
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 1

Density-Preserving Hierarchical EM Algorithm:
Simplifying Gaussian Mixture Models for

Approximate Inference
Lei Yu, Tianyu Yang, and Antoni B. Chan

Abstract—We propose an algorithm for simplifying a finite mixture model into a reduced mixture model with fewer mixture
components. The reduced model is obtained by maximizing a variational lower bound of the expected log-likelihood of a set of virtual
samples. We develop three applications for our mixture simplification algorithm: recursive Bayesian filtering using Gaussian mixture
model posteriors, KDE mixture reduction, and belief propagation without sampling. For recursive Bayesian filtering, we propose an
efficient algorithm for approximating an arbitrary likelihood function as a sum of scaled Gaussian. Experiments on synthetic data,
human location modeling, visual tracking, and vehicle self-localization show that our algorithm can be widely used for probabilistic data
analysis, and is more accurate than other mixture simplification methods.

Index Terms—density simplification, likelihood approximation, Gaussian mixture model, recursive Bayesian filtering.

F

1 INTRODUCTION

Finite mixture models are commonly used tools for data
analysis and modelling as they are universal approximators
for any continuous probability density [1–3]. A typical fi-
nite mixture model is given as a weighted combination of
components, f(x) = ΣKb

i=1πifi(x), where fi(x) is the density
of the i-th component, πi is its corresponding weight, and
Kb is the number of components. By choosing appropriate
representative components fi, the mixture model provides
more flexibility to model the local variation of observed
data [2]. Normally, a mixture model with a large number
of components more accurately characterizes irregular and
multimodal distributed data. Yet, the number of compo-
nents cannot be too large as it increases the computation
and time required in real applications.

This is especially evident when mixture models are used
in Bayesian inference. For example, in non-parametric belief
propagation, when the current beliefs are represented as
mixture models, the number of mixture components in-
creases exponentially as message passing iterates. Similarly,
for recursive Bayesian filtering, when the posterior density
is a mixture model, the number of components will increase
exponentially if the likelihood function is also a mixture. On
the other hand, a kernel density estimator (KDE) [4] can be
considered as a mixture model fitted with equal component
weights πi = 1/N and the number of components K is
the same as the number of data points N . The likelihood
computation of a new test data will be time consuming
when N is extremely large, which is common with the
advent of social networks and cloud computing.

In order to prevent the number of components involved
in the inference process from increasing dramatically, some
intermediate probabilities can be approximated with ran-
domly selected samples according to certain distributions,
such as particle filtering [5–15]. To accelerate the likeli-
hood computation of a new test point with KDE, a kd-

Tree approximation can be used that only considers points
within the test point’s kd-Tree cells [16]. Another commonly
used approach is to simplify the mixture model f(x) to
g(x) = ΣKr

j=1πjgj(x) with Kr � Kb, such that the primary
structure of the base density f(x) is preserved (e.g., see
Fig. 1(b)). In this paper, we focus on directly simplifying
a mixture model by reducing the number of components,
while keeping the same shape.

In general, there are two approaches to obtain a reduced
(simplified) mixture model. The first approach performs
density estimation on samples from the base mixture model,
such as EM [17], unsupervised fitting according to Mini-
mum Message Length(MML) criterion [18], and Bayesian
non-parametric methods [19]. The second approach groups
the components of the original mixture into clusters, and
then estimates a representative density for each cluster to
obtain the reduced mixture model. Clustering is achieved
by minimizing a distance (or dissimilarity) between the
original (base) and reduced mixture models, with methods
differing on the specific distance used, e.g., KL divergence
(KLD) [20, 21], differential entropy [22], Bregman diver-
gences [23], expected log-likelihood (EL) [24], or L2 norm
[25]. KLD and EL have no closed-form solution for mixture
models, and hence approximations are needed (e.g., varia-
tional approximation [21], or an altered formulation [24]).

In this paper, we follow the clustering approach and
propose a novel density simplification algorithm that can
well preserve the original mixture distribution by directly
grouping the base probability densities. Our work is in-
spired by the hierarchical EM (HEM) algorithm [24], which
clusters components of a Gaussian mixture model (GMM)
into groups and learns a novel Gaussian cluster center
to represent each group, forming a new reduced GMM.
Although it works well for clustering, the reduced mixture
model produced by HEM does not preserve the structure of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 2

(a)

xt−1 xt xt+1

p(xt|x1:(t−1))

yt−1 yt yt+1

p(yt|xt)

state

observation

(b)
k=8

k=4

DPHEM

k=32

k=4

k=128

k=4

t

Fig. 1. (a) A typical framework for a first-order Markov model, where xt is the state at time t (e.g., object location) and yt is the observation at time
t (e.g., image frame). (b). An illustration of model size growing with time. Simplification is applied to prevent it from growing too large.

the original mixture, due to its multiple instance learning
property [26], which is derived from an altered formu-
lation that forces consistency in cluster assignments. To
address this problem, we derive a new density-preserving
HEM algorithm from first principles, which is based on
a variational approximation to the expected log-likelihood
between two mixture models. The contributions of this
paper are 4-fold: 1) we propose a novel density-preserving
HEM (DPHEM) algorithm that estimates a reduced mixture
that well preserves the structure of the base mixture model;
2) we develop a complete framework for recursive Bayesian
filtering where the posteriors are represented as GMMs and
the likelihood functions are approximated as sums of scaled
Gaussians (SSG), and the complexity of the GMM poste-
rior is controlled by DPHEM; 3) to facilitate our recursive
Bayesian filtering framework, we propose an algorithm to
approximate an arbitrary likelihood function as an SSG; 4)
we test DPHEM on a variety of applications, including vi-
sual tracking and vehicle localization (both using recursive
Bayesian filtering), non-parametric belief propagation, and
human location modeling (KDE mixture reduction), and
demonstrate the superiority of DPHEM to other density
simplification methods.

The remainder of this paper is organized as follows.
We briefly review related works in Section 2. We derive
the density-preserving HEM algorithm and compare with
related methods in Section 3. More details of the derivation
and proofs can be found in the Appendix. Next, in Section
4, we present two applications of DPHEM. The likelihood
approximation algorithm proposed to unify the recursive
Bayesian inference for arbitrary likelihood functions is pre-
sented in Section 4.1.1. Four experiments to verify DPHEM
on these applications are presented in Section 5.

2 RELATED WORK

Density simplification (or density reduction) is used in re-
cursive Bayesian filtering in order to control the complexity
of the posterior distribution. [27] uses a piecewise GMM for
the posterior distribution, and in each step matches the clos-
est components between the prior and posterior to prevent
an increase in the number of components. In visual tracking,
particle filtering [28] represents the posterior of the object
state as a set of weighted samples. In [29, 30], a GMM is con-
structed using samples from the base distribution, where an
upper bound constraint is imposed on the covariance of new
components. In non-parametric belief propagation, sam-
pling methods are normally applied to make the inference
tractable [31–37]. In approximate message passing (AMP),
tractable message passing is achieved by forming simpli-

fied mixture models by sampling from the base likelihood
function or from the application-specific data [38]. As an al-
ternative to sampling methods, [21] proposed an algorithm
(denoted as VKL) to remove components from a GMM by
minimizing a variational approximation of the Kullback-
Leibler (KL) divergence between the original GMM and the
simplified model. While VKL solves this problem to some
degree, important components are sometimes lost because
the component with smallest weight is removed in each
iteration. Other applications include pose estimation [37],
background subtraction in video [39], image denoising [40],
stereo matching and optical flow estimation [41] and so on.

Related to density simplification is the task of density
clustering, where the goal is to group probability densities
into clusters and to estimate representative densities for
each cluster (i.e., the cluster “centers”). While the collection
of representative densities could be interpreted as a mixture
model, the clustering methods do not necessarily guarantee
that the new model well preserves the shape of the original
density, as they mainly focus on clustering. [23] introduces
a clustering algorithm based on Bregman divergences, and
using discrete KL divergence yields an algorithm for clus-
tering multinomials. When the Bregman divergence consists
of the sum of the Mahalonobis distance and the Burg matrix
divergence, the result is a clustering algorithm for Gaussians
[22] with hard assignments. The original HEM [24] is a soft-
clustering algorithm, which is a generalization of Bregman
clustering [22] - [22] is a special case when the number of
virtual samples grows to infinity. Similarly, [20] minimizes
the weighted sum of the KL divergence between the cluster
center and each probability distribution, and uses a hard-
clustering approach. Our proposed DPHEM algorithm is a
soft clustering algorithm, which is a generalization of [20].
[25] performs the clustering by minimizing an upper bound
of the approximation error which is measured with the
L2 norm between the base and simplified mixture model.
Since probability densities lie in a non-linear manifold, an
alternative approach is to use spectral clustering [42] or
non-linear dimensionality reduction and K-means cluster-
ing [43]. While the result is a grouping of densities into
clusters, [42, 43] are not able to generate novel cluster centers
due to the pre-image and out-of-sample limitations of kernel
methods. One solution [43] is to use the medoid (the closest
sample to the mean in the embedding) as the cluster center,
but this is suboptimal for hierarchical clustering and estima-
tion. [44] applies a variational Bayes framework for merging
Gaussian mixture components within the framework of [24].
Hierarchies of mixtures, obtained by recursively applying
HEM to a mixture model, have been used for image/video

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 3

annotation [45], efficient indexing for image retrieval [46],
and codebook learning [45, 47] and inference [48].

