.670 - 1.430 - 0.263 - - - -

POS [57] 20 0.449 - 0.357 - 0.678 - 1.468 - 0.277 - - - - -100 0.578 - 0.423 - 0.739 - 1.710 - 0.322 - - - -
SCT [71] 20 0.448 - 0.366 - 0.689 - 1.565 - 0.309 - - - - -
XE loss 20 0.329 0.045 0.325 0.192 0.621 0.399 1.208 0.509 0.266 0.128 0.895 0.579 0.651 0.904

CIDEr reward 20 0.335 0.238 0.323 0.283 0.631 0.575 1.385 1.161 0.245 0.206 0.623 0.428 0.618 0.223
XE+αCIDEr α = 10 20 0.464 0.192 0.371 0.264 0.689 0.538 1.568 0.984 0.290 0.187 0.865 0.520 0.650 0.611

CIDEr+ζ2RETr ζ2 = 1 20 0.347 0.240 0.332 0.288 0.639 0.575 1.420 1.164 0.260 0.213 0.653 0.426 0.626 0.278
CIDEr+ηJPC η = 1 20 0.360 0.225 0.345 0.292 0.640 0.563 1.473 1.190 0.272 0.218 0.554 0.277 0.634 0.331
CIDEr+γEPC m = 5, γ = 0.02 20 0.404 0.218 0.359 0.289 0.659 0.560 1.528 1.134 0.284 0.214 0.645 0.278 0.642 0.449

CIDEr+γ1mCIDEr m = 5, γ1 = 0.04 20 0.406 0.220 0.360 0.290 0.661 0.560 1.531 1.149 0.285 0.215 0.657 0.296 0.642 0.445
UDA-m m = 5 20 0.524 0.174 0.403 0.269 0.716 0.536 1.696 1.034 0.309 0.196 0.868 0.552 0.667 0.665

UDA-m-ζ m = 5, ζ = 1 20 0.521 0.158 0.400 0.264 0.714 0.527 1.681 0.990 0.311 0.194 0.876 0.591 0.672 0.703
m = 5, ζ = 5 20 0.430 0.097 0.363 0.238 0.670 0.474 1.479 0.792 0.298 0.176 0.896 0.711 0.670 0.799

Looking at CIDEr+γEPC with CIDEr+ηJPC, the per-
formance of CIDEr+γEPC is much better. As we have
mentioned in Section 4.2.2, CIDEr+ηJPC treats a set of
captions as a whole, ignoring the inter-caption structure,
while CIDEr+γEPC considers the pairwise similarity, which
is capable of reflecting the inter-caption structure. Inter-
estingly, CIDEr+γ EPC and CIDEr+γ1mCIDEr show sim-
ilar performance. As we showed in Section 4.2.2, the
gradient of CIDEr+γEPC has the same form as that of
CIDEr+γ1mCIDEr. Normally, the model is first trained us-
ing cross-entropy loss, and the captions drawn from this
learned distribution are very different. Hence, K could be
a diagonal matrix and ∂Rd

∂kij
= 0 if i 6= j, ∂Rd∂kij

< 0 if i = j
(see Eq. 23). In this case the gradient of CIDEr+γEPC could
be the same as that of CIDEr+γ1mCIDEr, and thus, the two
approaches have similar performance.

Interestingly, diversity can be improved by increasing
m (see Fig. 5). UDA-2 obtains diversity of 0.424, while
UDA-8 boosts diversity up to 0.741. Also, CIDEr+γEPC and
CIDEr+γ1mCIDEr show the same trend with the increase
of m. However, a large m results in low accuracy, e.g., the
average CIDEr score reduces from 1.150 to 0.874 with m
increasing from 2 to 8 for UDA. Another drawback of using
a large m is the computational complexity. Compared to
SCST [3] that only samples one caption during training, the
proposed models require m captions to compute diversity,
which is around m times slower than SCST in the training
phase (e.g., UDA-5 takes 5.3s per batch on a M40 GPU with
batch size 128, while SCST takes ∼1s per batch). Note that
SCST cannot generate diverse captions and the inference
times of the proposed models are the same as SCST.

In terms of different combinations of XE, RETr and
CIDEr, XE+αCIDEr is more effective at balancing diversity
and accuracy, obtaining wider ranges of diversity and ac-
curacy scores, e.g., the diversity score ranges from 0.223
to 0.904 and accuracy score ranges from 0.495 to 1.131.
In contrast, RETr plays the role of local search (see the
curves of XE+5CIDEr+ζ3RETr and XE+10CIDEr+ζ3RETr).
The reason is that RETr reward is relatively smaller than XE
and CIDEr reward, and thus, XE and CIDEr could dominate
the trend of the curve. It is believed that RETr is important
for improving the distinctiveness of the generated captions
[53], and introducing RETr reward to captioning models is
able to improve diversity (see the curves of CIDEr+ζ2RETr

and UDA-m-ζ). However, using a large weight of RETr
could result in repetition problems—a caption repeats the
distinctive words for several times, yielding less fluency.

6.3.2 Diversity by DPP Selection
To further improve diversity and accuracy, we apply DPP
selection (Alg. 1) to select 10 captions from 100 candidates.
Looking at Fig. 5 (bottom), both diversity and accuracy
could be significantly improved using CIDEr as the qual-
ity function in DPP selection (solid lines). Compared to
random sampling (left), the (accuracy, diversity) score of
the model that only employs CIDEr reward increases from
(1.131, 0.223) to (1.142, 0.430) using DPP-CIDEr, which is
comparable to UDA-m using m = 2. For the model trained
by XE loss, the accuracy score of which surges from 0.495 to
1.087, while the diversity score decreases by 0.1.

However, DPP-CIDEr requires human annotations at
test time, which is difficult and expensive. Instead of using
CIDEr as the quality function, we employ L2E [32] as the
quality function to select a subset of caption (dashed lines),
yielding a rise in diversity scores and drop in accuracy
scores. In particular for the models that have low diversity
scores, DPP-L2E is more effective at improving the diversity
scores, e.g., the diversity score of the model that train by
CIDEr reward soars from 0.223 to 0.437, which nearly dou-
bles. Interestingly, for the models that obtain low diversity
scores using random search (see Fig. 5 (top, left)), DPP-
CIDEr and DPP-L2E could obtain similar diversity score,
e.g., CIDEr+ζ2 (ζ2 = 1), CIDEr+ηJPC (η = 1) and UDA-m
(m = 2) have the diversity scores of 0.491, 0.537 and 0.616 by
using DPP-CIDEr, while using DPP-L2E, the three models
obtain the diversity scores of 0.503, 0.532 and 0.632, respec-
tively. The possible reason is that both DPP-CIDEr and DPP-
L2E employ Self-CIDEr matrix and most of the captions in
a less diverse set could be the same, thus, the quality of
captions is less important and DPP selection algorithm pays
more attention to the difference among captions. Whereas,
for the models that have high diversity scores, DPP-CIDEr
and DPP-L2E lead to quite different diversity scores, the
reason for which is that in this case, quality plays a more
important role during selection. Note that the accuracy score
that we use is the average CIDEr, thus DPP-L2E generally
results in less accuracy than DPP-CIDEr.

Fig. 6 shows qualitative results. Our DPP-L2E is able
to recognize “vintage train engine” (first row), “sofas”,
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“chairs”, “table” (second row), and “windows” (third row),
which are correct. However, these concepts do not occur
in human annotations, thus the captions obtain low CIDEr
(compared to DPP-CIDEr). In contrast, DPP-CIDEr obtains
relatively high CIDEr, since it directly uses CIDEr as the
quality function. However, DPP-CIDEr prefers common
words, e.g., “a black and white train at a train station”,
achieving the highest CIDEr score (first row), but the impor-
tant information “old fashioned steam engine” is missing,
which is more distinctive for the image. More examples can
be found in the appendix.

6.3.3 Comparison with state-of-the-art
Table 2 shows the oracle (best) and average performance
based on each metric and higher scores indicate that a model
is able to sample more accurate captions. Compared to the
most models that focus on generating diverse captions, our
proposed methods are capable of obtaining higher scores
using 20 and 100 samples. In particular, our proposed UDA-
m (m = 8) obtains BLEU-4(best@20) of 0.528, 17.9% higher
than SCT [71], BLEU-4(best@100) of 0.655, 13.3% higher than
POS [57], CIDEr(best@100) of 1.942, 12.5% higher than POS
[57], SPICE(best@20) of 0.311, 0.6% higher than SCT [71] and
SPICE(best@100) of 0.351, 9.0% higher than POS [57]. Note
that POS [57] and SCT [71] use other information, such as
part-of-speech tags and the order of image regions to guide
the captioning procedure, while UDA-m does not require
any external information. Moreover, POS/SCT require beam
search during inference, while our methods employ random
sampling, which considerably reduces the inference time.