Our approach (DP-HEM) is most similar to the VKL
[21] and HEM algorithms [24]. Similar to HEM, we formu-
late mixture simplification as maximizing the expected log-
likelihood (EL) of the reduced mixture. However, in contrast
to HEM, we do not force a consistency requirement that a
block of virtual samples from a given base component must
be assigned to the same reduced mixture component. The
result is a DP-HEM algorithm that preserves the shape of
the density. Compared to VKL, our DP-HEM maximizes a
variational lower bound of the EL between the base and
reduced mixtures, while VKL minimizes a variational upper
bound of the KL divergence (KLD). Ideally, there should be
an equivalence between maximizing the EL and minimizing
the KLD, since the negative entropy term of KLD does
not affect its minimization. However, due to the variational
approximation, the variational KLD forms a looser bound
than that of the variational EL. The result is that our DP-
HEM yields more accurate reduced mixtures. The detailed
differences between VKL, HEM, and our DPHEM are dis-
cussed in Section 3.3.

3 DENSITY-PRESERVING HEM ALGORITHM

In this section, we derive a hierarchical EM algorithm that
takes an input mixture model (e.g., GMM) and estimates
an equivalent mixture model with fewer number of compo-
nents. Formally, let Θ(b) represent a “base” (input) mixture
density with Kb components. The i-th component has den-
sity p(y|θ(b)

i) with parameters θ(b)
i and prior probability π(b)

i .
The likelihood of an observation y ∼ Θ(b) is given by

p(y|Θ(b)) =
Kb∑

i=1

π
(b)
i p(y|θ(b)

i). (1)

Our goal is to simplify the base model Θ(b) to a “reduced”
mixture Θ(r) with much fewer components Kr � Kb,

p(y|Θ(r)) =
Kr∑

j=1

π
(r)
j p(y|θ(r)

j). (2)

Note that we will always use i and j to index the base and
reduced mixture components, respectively.

One possible solution to estimate Θ(r) is to directly sam-
ple from Θ(b) and then estimate Θ(r) with any needed num-
ber of components by EM algorithm. However, this would
be inefficient when handling large-scale high-dimensional
data. Instead, we take our inspiration from HEM [24], where
a hierarchical clustering of mixture models is obtained di-
rectly from the parameters of the base mixture components
using a set of virtual samples.

We define a set of N virtual samples, Y =
{y1, y2, · · · , yN}, which are i.i.d. samples from the base
mixture model, yn ∼ Θ(b). The reduced model Θ(r) can then
be obtained by maximizing the expected log-likelihood of the
reduced model Θ(r) with respect to the virtual samples1,

J (Θ(r)) = EY |Θ(b) [log p(Y |Θ(r))]

=
∑

i

π
(b)
i E

Y |θ(b)i
[log p(Y |Θ(r))]. (3)

1. See Appendix A for the detailed derivation.

However, maximization of (3) is intractable because
the expected log-likelihood of a mixture model
E
Y |θ(b)i

[log p(Y |Θ(r))] cannot be calculated in closed-
form. Here we adopt a variational approximation method
for this optimization.

3.1 Variational approximation

We use a variational perspective of the EM algorithm [49–
51], which treats the E- and M-steps both as maximization
processes. We start from a variational lower bound of the
log-likelihood of a mixture model [52, 53]

log p(Y |Θ(r)) ≥ max
zij

∑

j

zij log
π

(r)
j p(Y |θ(r)

j)

zij
, (4)

where zij are the variational parameters and
∑Kr

j=1 zij = 1.
Taking the expectation of (4) and using Jensen’s inequality,

E
Y |θ(b)i

[log p(Y |Θ(r))]

≥ max
zij

∑

j

zij

{
log

π
(r)
j

zij
+ E

Y |θ(b)i
[log p(Y |θ(r)

j)]

}
. (5)

The inner-expectation in (5) is obtained by noting that Y is
a set of i.i.d. samples,

E
Y |θ(b)i

[log p(Y |θ(r)
j)] = E

Y |θ(b)i

[
N∑

n=1

log p(yn|θ(r)
j)

]

=
N∑

n=1

E
Y |θ(b)i

[log p(yn|θ(r)
j)] = NE

y|θ(b)i
[log p(y|θ(r)

j)]. (6)

Finally, substituting (6) and (5) into (3), we obtain the
variational lower bound of the expected log-likelihood,

JDP (Θ(r))

= max
zij

∑

i

∑

j

π
(b)
i zij

{
log

π
(r)
j

zij
+NE

y|θ(b)i
[log p(y|θ(r)

j)]

}

≤ EY |Θ(b) [log p(Y |Θ(r))]. (7)
The variational parameters zij can be interpreted as an as-
signment of the virtual samples generated from the ith base
component to the jth reduced component. The variational
lower bound in (7) is maximized by iterating between max-
imizing w.r.t. the assignments zij and the reduced mixture
parameters Θ(r).

3.2 DPHEM for GMMs

Next we present the DPHEM algorithm for the specific case
of Gaussian mixture models (see Appendix B for derivation
details). Let the base and reduced mixture components
be Gaussians, p(y|θ(b)

i) = N (y|µ(b)
i ,Σ

(b)
i) and p(y|θ(r)

j) =

N (y|µ(r)
j ,Σ

(r)
j), whereN (y|µ,Σ) is a multivariate Gaussian

density with mean µ and covariance Σ. The parameters of
the base and reduced models are Θ(b) = {π(b)

i , µ
(b)
i ,Σ

(b)
i }Kb

i=1

and Θ(r) = {π(r)
j , µ

(r)
j ,Σ

(r)
j }Kr

j=1.

3.2.1 E-step

Maximizing the lower bound in (7) with respect to varia-
tional parameter yields

ẑij =
π

(r)
j exp(NE

y|θ(b)i
[log p(y|θ(r)

j)])
∑Kr

j′=1 π
(r)
j′ exp(NE

y|θ(b)i
[log p(y|θ(r)

j′)])
, (8)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 4

where the expected log-Gaussian between θ(b)
i and θ(b)

j is

E
y|θ(b)i

[log p(y|θ(r)
j)]

= logN (µ
(b)
i |µ

(r)
j ,Σ

(r)
j)− 1

2
tr{(Σ(r)

j)−1Σ
(b)
i }. (9)

In (8), the number of virtual samples N controls the ”peak-
iness” of the assignment variable ẑij . Letting N → ∞
results in hard assignments, while 0 < N < ∞ yields soft
assignments. In our experiments, we set N as a multiple of
the number of base components, N = αKb, where α = 10.
3.2.2 M-step
Given the optimal variational parameters, the lower bound
is maximized w.r.t. to the model parameters Θ(r) =

{π(r)
j , µ

(r)
j ,Σ

(r)
j }, yielding the parameter updates:

π̂
(r)
j =

Kb∑

i=1

ẑijπ
(b)
i , µ̂

(r)
j =

1

π̂
(r)
j

Kb∑

i=1

ẑijπ
(b)
i µ

(b)
i , (10)

Σ̂
(r)
j =

1

π̂
(r)
j

Kb∑

i=1

ẑijπ
(b)
i [Σ

(b)
i + (µ

(b)
i − µ̂

(r)
j)(µ

(b)
i − µ̂

(r)
j)T].

(11)3.3 Comparison to related works
Due to different formulations, our DPHEM has a few key
differences from HEM [24] and VKL [21]. While the update
equations for the component means and covariances are
the same, the three algorithms differ in their assignment
variables and component weights. Details can be found in
Table 1. Since L2U [25] uses hard clustering, which is inher-
ently different from the soft clustering used by HEM, VKL
and DPHEM, the update formula for [25] is not presented
in Table 1. We next discuss detailed comparisons between
DPHEM and the three methods: HEM, VKL, and L2U.

TABLE 1
Comparison of DPHEM with related works. To reduce clutter, here we

use Eij = E
y|θ(b)i

[log p(y|θ(r)j)].

assignment variable component weight
HEM [24] ẑij ∝ π

(r)
j exp(π

(b)
i NEij) π̂

(r)
j = 1

Kb

∑
i
ẑij

DPHEM ẑij ∝ π
(r)
j exp(NEij) π̂

(r)
j =

∑
i
ẑijπ

(b)
i

VKL [21] ẑij ∝ π
(r)
j ζ̂ij exp(Eij) π̂

(r)
j =

∑
i
ẑijπ

(b)
i

ζ̂ij = ẑijπ
(b)
i /(

∑
i′ ẑi′jπ

(b)
i′)

3.3.1 Comparison with HEM
The original HEM algorithm [24] forms a set of virtual sam-
ple blocks {Y1, · · ·YKb

}, where each block Yi = {yi,n}Ni
n=1

contains Ni = π
(b)
i N samples from one base component,

yi,n ∼ θ(b)
i . The reason for this construction is so that virtual

samples from the same base component will be assigned
to the same reduced mixture component, thus preserving
a consistent hierarchy. The reduced model is found by
applying the EM algorithm to maximize the log-likelihood
of the sample blocks,

∑Kb

i=1 log p(Yi|Θ(r)), and applying the
law of large numbers to replace Yi with its expectation.
An equivalent formulation, shown in [54], is to maximize
a variational lower bound on the expected log-likelihood
(EL) of the virtual sample blocks under each component,

JHEM (Θ(r)) ≤
Kb∑

i=1

E
Yi|Θ(b)

i
[log p(Yi|Θ(r))]. (12)

In contrast, our DPHEM does not form sample blocks,
but instead assumes the entire sample set Y contains i.i.d.
samples from the full base mixture Θ(b). DPHEM then
maximizes a variational lower bound on the expected log-
likelihood, where the expectation is w.r.t. the whole base
mixture, as in (7).

The different formulations of HEM and DPHEM lead to
algorithms with different properties. For HEM, the reduced
component weight π̂(r)

j = 1
Kb

∑
i ẑij is only determined

by the number of assigned base mixture components, and
ignores the weight π(b)

i of the base component. Hence, HEM
will promote commonly occurring mixture components,
while suppressing infrequent outlier components, regard-
less of the actual mixture weights. This property is useful
for multiple instance-learning, e.g., where the goal is to
learn the commonly occurring features existing in the noisy
training datasets [26]. However, HEM will perform poorly
when the goal is to estimate a simplified mixture model
that best represents the base density structure. In contrast,
our DPHEM includes the base component weights when
computing π̂

(r)
j , resulting in better representations of the

base mixture. An example is presented in Fig. 2a. Note that
HEM and DPHEM are equivalent when the base component
weights are uniform, π(b)

i = 1
Kb

.

3.3.2 Comparison with VKL

VKL [21] estimates the reduced mixture Θ(r) by minimizing
the KL divergence (KLD) between the base mixture and the
reduced mixture,

Θ̂(r) = argmin
Θ(r)

D(Θ(b)‖Θ(r)), (13)

where the KLD between the two mixtures is

D(Θ(b)‖Θ(r)) =

∫
p(y|Θ(b)) log

p(y|Θ(b))

p(y|Θ(r))
dy (14)

= Ey|Θ(b) [log p(y|Θ(b))]− Ey|Θ(b) [log p(y|Θ(r))]. (15)
When the KLD and EL can be exactly computed, there is an
equivalence between formulations,

Θ̂(r) = argmin
Θ(r)

D(Θ(b)‖Θ(r)) (16)

= argmax
Θ(r)

Ey|Θ(b) [log p(y|Θ(r))], (17)

since the first term in (15) is a constant w.r.t. Θ(r). However,
as the two densities are mixture models, [21] minimizes a
variational upper-bound of the KLD,

JKL(Θ(r)) = min
zij ,ζij

∑

i,j

π
(b)
i zij(log

π
(b)
i zij

π
(r)
j ζij

+D(θ
(b)
i ‖θ

(r)
j))

≥ D(Θ(b)‖Θ(r)), (18)
where zij ≥ 0 and ζij ≥ 0 are two sets of variational param-
eters [55]2, which satisfy the constraints

∑
j zij = 1,∀i and∑

i ζij = 1,∀j. Substituting (15) into (18), we have

Ey|Θ(b) [log p(y|Θ(b))]− JKL(Θ(r)) ≤ Ey|Θ(b) [log p(y|Θ(r))].
(19)

Dropping constant terms on the LHS of (19), we obtain an
equivalent maximization problem for VKL (see Appendix

2. To make the VKL formulation comparable with HEM/DPHEM, we
change the notation from [55] using φj|i = π

(b)
i zi,j and ψi|j = π

(r)
j ζi,j .

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 5

C),
J̃KL(Θ(r))

= max
zij ,ζij

∑

i,j

π
(b)
i zij(log

π
(r)
j ζij

zij
+ E

y|θ(b)i
[log p(y|θ(r)

j)]).

The relationship between HEM and VKL can be expressed
by the following theorem (see Appendix C for proof):

Theorem 1. DPHEM (N = 1) obtains a tighter lower-bound
than VKL to the expected log-likelihood,

J̃KL(Θ(r)) ≤ JDP (Θ(r)) ≤ Ey|Θ(b) [log p(y|Θ(r))]. (20)

VKL is equivalent to DPHEM, J̃KL(Θ(r)) = JDP (Θ(r)), when
ζ̂ij = 1,∀(i, j) where ẑij > 0.

Both methods are maximizing two different lower
bounds of the EL to obtain the reduced mixture model Θ(r),
with DPHEM obtaining a tighter lower-bound than VKL.
Note that the two lower bounds are the same when ζ̂ij = 1
for all (i, j) where zij > 0. Since

∑
i ζij = 1, this can only

occur when each reduced component θ(r)
j only has one base

component θ(b)
i assigned to it. For clustering and density

simplification, this is not possible since Kr < Kb.
As the DPHEM lower bound is tighter than the VKL

lower bound, it is expected that DPHEM will yield a re-
duced mixture model that better fit the base mixture than
VKL. We verify this experimentally in synthetic experiments
by comparing real KL divergence between the DPHEM and
VKL solutions. Fig. 2b shows an example.

3.3.3 Comparison with L2U

L2U [25] forms the reduced mixture Θ(r) by minimizing the
squared L2-norm between the density functions of the base
and reduced mixture models,

Θ̂(r) = argmin
Θ(r)

‖p(y|Θ(b))− p(y|Θ(r))‖2, (21)

where the squared L2-norm between functions is ‖f(y) −
g(y)‖2 =

∫
(f(y) − g(y))2dy. Since this distance is difficult

to optimize directly, [25] first partitions the base mixture
components {p(y|θ(b)

i)} into disjoint clusters {S1, · · · , SKr
},

and then calculates an upper bound of the squared L2-norm
by applying Cauchy-Schwarz inequality,

JL2(Θ(r)) = Kr

Kr∑

j

∫
(π

(r)
j p(y|θ(r)

j)−
∑

i∈Sj

π
(b)
i p(y|θ(b)

i))2dy

≥ ‖p(y|Θ(b))− p(y|Θ(r))‖2. (22)

Then for each cluster j, a good representative π(r)
j p(y|θ(r)

j)
is found by minimizing the local distance.

Compared to DPHEM, firstly, L2U is a hard clustering
algorithm and the result is sensitive to the initial partition of
the base mixture components. Secondly, instead of optimiz-
ing a “distance” between probability densities (in the log-
space), such as EL for HEM and DPHEM, KL divergence for
VKL, L2U treats the mixture densities as normal functions
and minimizes the L2-norm. The L2-norm criteria is good
at preserving the regions of the density with large proba-
bility, but does not preserve well those regions with small
probability. On the other hand, using a log-space distance,
such as EL for HEM or KLD for VKL, can better preserve
the low-probability regions. An example is shown in Fig. 2c.

We further study the differences between the four methods
through experiments in Section 5.1.

4 APPLICATIONS OF DPHEM

We next discuss 2 applications of DPHEM, recursive
Bayesian filtering with GMMs, and reducing KDE mixtures.

4.1 Recursive Bayesian filtering with GMMs

Recursive Bayesian filtering estimates the current state of
a system using noisy measurements from the past and
present. Computer vision applications include object track-
ing [5, 6, 8–13, 15, 56] and robot localization [21, 57–59].
Fig. 1a shows a typical framework for a 1st-order Markov
model, where xt is the state at time t (e.g., object location)
and yt is the observation at time t (e.g., video frame).

The goal is to obtain the posterior distribution of the cur-
rent state p(xt|y1:t), conditioned on the seen observations,
y1:t = (y1, . . . , yt). The posterior is obtained recursively by
first predicting the current state xt using the previous pos-
terior distribution p(xt−1|y1:t−1) and the transition model
p(xt|xt−1), and then factoring in the current observation yt
using the observation model p(yt|xt),

prediction:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (23)

update:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

(24)

Assuming that the transition and observation models are
Gaussians yields the Kalman filter, which is tractable to
compute. For more complex models, one solution is to use a
particle filter [5–15], where the posterior is approximated as
a set of weighted particles p(xt|y1:t) =

∑
m ωmδ(xt − x̂m),

where (ωm, x̂m) is the m-th particle. However, the limited
set of samples may not well characterize the true posterior
especially when the distribution is heavy-tailed, and errors
may accumulate quickly during inference. Increasing the
number of particles increases the accuracy of the posterior,
but also increases the variance [60] and computational load.

In this paper, we model the posterior distribution
p(xt|y1:t) using a GMM,

p(xt−1|y1:t−1) =
N∑

i=1

πiN (xt−1|µi,Σi). (25)

We assume that the transition model p(xt|xt−1) is a GMM,

p(xt|xt−1) =
J∑

j=1

πjN (xt|Axt−1 + µj ,Σj), (26)

where A is a linear transition matrix. When yt is known, the
observation likelihood p(yt|xt) is a function of xt, and we
assume it is a sum of scaled Gaussians (SSG)

p(yt|xt) =
K∑

k=1

ωkN (xt|µk,Σk), (27)

where here
∑
k ωk is not necessarily 1. The prediction step

in (23) can be calculated in closed-form (see Appendix D.2),

p(xt|y1:t−1) =
J∑

j=1

N∑

i=1

πiπjN (xt|µij ,Σij), (28)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 6

(a1) Base Mixture (a2) HEM [24] (Kr=49, KL=0.143) (a3) DPHEM (Kr=49, KL=0.000)

-5 0 5 10

-10

-5

0

5

10

0.005

0.01

0.015

0.02

0.025

-5 0 5 10

-10

-5

0

5

10

0.005

0.01

0.015

0.02

0.025

-5 0 5 10

-10

-5

0

5

10

0.005

0.01

0.015

0.02

0.025

(b1) Base Mixture (b2) VKL [21] (Kr=23, KL=0.096) (b3) DPHEM (Kr=23, KL=0.064)

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

20

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

20

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

20

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(c1) Base Mixture (c2) L2U [25] (Kr=21, KL=0.210) (c3) DPHEM (Kr=21, KL=0.058)

-10 -5 0 5 10

-15

-10

-5

0

5

10

15

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

-10 -5 0 5 10

-15

-10

-5

0

5

10

15

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

-10 -5 0 5 10

-15

-10

-5

0

5

10

15

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Fig. 2. Examples of reduced mixture models using different approaches. Each row compares DPHEM with a baseline method and shows a typical
difference. The base mixture model contains Kb = 2500 components, and the reduced mixture contains Kr components. KL is the KL divergence
between the base mixture and the reduced mixture.