In this experiment we also observe similar trend that
is shown in Fig 5(top)—increasing diversity could re-
duce the average accuracy scores based on BLEU-4, ME-
TEOR, ROUGEL, CIDEr and SPICE. For example, for
UDA-m, when m ranges from 2 to 8, the diversity score
surges from 0.424 to 0.741, while BLEU-4(avg@20), ME-
TEOR(avg@20) , ROUGEL(avg@20), CIDEr(avg@20) and
SPICE(avg@20) gradually drop by 38.3%, 11.2%, 9.9%, 23.5%
and 12.9%, respectively. In contrast, improving diversity
could encourage the highest accuracy scores – for UDA-m,
BLEU-4(best@20), METEOR(best@20), ROUGEL(best@20),
CIDEr(best@20) and SPICE(best@20) increase by 19.5%,
9.8%, 5.6%, 6.9% and 11.1%, respectively, which means that
improving diversity could lead to a model that has strong
exploration ability, and thus, it is able to find the “best”
caption. See Supplemental Table A.2 for more details.

We also report the L2E and WMD scores of human anno-
tations, since both the candidate and reference captions are
human annotations – the WMD score is 1.0. Looking at the
average L2E scores, human annotations obtain the highest
score (0.761) and much better than that obtained by using
CIDEr reward (0.428). In terms of our proposed methods,
UDA model obtains the highest L2E (0.711) and WMD
(0.674) scores. Also, the model trained by cross-entropy
loss obtains a relatively high score, L2E(avg@20) of 0.579,
while the proposed models CIDEr+ηJPC, CIDEr+γEPC and
CIDEr+γ1mCIDEr obtain much lower L2E scores. The rea-
son is that to train L2E, we treat human annotations as
positive samples and the captions generated by Softatt
[7] with beam search, using random words and word
permutation [32] as negative samples. Thus using CIDEr

TABLE 3
The performance on generating single caption for one image. bw

represents beam width and length denotes the average length of the
generated captions. Full results are shown in supplemental Table A.3.

Model bw length B-4 M R C S L2E WMD
Adaptive-XE [48] 3 - 0.322 0.266 - 1.085 - - -
Updown-XE [14] 5 - 0.362 0.270 0.564 1.135 0.203 - -
Updown-RL [14] 5 - 0.363 0.277 0.569 1.201 0.214 - -

DISC-RL [23] 2 - 0.363 0.273 0.571 1.141 0.211 - -
SCST [3] - - 0.333 0.263 0.553 1.114 - - -

Att2in-XE [3] - - 0.313 0.260 0.543 1.013 - - -
Hieratt-XE [72] 3 - 0.362 0.275 0.566 1.148 0.206 - -
Hieratt-RL [72] 3 - 0.376 0.278 0.581 1.217 0.215 - -

baseline XE loss 3 9.0 0.364 0.274 0.569 1.117 0.203 0.446 0.602
CIDEr reward 3 9.0 0.367 0.273 0.577 1.177 0.208 0.428 0.604

XE+αCIDEr α = 10 3 8.9 0.378 0.276 0.580 1.174 0.207 0.447 0.604
CIDEr+ζ2RETr ζ2 = 1 3 9.4 0.368 0.278 0.578 1.185 0.216 0.421 0.610
CIDEr+ηJPC η = 1 3 10.0 0.332 0.286 0.569 1.219 0.222 0.271 0.616
CIDEr+γEPC m = 5, γ = 0.02 3 10.8 0.335 0.285 0.570 1.182 0.219 0.266 0.616

CIDEr+γ1mCIDEr m = 5, γ1 = 0.06 3 11.4 0.317 0.284 0.561 1.120 0.216 0.240 0.616

UDA-m m = 2 3 9.3 0.371 0.279 0.578 1.223 0.213 0.428 0.610
m = 5 3 9.5 0.357 0.278 0.568 1.179 0.212 0.494 0.610