Posterior @ t-1

Transition

X

∫
dxt−1

Prediction

Observation

X

Posterior @ tp(xt−1|y1:t−1)

p(xt|xt−1)

p(xt|y1:t−1)

p(yt|xt)

p(xt|y1:t)

t = t+ 1

k=2

k=16 k=32

k=8

k=256

DPHEM

k=16

Fig. 3. Recursive Bayesian filtering using GMMs. DPHEM is applied to
simplify the posterior GMM.

where µij = Aµi+µj and Σij = AΣiA
T +Σj . Likewise the

updated posterior in (24) can also be calculated in closed-
form (see Appendix D.3),

p(xt|y1:t) =
J∑

j=1

N∑

i=1

K∑

k=1

ωijkN (xt|µijk,Σijk), (29)

where µijk = Σijk(Σ−1
k µk + Σ−1

ij µij), and Σijk = (Σ−1
k +

Σ−1
ij)−1. The weights are ωijk =

ω̃ijk∑
i′j′k′ ω̃i′j′k′

, where
ω̃ijk = πiπjωkN (µk|µij ,Σk + Σij). Hence, the posterior is
also a GMM, but the number of mixture components will
increase exponentially over time. To control the complexity
while maintaining an accurate posterior, we apply DPHEM
to simplify the posterior when the number of components

exceeds a threshold. Fig. 3 illustrates this process.

4.1.1 Likelihood approximation
Our framework assumes that the likelihood function in (27)
has the form of a sum of scaled Gaussians (SSG). To facilitate
the use of our framework for any likelihood function, we
next propose an efficient algorithm for approximating an
arbitrary likelihood function as an SSG.

Given a likelihood function f(x) = p(y|x) and a cor-
responding set of state-likelihood pairs D = {(xi, pi)}Ni=1,
where pi = p(yi|xi), the algorithm computes a lower bound
to the points in D (and hence f(x)) by iteratively adding
scaled Gaussians to the SSG. The algorithm keeps a list
of residuals between D and the current SSG, denoted as
D(k) = {(xi, ri)}Ni=1. Initially, the set of residual pairs is the
set of input pairs, D(1) = D. In each iteration k, a scaled
Gaussian f (k)(x) is found that lower bounds the residuals
in D(k). Then f (k)(x) is added as a component to the SSG,
and the next iteration proceeds.

More specifically, in the k-th iteration, first the highest
point inD(k) is found,m = argmaxi log ri. Next, the peak of
a scaled Gaussian f (k) is anchored on the maximum point,

h(k)(x) = −(x− xm)TWk(x− xm) + `m, (30)

f (k)(x) = exp(h(k)(x)), (31)
where `m = log rm and Wk is the precision matrix of the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 7

Algorithm 1 Likelihood Approximation
1: Input: likelihood function f(x) = p(y|x) and locations
{xi}Ni=1, residual precision ε, residual threshold τ .

2: Initial state-likelihood pairs: D(1) = {(xi, ri)}Ni=1, where
ri = p(yi|xi).

3: k = 1.
4: repeat
5: Calculate log-likelihood `i = log ri, ∀i.
6: Find highest point: m = argmaxi `i.
7: Fit a quadratic lower-bound h(k) according to (32).
8: Calculate scaled Gaussian: f (k)(x) = exp(h(k)(x)).
9: Calculate residuals and bound: r̂i = max(ri −

f (k)(xi), ε), ∀i.
10: Set points as residuals for next iteration: D(k+1) =

{(xi, r̂i)}Ni=1.
11: k ← k + 1
12: until maxi(r̂i) ≤ τ
13: Output: approximate likelihood f̂(x) =

∑
k f

(k)(x).

Gaussian. The precision matrix Wk is found by minimizing
the square-error with D in the log-likelihood space, with the
constraint that the log-Gaussian h(k)(x) is a lower bound of
the points in D,

W ∗k = argmin
Wk

1

2

N∑

i=1

(`i − h(k)(xi))
2 (32)

s.t. `i − h(k)(xi) ≥ 0,∀i,
where `i = log ri. When Wk = diag(wk) is a diagonal
matrix, then (32) is a quadratic program (see Appendix
E). The constraints in (32) ensure that f (k) is a lower
bound of D(k). Finally, the residual points are calculated
r̂i = ri − f (k)(xi),∀i and the next iteration is run on
the residual data D(k+1) = {(xi, r̂i)}Ni=1. After sufficient
iterations to reduce all residuals to under a threshold, the
approximate likelihood is f̂(x) =

∑
k f

(k)(x). Because each
iteration forms a lower bound to the residuals, f̂(x) is a
lower-bound of the original data D. Algorithm 1 summa-
rizes the procedure, and an example is shown in Fig. 4.

4.2 Reducing KDE mixtures

Kernel density estimation (KDE) is an effective non-
parametric method for density estimation [4], and has seen
many applications [16, 61, 62]. Formally, given a dataset
D = {x1, . . . , xN}, the KDE using a Gaussian kernel is

p(x|D) =
1

N

N∑

i=1

N (x|xi, σ2I), (33)

where σ2 is the kernel bandwidth. A KDE mixture
(MixKDE) was proposed in [16], where each mixture com-
ponent is a separate KDE over different hierarchical levels
of the data. For example, [16] creates a hierarchy of spatial
check-in data, from the individual-level, to the district-
level, and to the city-level. The spatial distribution for an
individual is obtained by mixing the levels,

p(x|D) =
L∑

l=1

αcpc(x|Dl), (34)

where D is the complete dataset, D1 ⊂ D2 · · · ⊂ DL are
the hierarchical levels (individual to population), pc(x|Dc)
is the KDE for level c, and {αc} are the mixing weights.

One disadvantage of KDE/MixKDE is it requires storing
and processing all samples of the dataset in order to com-
pute a likelihood, which may not be possible on devices
with limited memory or computation. [16] proposes an
efficient approximation using k-d tree, where the KDE at
a test point is approximated with a subset of the dataset,
defined by the point’s k-d tree cells. This approach reduces
the computation for calculating the likelihood of the test
point, but also suffers inaccuracies when the test point falls
close to a cell boundary.

The KDE/MixKDE with Gaussian kernel can be inter-
preted as a GMM with a very large number of components.
Hence, we use DPHEM to reduce the MixKDE in (34) into
an equivalent GMM with fewer components (see Fig. 5). As
the reduced GMM has fewer components, less memory is
required to store the parameters, and computing the test
likelihood is more efficient.

5 EXPERIMENTS

In this section, to show the applicability of DPHEM, we
present five experiments: 1) reducing synthetic data of 2D
GMMs; 2) using KDE mixtures to model user location data;
3) visual tracking with Bayesian filtering and GMM pos-
teriors; 4) vehicle self-localization with Bayesian filtering;
5) synthetic experiment on belief propagation. We compare
with three other density simplification methods, the orig-
inal HEM [24], VKL [21] and L2U [25]. Experiments were
implemented with Matlab on a desktop PC.

5.1 Synthetic data

In this experiment, we reduce the number of components
of 2D synthetic GMM data by applying the proposed
method (DPHEM) and the other three (HEM, VKL, L2U).
We sampled 2,500 points as the means of the synthetic base
GMM from a randomly generated KDE with 50 kernels. The
component weight is inversely proportional to the distance
between the sample point to related kernel center. The same
isotropic covariance is used for all components to ensure
enough overlap between components. The four simplifying
methods are applied to the base GMM to reduce the mixture
one component at a time, until only one component remains.
For each targetKr , we use a weighted k-means initialization
(as in [25]), where the samples are the base component
centers and the corresponding weights are the component
weights. The best reduced mixture model from 10 ran-
dom initializations of k-means is selected using a method’s
corresponding objective criteria (i.e. variational expected
log-likelihood for HEM and DPHEM, variational KL for
VKL, approximate L2 for L2U). The similarity between the
base and reduced mixtures is then evaluated using KL-
divergence (KLD), which is calculated using Monte Carlo
approximation with 100,000 samples. The experiment was
repeated using 100 base GMMs, and the average KLD and
processing time for each Kr is calculated.