UDA-m-ζ m = 5, ζ = 1 3 9.3 0.358 0.278 0.570 1.169 0.212 0.518 0.609
m = 5, ζ = 10 3 10.6 0.272 0.263 0.526 0.950 0.199 0.589 0.608

reward to train a model could bias it to using common
words, which is similar to using beam search, and results
in lower L2E scores for CIDEr reward models. CIDEr+ηJPC,
CIDEr+γEPC and CIDEr+γ1mCIDEr force the generated
captions far away from the greedy search caption by in-
troducing a new baseline into SCST [3] model (see section
4), however, they could use random words, resulting in
non-fluency, hence, the captions generated by these models
can be easily recognized as non-human annotations. Inter-
estingly, CIDEr+ηJPC, CIDEr+γEPC and CIDEr+γ1mCIDEr
obtain relatively high WMD scores, which means that these
models are capable of capturing the concepts occur in hu-
man annotations.

Finally, retrieval reward significantly benefits L2E and
WMD scores, e.g., UDA-m (m = 5) obtains L2E(avg@20) of
0.552, whereas UDA-m-ζ (m = 5, ζ = 5) has L2E(avg@20) of
0.711, 28.8% higher. Although using retrieval reward could
improve the relevance of the generated captions, it leads to
repetition problems and reduces fluency.

6.3.4 Single Caption Generation

We evaluate the proposed models in the typical way focus-
ing only on accuracy—given one image we generate a cap-
tion using beam search, and the results are shown in Table
3. Using beam search to obtain the top-K captions based on
the probability is able to reflect how well a trained model
can capture the modes of the ground-truth distribution.

Compared to the state-of-the-art models, our proposed
approaches obtain comparable or better results in terms of
the most popular metrics, such as BLEU and CIDEr, e.g.,
UDA-m (m = 2) has CIDEr of 1.223, while Hieratt-RL [72]
obtains CIDEr of 1.217, which is slight worse.

Looking at the models that are able to generate diverse
captions, as diversity increases, BLEU, METEOR, ROUGEL,
CIDEr and SPICE scores typically decrease. For exam-
ple, CIDEr+ζ2RETr (ζ2=1) obtains CIDEr of 1.185, while
CIDEr+ζ2RETr (ζ2=10) has CIDEr of 0.989. In contrast, L2E
and WMD scores show different trends, and they are lower
than the corresponding average L2E scores and WMD scores
shown in Table 2. The reason is that we regard the captions
generated by beam search as negative samples to train L2E.
Moreover, encouraging diversity could benefit the length of
captions and a caption contains more words could provide
more information. Employing retrieval reward significantly
improves L2E score, e.g., UDA-m (m = 5) has L2E of 0.494,
whereas UDA-m-ζ (m = 5, ζ = 10) obtains L2E of 0.589.
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7 CONCLUSIONS

In this paper, we modelled the diversity of human anno-
tations via considering the similarity between each pair of
annotations, and presented a diversity metric derived from
latent semantic analysis and then kernelized it using CIDEr,
which are correlated to human judgment of diversity. We
re-evaluated the existing captioning models and found that
the models that focus on accuracy generally use common
words and obtain low diversity. To improve the diversity of
generated captions, we proposed a variety of methods based
on reinforcement learning with different reward functions.
Extensive experiments were conducted, showing that the
proposed methods are effective at balancing diversity and
accuracy. In particular, our proposed UDA significantly
improves the state-of-the-art oracle performance, and also
outperforms the other proposed methods in this paper.
UDA maximizes the determinant of the ensemble matrix,
which accounts for all eigenvalues of K, whereas the other
proposed methods only consider the largest eigenvalue.

Although we have proposed metrics and methods for
diverse image captioning, the following directions could be
considered in the future. First, the existing metrics can be
improved, as the overlap-based metrics, such as BLEU and
CIDEr, cannot reflect semantic relevance, while WMD that
employs word2vec cannot reflect fluency, and L2E is highly
related to the dataset and data augmentations. To well eval-
uate a captioning model, relevance, fluency, diversity and
descriptiveness should be considered. Second, note that the
proposed UDA employs unlearnable quality and similarity
functions – improvements could be obtained by extending
UDA by parameterizing the quality and similarity functions.
Third, the proposed methods can be extended to other text
generation tasks, such as dialogue and machine translation,
providing more choices to the users. Fourth, the existing
dataset could be limited on diversity, since the annotations
are normally composed of common words. Generating de-
tailed captions that contain more interesting concepts could
be an interesting direction for future work.
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