Fig. 6a plots the KLD versus the number of reduced com-
ponents Kr ∈ [1, 50]. Since there are roughly 50 clusters in
the base mixture model, L2U and DPHEM estimate reduced
GMMs that are equivalent to the base GMM (KLD is near
0) when Kr > 50. As Kr decreases, DPHEM maintains a
lower KLD than L2U. Although DPHEM and VKL have
similar curves when Kr < 38, DPHEM has consistently

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 8

f(x)

iter 1 iter 2 iter N

∆

f (1)(x)

f (N)(x)

f (2)(x)

r r r

xx x x

x x x

f̂(x) f̂(x)

+

∆
…

∆

… +

f̂(x)

Fig. 4. A 1D example of likelihood approximation using sum of scaled Gaussians. ∆ indicates calculation of the new residuals, r̂i = ri − f (k)(xi).

p
d
f

DPHEM

p
d
f

p
d
f

p1(x|D1)
k=10

p2(x|D2)
k=100

p3(x|D3)

Σ3
c=1αcpc(x|Dc)

p
d
f

p
d
f

k=10,000

mixKDEk=10,110 k=5 simplified

x x x

xx

Fig. 5. A 1D example of simplifying a KDE mixture for human location
modelling. The top row shows KDEs representing spatial distributions
of check-in locations (x-axis represents location) at different hierarchical
levels: 10 check-ins of an individual (p1); 100 check-ins in a local region
(p2); 10,000 check-ins for the whole population (p3). In the bottom row,
an individual’s spatial distribution is a KDE mixture, which is a weighted
combination of the KDEs, and is simplified using DPHEM. k is the
number of components in each KDE.

lower KLD than VKL. On the other hand, the reduced model
from HEM has a large KLD, even when a large number of
reduced components are used, which indicates that HEM
cannot well preserve the density structure. Fig. 6b plots the
processing time to reduce a base mixture model to a given
number Kr. DPHEM has the lowest computing time – in
particular, VKL is slower to converge because it uses two
sets of variational parameters.

Fig. 2 shows a typical comparison between DPHEM and
the other methods. When reducing to a same number of
components, DPHEM preserves the base component better
while HEM promotes some small overlapping components
because of its multiple instance learning property (Fig. 2a).
Comparing to L2U, which tends to preserve more large
components, DPHEM also model the small components
(Fig. 2c). The performance of DPHEM is mostly similar to
VKL, but DPHEM fits better to the base mixture, as VKL
approximates two small neighboring base components as
one reduced component with large covariance (Fig. 2b).

Finally, we compare DPHEM using different number of
virtual samples N ∈ {1, 200, 400, . . . , 105}. On this simple
dataset, similar results were obtained for values N > 1,
yielding the same DPHEM curve in Fig. 6. Using N = 1
yielded lower KLD when the number of reduced mixture
components Kr is much less than the actual number of
components in the data. For N = 1, processing time was
higher due to more iterations caused by slower convergence.
On this dataset, the hard-clustering version of DPHEM

(N → ∞), which is equivalent to [20], also yields similar
results to soft-clustering DPHEM.

(a) Average KLD (b) Processing time

0 10 20 30 40 50

Kr

0

0.1

0.2

0.3

0.4

0.5

0.6

L
o
g
 K

L
 d

iv
e
rg

e
n
c
e

VKL

HEM

L2U

DPHEM

DPHEM (N=1)

DPHEM-Hard

0 10 20 30 40 50

Kr

10
-2

10
-1

10
0

10
1

T
im

e
 (

lo
g
-s

)

VKL

HEM

L2U

DPHEM

DPHEM (N=1)

DPHEM-Hard

Fig. 6. Experiments on reducing 2D GMMs with 2500 components. (a)
Average KL-divergence between the original and reduced models for
different number of reduced components Kr . (b) Processing time vs
number of reduced components.

5.2 Human location modelling

In this experiment, we apply DPHEM to KDE mixtures
(MixKDE) to obtain an efficient and accurate reduced rep-
resentation. The goal is to model the spatial location of
an individual’s check-in events from a social media web-
site. Following [16], we use the Gowalla dataset [63] and
extract a subset of events occurring in Southern Califor-
nia on weekdays from January to October 2010. The data
from January through June are used for training, while the
data from July through October are used for testing. The
training set contains 64,368 events from 4,281 individuals.
For each individual, a MixKDE (Eq. 34) was trained with
3 levels following [16]: the first is individual-level, trained
with all the individual’s events; the last is population-level;
the middle-level is a local region, where we partition the
Southern California area into a 9×9 grid of local regions, and
train with the one containing the majority of the individual’s
events (see Fig. 9a). An adaptive bandwidth [16] is selected
for each KDE component, which is the distance between
current event and its k-th nearest neighbor. A separate set
of 25,000 events from the training set are used to obtain the
mixing weights αc. As the original MixKDEs (base model)
are computationally inefficient for calculating the likelihood
of a new test event, 4 simplifying methods are applied on
the base model to obtain reduced GMM representations. The
weighted k-means initialization from Section 5.1 is used. We
also compare with the k-d tree approximation from [16].

The models are evaluated by randomly selecting 1,000
individuals from the testing data set, and calculating the
log-likelihood (LL) of an individual’s test events on the
individual’s MixKDE. Fig. 7 shows a scatter plot comparing

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 9

(a) k-d tree [16] (b) HEM (c) DPHEM (d) VKL (e) L2U

-100 -50 0

MixKDE(base)

-100

-80

-60

-40

-20

0

k
d
T

re
e

-100 -80 -60 -40 -20 0

MixKDE(base)

-100

-80

-60

-40

-20

0

H
E

M

-100 -80 -60 -40 -20 0

MixKDE(base)

-100

-80

-60

-40

-20

0

D
P

H
E

M

-100 -80 -60 -40 -20 0

MixKDE(base)

-100

-80

-60

-40

-20

0

V
K

L

-100 -80 -60 -40 -20 0

MixKDE(base)

-100

-80

-60

-40

-20

0

L
2
U

Fig. 7. Scatter plots of the log-likelihoods of test events for approximate models with Kr = 90 versus the original KDE mixture.

(a) MSE (b) MAE (c) MeanL2 (d)Testing time/Event (e) Training time/Iter

20 40 60 80

Kr

10
-1

10
0

10
1

10
2

10
3

10
4

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

kdTree

HEM

VKL

L2U

DPHEM

DPHEM-Hard

20 40 60 80

Kr

10
0

M
e

a
n

 A
b

s
o
lu

te
 E

rr
o

r

kdTree

HEM

VKL

L2U

DPHEM

DPHEM-Hard

20 40 60 80

Kr

10
0

10
5

M
e

a
n

 L
2

 D
is

ta
n

c
e

kdTree

HEM

VKL

L2U

DPHEM

DPHEM-Hard

20 40 60 80

Kr

10
-4

10
-2

10
0

10
2

10
4

A
v
e

ra
g

e
 T

e
s
ti
n

g
 T

im
e

/E
v
e

n
t

(l
o

g
-m

s
) MixKDE

kdTree

HEM

VKL

L2U

DPHEM

DPHEM-Hard

20 40 60 80

Kr

10
-1

10
0

10
1

10
2

10
3

T
im

e
/I

te
ra

ti
o

n
 (

lo
g

-s
e

c
)

HEM

VKL

L2U

DPHEM

DPHEM-Hard

Fig. 8. KDE mixture reduction: (a-b) MSE and MAE of test-event log-likelihoods and (c) mean L2 distance of test-event likelihoods between mixture
KDE and approximate models; (d) Average computing time per event; (e) Average learning time per iteration for each method. Kr is the number of
components in the approximate models.

the event log-likelihoods under the approximate models
(Kr = 90) and the original base model (MixKDE). The
DPHEM scatter plot is more compact and closer to the
diagonal, indicating that DPHEM has log-likelihoods that
are the most similar to the original MixKDE. In contrast,
HEM, VKL, L2U and k-d tree do not well-preserve the
base model’s density structure. This is further confirmed
by examining the mean-squared error (MSE) and mean
absolute error (MAE) between the test event LLs predicted
by the original MixKDE and the approximate models in
Fig. 8a and Fig. 8b, where DPHEM has the lowest values
among the methods. Since low-density regions may tend
to dominate the evaluation metrics using LLs, we also
show the average L2 distance (MeanL2) between test event
likelihoods in Fig. 8c. Comparing soft- and hard-clustering
methods, as Kr increases the MSE of DPHEM-hard [20]
becomes worse than DPHEM, which suggests that the hard-
clustering approach loses efficacy when there are a large
number of overlapping components.

Comparing the processing time for a test event, the
mixture-model approximations (HEM, VKL, DPHEM, L2U)
require much less time than kd-tree, e.g., for Kr = 90, 0.068
ms vs. 5.302ms. More test time comparisons are shown in
Fig. 8b. DPHEM and HEM have the lowest training time
per iteration (see Fig. 8c).

Fig. 9b shows an example of MixKDE and approximate
mixtures for an individual’s spatial distribution. Although
all approximate models except for HEM can preserve the
main structure of MixKDE, differences in the density maps
still exist. For example, the components around location
(-117.8, 33.7) are different for each approximate model:
some of them are missing in the kdTree approximation;
components with small weight are promoted to have high
probability in HEM; some small components are missing
in VKL approximation; most heavy tails are missing in
L2U. Since the model differences may be hard to illustrate
because of color scale in density map, the average log-
likelihood (meanLL) of the testing events (red dots) on each
model are shown, as well as the MSE, MAE and MeanL2.

On this example, DPHEM achieves the closest meanLL to
MixKDE and lowest MSE, MAE and MeanL2.

5.3 Visual tracking
In this experiment, we apply DPHEM to visual tracking
using recursive Bayesian filtering. For visual tracking, yt
is the video frame and xt is the location of the target.
The observation model p(yt|xt) is the likelihood (score)
that the target is located at xt in image yt. Here we use
the observation model from compressive tracking (CT) [64],
which uses a sparse measurement matrix to extract fea-
tures for tracking. The likelihood function for a given yt is
approximated as an SSG with isotropic covariances using
Algorithm 1 – the likelihood-state pairs are obtained by
densely sampling locations and computing the likelihood
scores. A simple Gaussian motion model is used, which
is based on the estimated velocity from the previous two
frames, p(xt|xt−1) = N (xt|xt−1 + v̂t−1,Σ) where Σ = σ2I
is an isotropic covariance matrix (we set σ2 = 20) and the
estimated velocity is v̂t−1 = x̂t−1− x̂t−2, with x̂t as the pre-
dicted position at time t. The updated posterior is obtained
using (29), which has on average 500 components. DPHEM
is then used to reduce the GMM posterior to Kr = 50 com-
ponents. The 50 components with largest weights are used
for initialization. Finally, the tracked position is obtained
using MAP, x̂t = argmaxxt

p(xt|y1:t), and the image patch
around x̂t is used to update the likelihood model for the
next frame. Fig. 10a illustrates the tracking procedure.

We test our tracking method on a commonly-used bench-
mark [65] which contains 50 sequences. Since the size of
the bounding box in our method is fixed, the evaluation is
based on the precision plot of OPE (One Pass Evaluation)
proposed in [65], which is the percentage of successfully
tracked frames whose center location error is within a
certain threshold. We compare our DPHEM tracker with the
following baseline tracking inference algorithms (all use the
same observation model):
• Dense - dense sampling of candidate locations xt.

The tracked location is the one with maximum score
p(yt|xt). This was used in the CT tracker [64].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 10

(a1) All data on map (a2) All training data on 9× 9 grid (a3) Data of one individual

-121 -120 -119 -118 -117 -116 -115
32.5

33

33.5

34

34.5

35

35.5

All training data

Single individual

-121 -120 -119 -118 -117 -116 -115

33

33.5

34

34.5

35

35.5

Test data

Train data

(b1) MixKDE (meanLL=3.46) (b3) HEM (meanLL=1.72, (b5) L2U (meanLL=2.06,
MSE=4.56, MAE=1.93, MeanL2=8757) MSE=259.79, MAE=1.46, MeanL2=20.47)

-121 -120 -119 -118 -117 -116 -115

33

33.5

34

34.5

35

35.5

-30

-25

-20

-15

-10

-5

0

-121 -120 -119 -118 -117 -116 -115

33

33.5

34

34.5

35

35.5

-30

-25

-20

-15

-10

-5

0

-121 -120 -119 -118 -117 -116 -115

33

33.5

34

34.5

35

35.5

-30

-25

-20

-15

-10

-5

0

(b2) kdTree (meanLL=3.21, (b4) VKL (meanLL=3.18, (b6) DPHEM (meanLL=3.36,
MSE=1.01, MAE=0.25, MeanL2=104.08) MSE=0.26, MAE=0.32, MeanL2=1310) MSE=0.23, MAE=0.11, MeanL2=13.21)

-121 -120 -119 -118 -117 -116 -115

33

33.5

34

34.5

35

35.5

-30

-25

-20

-15

-10

-5

0

-121 -120 -119 -118 -117 -116 -115

33

33.5

34

34.5

35

35.5

-30

-25

-20

-15

-10

-5

0

-121 -120 -119 -118 -117 -116 -115

33

33.5

34

34.5

35

35.5

-30

-25

-20

-15

-10

-5

0

Fig. 9. Example of human location modeling: (a1) All check-in records used for training and testing on map; (a2) All training and testing of one
selected individual on a 9 × 9 grid; (a3) The individual’s training and testing data. (b) Log-likelihood map of the individual’s spatial distribution
estimated from check-in records with mixture KDE model (MixKDE) and the simplified models with Kr = 90. Red dots are the test events of this
individual. meanLL is the average log-likelihood of the test events. MSE and MAE are the mean squared error and mean absolute error between
the test event log-likelihoods predicted by the original MixKDE and the approximate model, while MeanL2 is the mean L2 distance between test
event likelihoods. For better visualization, log-likelihood values are truncated at -30.

• OPF - original particle filter where resampling is used
to propagate particles to the next frame. The tracked
position is the particle with maximum weight.

• IPF - an improved particle filter where only the particle
with maximum weight is propagated to the next frame.

For each tracker, we test two versions with and without
velocity in the motion model (+Motion, +NoMotion). Since
DPHEM + Motion outperforms all other trackers, we also
test and show the results by replacing DPHEM with other
simplification methods, HEM, VKL and L2U.

Fig. 12a presents the precision plots for the various
tracking methods. Our DPHEM+Motion has higher pre-
cision than the other inference methods (P@20 of 0.430
for DPHEM vs. 0.418 for IPF+NoMotion). Comparing sim-
plification methods within the GMM tracking framework,
DPHEM outperforms L2U, VKL, and HEM. DPHEM signif-
icantly outperforms the original particle filter with resam-
pling (OPF), which suggests that using GMMs to represent

posteriors has significant advantages over using weighted
particles. IPF has better precision than Dense, mainly be-
cause the Gaussian diffusion model reduces the chance of
selecting outlier points far from the predicted position as the
tracked position. However, both methods perform slightly
worse when using velocity in the motion model (+Motion).

5.4 Vehicle self-localization

We apply DPHEM to recursive Bayesian filtering for vehicle
self-localization. [21] proposed a probabilistic model for
vehicle self-localization using roof-mounted cameras and a
map of the driving environment. The map is represented
as a graph (see Fig. 11a), and probabilistic models describe
how the vehicle can traverse the graph. Recursive Bayesian
filtering is used to infer the posterior probability of the
vehicle’s states (location and orientation) on the map, given
the visual odometry (observed displacement and orientation
change) calculated from the cameras. Fig. 11 shows the
inference results for the vehicle’s state on the map.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 11

Prediction

SSG

True Likelihood

Simplified PosteriorPosterior

p(yt|xt)

p(xt|y1:t−1)

#component=50

 #component=10

p(xt|y1:t)

#component=500 #component=50

p̂(xt|y1:t)

ll_approx

DPHEM

p(xt−1|y1:t−1)Posterior

y

x
#component=50

p(xt|xt−1)
Gauss

Eq(25) Eq(26)

Output result

Fig. 10. Pipeline for visual tracking using GMM posteriors and density simplification.

(a) Simple street map & Graph (b) Uniform state prior on map (c) Primary modes at 20s (d) Primary modes at 23s

1

2

3

4

1 3

2

4

Fig. 11. Vehicle self-localization with GMMs: (a-top) Simple street map of 4 road segments at a crossing, (a-bottom) corresponding graph
representation, where each node represents a road segment and a directed edge indicates road connectivity. (b) The prior state distribution is
a uniform distribution over all roads on the map; (c) Primary modes of the posterior at 20s – ambiguity of the vehicle’s states decreases since the
posterior on most road segments becoming extremely small. (d) Primary modes at 23s: a single primary mode remains. The vehicle is considered
as localized when there is a single primary mode for 10 contiguous frames.

In [21], the state posterior is represented as a 4D GMM.
Street transition and state transition models are applied to
each Gaussian mode (component) of the posterior distri-
bution, obtaining a set of predictions for the next frame.
Usually one mode leads to one predictive distribution on its
successor road segment, but the number of components will
increase when there are intersections (multiple transition
options). Using the visual odometry observation model,
the predictive distributions are adjusted to form the new
posterior. For the initialization, the initial state is a uniform
distribution on all road segments on the map, which is
formed by creating a GMM with 100 evenly-spaced com-
ponents per kilometer. In order to speed up the calculations,
[21] applied VKL to remove components with small weights
in the posterior at each time step. In this paper, we apply
DPHEM to reduce the complexity.

We use the code released by the author, and follow the
same experiment setup and use the same visual odometry
dataset as [21]. We ignore video sequences 04 (short high-
way road) and 06 (symmetric road) which cannot be local-
ized by this probabilistic model, and use stereo odometry
for the observation model. In order to examine the influence
of different simplifying algorithms on inference for the
vehicle’s localization, we reduce the posterior distribution
at every frame to a given number of components, which
is based on the length of the road segment. The average
filtering time per frame on the 9 test videos is shown in

Fig. 12b. Without using simplification, inference takes on
average 8.75s per frame. Although the posterior grows more
complex with each new frame, the transition model can help
to ignore some roads that are infeasible for the vehicle to
move to from the current location. Applying simplification
to the posterior can save more than half the computing time,
and DPHEM is faster than the other simplification methods.
The largest difference in speed appears at Kr = 30/km,
which we use for evaluation hereafter.

We next evaluate the localization error. Here we consider
the vehicle as localized when there is a single primary mode
in 10 contiguous frames, i.e., there exists only one peak in
the posterior3 In each frame, the primary modes are the
states in the current posterior with large likelihood, and
are found by applying non-maximum suppression on the
Gaussian components of the posterior (with a threshold of
30m), and then searching the regions around the remaining
components for a local maximum in the posterior.

The localization error with respect to the ground truth
is presented in Table 2. Although the final localization
error is influenced by many factors in this complex system,
with all other parameters kept the same, we obtain similar
and sometimes better localization results with DPHEM, as

3. In contrast, [21] defines localization as having a single primary
mode in 10 frames and this mode is within 20m of the ground-truth.
Here we use an evaluation criteria based on a more realistic scenario
where the primary modes are used to propose possible locations while
driving, without knowledge of the ground-truth.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 12

(a) Tracking precision (b) Average filtering time per frame (c) Average percentage of frames

0 10 20 30 40 50
Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

c
is

io
n

DPHEM+Motion [0.430]
L2U+Motion [0.418]
IPF+NoMotion [0.418]
IPF+Motion [0.409]
VKL+Motion [0.386]
Dense+NoMotion [0.384]
Dense+Motion [0.373]
HEM+Motion [0.328]
OPF+Motion [0.241]
OPF+NoMotion [0.239]

20 40 60 80 100

#comp/km

1

2

3

4

5

6

7

8

9

ti
m

e
(s

)

noSimp

HEM

VKL

DPHEM

L2U

2 4 6 8 10

#primary modes

0.7

0.75

0.8

0.85

0.9

0.95

p
e

rc
e

n
ta

g
e

noSimp

VKL

DPHEM

HEM

L2U

Fig. 12. Visual tracking results: (a) Precision plots for visual tracking – the number in the legend is precision at error threshold 20. Vehicle self-
localization results: (b) Average filtering time per frame of 9 video sequences; (c) Average percentage of frames with the number of primary modes
less than a given value. TABLE 2

Average position and angle error of the first 10 localized frames for each test video sequence using stereo visual odometry. “Avg” is the average
error over all sequences. Oracle is the projection error of the GPS track onto the map, which represents the best localization result for the map.

Error Type Methods Video Sequence Avg00 01 02 03 05 07 08 09 10

position (m)

no simplification 1.01 5.99 2.39 3.15 2.66 1.92 121.46 3.98 2.73 16.14
VKL 0.98 12.30 2.31 3.26 2.86 1.98 136.99 3.66 2.45 18.53

DPHEM 1.07 15.24 2.15 3.63 2.34 1.57 27.55 3.78 2.66 6.66
HEM 0.85 10.77 2.94 483.73 2.52 3.75 1.96 2.68 5.23 57.16
L2U 0.93 2301.95 2.56 471.72 2.37 1.60 0.82 3.11 3.05 309.79

Oracle 0.75 1.30 1.03 2.53 1.31 0.60 1.08 1.24 1.03 1.21

angle (degrees)

no simplification 0.50 2.81 1.44 0.57 1.91 1.25 1.35 1.28 0.86 1.33
VKL 0.63 6.72 1.51 0.71 2.21 1.41 0.94 1.01 0.75 1.77

DPHEM 1.88 0.80 0.83 2.08 1.55 1.77 0.93 1.03 0.91 1.31
HEM 0.71 4.77 1.39 82.77 0.99 2.54 3.98 1.51 1.20 11.10
L2U 1.35 40.84 0.70 91.74 2.41 1.81 1.12 1.14 0.67 15.75

compared to the other simplification methods.
Finally, we examine the algorithms before localization

occurs when there are multiple primary modes. When a
few primary modes exist, the system could be used to give
good suggestions to the driver. Fig. 12c plots the percent-
age of frames with less than a given number of primary
modes. DPHEM has higher percentage of frames having
less primary modes, which means the ambiguity decreases
faster than other methods, and good suggestions about the
vehicle’s location can be proposed at earlier times. Even
though the number of primary modes decreases faster, the
localization error shown in Table 2 shows that the accuracy
does not diminish. Note that L2U and HEM also have a
high percentage of frames with less primary modes, but
exhibit large localization errors in Table 2. For these meth-
ods, although the ambiguity has been reduced quickly and
eventually a single mode remains, the final mode is not close
to the ground-truth location.
5.5 Belief propagation

In this section, we apply DPHEM to belief propagation (BP),
which is a useful tool for inference in graphical models
that is based on a sequence of local message passing. In a
single-connected graph, BP can perform exact inference, but
returns an approximate result when loops exist. Normally
messages are interpreted as vectors for discrete variables,
and sufficient statistics such as mean and variance for
Gaussian variables. However, there is usually no tractable
analytic representation for messages in BP when contin-
uous and non-Gaussian variables exist in the graphical
model [36]. [36] proposed non-parametric BP, where mes-
sages are represented with a Gaussian KDE. Each message
update involves a products of GMMs, which results in a
large number of components. [36] proposed to use Gibbs

sampling to approximate the message products as a GMM
with fewer components.

In this experiment, we use a small undirected graph with
4 nodes (see Fig. 13a), in order to be able to compute exact
message passing as a baseline for comparison. The self-
potentials are assumed to be a GMM with 2 components,
with means sampled uniformly over [−4, 4], covariance
1 and random component weights. Each pairwise edge-
potential is assumed to be a single Gaussian with 0 mean
and inverse variance given by the corresponding element

φij of φ =

[
1 0.2 0.4 0.6

0.2 1 0.01 0
0.4 0.01 1 0.8
0.6 0 0.8 1

]
We compare the following

methods for BP:
• Exact: messages are exact product of mixtures;
• Gibbs: messages are modeled with Gaussian kernel

non-parametric density estimation, and message prod-
ucts are found by local Gibbs sampling [36] (we use
1,024 samples);

• DPHEM, HEM, VKL, L2U: messages are the exact
product of mixtures, which are simplified whenever the
number of components exceeds Kr. The weighted k-
means initialization is used.

We compare the various methods by calculating the KLD
between the marginal densities when using the approximate
messages and those when using the exact messages (no
simplification). The results are averaged over 100 trials.

We focus on the first 3 iterations of BP, since computing
the exact messages beyond 3 iterations becomes intractable.
Fig. 13(b-d) shows the error (average KLD over the 4 nodes)
of the various methods in each BP iteration. In this synthetic
experiment, the number of components grows very fast and
most of them are overlapped with each other. With good
initialization, L2U and DPHEM can preserve the marginals

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 13

(a) graph (b) 1st iteration (c) 2nd iteration (d) 3rd iteration

1

2

3

4

2 3 4 5 6 7 8

Kr

10
-8

10
-6

10
-4

10
-2

10
0

k
l
to

 e
x
a

c
t

p
ro

d
u

c
t

m
a

rg
in

a
l

HEM

DPHEM

VKL

L2U

Gibbs

10 20 30 40 50 60

Kr

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

k
l
to

 e
x
a

c
t

p
ro

d
u

c
t

m
a

rg
in

a
l

HEM

DPHEM

VKL

L2U

Gibbs

10 20 30 40 50 60

Kr

10
-8

10
-6

10
-4

10
-2

10
0

k
l
to

 e
x
a

c
t

p
ro

d
u

c
t

m
a

rg
in

a
l

HEM

DPHEM

VKL

L2U

Gibbs

Fig. 13. Belief propagation experiment: (a) the graph; (b-d) average KL divergence between different approximate marginals and the exact product
marginal, at each iteration of belief propagation.

(a) Node 1 (b) Node 2 (c) Node 3 (d) Node 4

-2 -1 0 1 2 3

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
d
f

Exact(16384)

HEM

DPHEM

VKL

L2U

Gibbs

-2 -1 0 1 2 3

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
d
f

Exact(8192)

HEM

DPHEM

VKL

L2U

Gibbs

-2 -1 0 1 2 3

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

p
d
f

Exact(16384)

HEM

DPHEM

VKL

L2U

Gibbs

-2 -1 0 1 2 3

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

p
d
f

Exact(8192)

HEM

DPHEM

VKL

L2U

Gibbs

Fig. 14. The marginal density (belief) at each node after the 3rd iteration of belief propagation. The number of components in the exact marginal
density at each node is shown in the legend. Gibbs sampling uses 1024 samples, while simplification methods use Kr = 4.

well with most KLD less than 10−4. VKL and Gibbs also can
preserve the marginal, but with higher KLD around 10−2. In
contrast, HEM does not preserve the marginal (KLD of 0.1).
Fig. 14 shows an example of marginal distributions after the
3rd iteration. DPHEM and L2U overlap the exact posterior.
VKL also does well when modeling the largest mode, but
distorts the lower probability modes (e.g., in nodes 2 and 4).

6 CONCLUSION

In this paper, we proposed a method for simplifying proba-
bilistic mixture models, and in particular, Gaussian mixture
models. Our method is based on a variational lower bound
of the expected log-likelihood of a set of virtual samples,
drawn from the input mixture model. We also proposed an
algorithm for approximating a likelihood function as a sum
of scaled Gaussians, which was used for recursive Bayesian
filtering with GMM posteriors. Finally, we demonstrated the
efficacy of our algorithm in recursive Bayesian filtering and
KDE reduction, where mixture models with large number
of components are common, with specific applications of
visual tracking, vehicle self-localization, and human loca-
tion modelling. We also demonstrate the applicability of
our algorithm to belief propagation with GMM messages.
In future work, we will explore the feasibility of our infer-
ence algorithm on higher dimensional distributions, such
as those in Gaussian process regression, so that it can be
applied to more computer vision tasks.

ACKNOWLEDGMENTS

The authors would like to thank: A Ihler and M Mandel for KDE
toolbox; E Cho, SA Myers and J Leskovec for the Gowalla dataset in
[63]; Y Wu, J Lim and MH Yang for the tracking dataset and codes
in [66]; K Zhang, L Zhang and MH Yang for the codes in [64]; MA
Brubaker, A Geiger and R Urtasun for the dataset and codes for self-
localization in [21]. This work was supported by the Research Grants
Council of the Hong Kong SAR, China (CityU 110513).

REFERENCES
[1] D. M. Titterington, Statistical analysis of finite mixture distributions.

John Wiley and Sons, Inc., New York, NY., 1985.

[2] G. McLachlan and D. Peel, Finite mixture models. John Wiley &
Sons, 2004.

[3] D. W. Scott, Multivariate density estimation: theory, practice, and
visualization. John Wiley & Sons, 2015.

[4] B. W. Silverman, Density estimation for statistics and data analysis.
CRC press, 1986, vol. 26.

[5] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based
probabilistic tracking,” in ECCV, 2002.

[6] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental
learning for robust visual tracking,” IJCV, vol. 77(1-3), pp. 125–
41, 2008.

[7] F. Bardet, T. Chateau, and D. Ramadasan, “Illumination aware
mcmc particle filter for long-term outdoor multi-object simulta-
neous tracking and classification,” in ICCV, 2009, pp. 1623–1630.

[8] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust l1 tracker using
accelerated proximal gradient approach,” in CVPR, 2012.

[9] X. Jia, H. Lu, and M.-H. Yang, “Visual tracking via adaptive
structural local sparse appearance model,” in CVPR, 2012.

[10] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual
tracking via multi-task sparse learning,” in CVPR, 2012.

[11] D. Wang, H. Lu, and M.-H. Yang, “Least soft-threshold squares
tracking,” in CVPR, 2013.

[12] D. Wang and H. Lu, “Visual tracking via probability continuous
outlier model,” in CVPR, 2014.

[13] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via
sparse collaborative appearance model,” IEEE Transactions on Im-
age Processing, vol. 23, no. 5, pp. 2356–2368, 2014.

[14] D. Varas and F. Marques, “Region-based particle filter for video
object segmentation,” in CVPR, 2014.

[15] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan, “Locally orderless
tracking,” IJCV, vol. 111(2), pp. 213–28, 2015.

[16] M. Lichman and P. Smyth, “Modeling human location data with
mixtures of kernel densities,” in KDD, 2014, pp. 35–44.

[17] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likeli-
hood from incomplete data via the em algorithm,” Journal of the
royal statistical society. Series B (methodological), pp. 1–38, 1977.

[18] M. A. T. Figueiredo and A. K. Jain, “Unsupervised learning of
finite mixture models,” IEEE TPAMI, vol. 24(3), pp. 381–96, 2002.

[19] S. J. Gershman and D. M. Blei, “A tutorial on bayesian nonpara-
metric models,” Journal of Mathematical Psychology, vol. 56, no. 1,
pp. 1–12, 2012.

[20] J. Goldberger and S. T. Roweis, “Hierarchical clustering of a
mixture model,” in NIPS, 2004, pp. 505–512.

[21] M. A. Brubaker, A. Geiger, and R. Urtasun, “Map-based proba-
bilistic visual self-localization,” IEEE TPAMI, vol. 38(4), no. 4, pp.
652–65, 2016.

[22] J. Dhillon, “Differential entropic clustering of multivariate gaus-
sians,” NIPS, vol. 19, p. 337, 2007.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 14

[23] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering
with bregman divergences,” JMLR, vol. 6, pp. 1705–49, 2005.

[24] N. Vasconcelos and A. Lippman, “Learning mixture hierarchies,”
in NIPS, 1998, pp. 606–612.

[25] K. Zhang and J. T. Kwok, “Simplifying mixture models through
function approximation,” IEEE TNN, vol. 21(4), pp. 644–58, 2010.

[26] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos, “Su-
pervised learning of semantic classes for image annotation and
retrieval,” IEEE TPAMI, vol. 29(3), pp. 394–410, 2007.

[27] T.-J. Cham and J. M. Rehg, “A multiple hypothesis approach to
figure tracking,” in CVPR, 1999.

[28] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tuto-
rial on particle filters for online nonlinear/non-gaussian bayesian
tracking,” IEEE TSP, vol. 50(2), pp. 174–88, 2002.

[29] M. L. Psiaki, J. R. Schoenberg, and I. T. Miller, “Gaussian sum
reapproximation for use in a nonlinear filter,” Journal of Guidance,
Control, and Dynamics, vol. 38, no. 2, pp. 292–303, 2015.

[30] M. L. Psiaki, “Gaussian mixture nonlinear filtering with resam-
pling for mixand narrowing,” IEEE TSP, vol. 64(21), pp. 5499–512,
2016.

[31] J. M. Coughlan and S. J. Ferreira, “Finding deformable shapes
using loopy belief propagation,” in ECCV, 2002, pp. 453–468.

[32] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonpara-
metric belief propagation for self-localization of sensor networks,”
IEEE Journal on Selected Areas in Communications, vol. 23, no. 4, pp.
809–819, 2005.

[33] A. T. Ihler and D. A. McAllester, “Particle belief propagation,” in
International Conference on Artificial Intelligence and Statistics, 2009,
pp. 256–263.

[34] M. Isard, J. MacCormick, and K. Achan, “Continuously-adaptive
discretization for message-passing algorithms,” in NIPS, 2009, pp.
737–44.

[35] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesian compres-
sive sensing via belief propagation,” IEEE TSP, vol. 58(1), pp. 269–
280, 2010.

[36] E. B. Sudderth, A. T. Ihler, M. Isard, W. T. Freeman, and A. S.
Willsky, “Nonparametric belief propagation,” Communications of
the ACM, vol. 53, no. 10, pp. 95–103, 2010.

[37] L. Sigal, M. Isard, H. Haussecker, and M. J. Black, “Loose-
limbed people: Estimating 3d human pose and motion using non-
parametric belief propagation,” IJCV, vol. 98(1), pp. 15–48, 2012.

[38] Y. Ma, J. Zhu, and D. Baron, “Approximate message passing algo-
rithm with universal denoising and gaussian mixture learning,”
IEEE TSP, vol. 64(21), pp. 5611–22, 2016.

[39] S. Kwak, T. Lim, W. Nam, B. Han, and J. H. Han, “Generalized
background subtraction based on hybrid inference by belief prop-
agation and bayesian filtering,” in ICCV, 2011.

[40] O. Muller, M. Ying Yang, and B. Rosenhahn, “Slice sampling
particle belief propagation,” in ICCV, December 2013.

[41] Y. Li, D. Min, M. S. Brown, M. N. Do, and J. Lu, “Spm-bp: Sped-
up patchmatch belief propagation for continuous mrfs,” in ICCV,
2015.

[42] T. Jebara, Y. Song, and K. Thadani, “Spectral clustering and em-
bedding with hidden markov models,” in Machine Learning: ECML
2007, 2007, pp. 164–175.

[43] A. Ravichandran, R. Chaudhry, and R. Vidal, “View-invariant
dynamic texture recognition using a bag of dynamical systems,”
in CVPR, 2009.

[44] P. Bruneau, M. Gelgon, and F. Picarougne, “Parsimonious re-
duction of gaussian mixture models with a variational-bayes
approach,” Pattern Recognition, vol. 43, no. 3, pp. 850–858, 2010.

[45] A. Mumtaz, E. Coviello, G. R. Lanckriet, and A. B. Chan, “Clus-
tering dynamic textures with the hierarchical EM algorithm for
modeling video,” IEEE TPAMI, vol. 35, no. 7, pp. 1606–1621, 2013.

[46] N. Vasconcelos, “Image indexing with mixture hierarchies,” in
CVPR, 2001.

[47] K. Ellis, E. Coviello, and G. R. Lanckriet, “Semantic annotation and
retrieval of music using a bag of systems representation.” in Inter-
national Society for Music Information Retrieval Conference(ISMIR),
2011, pp. 723–728.

[48] E. Coviello, A. Mumtaz, A. B. Chan, and G. R. Lanckriet, “Growing
a bag of systems tree for fast and accurate classification,” in CVPR,
2012.

[49] R. M. Neal and G. E. Hinton, “A view of the em algorithm that
justifies incremental, sparse, and other variants,” in Learning in
graphical models, 1998, pp. 355–368.

[50] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential

families, and variational inference,” Foundations and Trends R© in
Machine Learning, vol. 1, no. 1-2, pp. 1–305, 2008.

[51] I. Csisz and G. Tusnády, “Information geometry and alternating
minimization procedures,” Statistics and decisions, Supplemental
Issue 1, pp. 205–237, 1984.

[52] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul,
“An introduction to variational methods for graphical models,”
Machine Learning, vol. 37, no. 2, pp. 183–233, 1999.

[53] T. S. Jaakkola, “10 tutorial on variational approximation methods,”
Advanced mean field methods: theory and practice, p. 129, 2001.

[54] E. Coviello, A. B. Chan, and G. R. Lanckriet, “Clustering hidden
markov models with variational hem,” JMLR, vol. 15(1), pp. 697–
747, 2014.

[55] J. R. Hershey and P. A. Olsen, “Approximating the kullback leibler
divergence between gaussian mixture models,” in ICASSP, 2007.

[56] S. Hong and B. Han, “Visual tracking by sampling tree-structured
graphical models,” in ECCV, 2014, pp. 1–16.

[57] A. R. Zamir and M. Shah, “Accurate image localization based on
google maps street view,” in ECCV, 2010, pp. 255–268.

[58] G. Vaca-Castano, A. R. Zamir, and M. Shah, “City scale geo-spatial
trajectory estimation of a moving camera,” in CVPR, 2012.

[59] M. J. Milford and G. F. Wyeth, “Seqslam: Visual route-based
navigation for sunny summer days and stormy winter nights,”
in ICRA, 2012, pp. 1643–49.

[60] Z. Chen, “Bayesian filtering: From kalman filters to particle filters,
and beyond,” Statistics, vol. 182, no. 1, pp. 1–69, 2003.

[61] A. Sadilek, H. A. Kautz, and V. Silenzio, “Modeling spread of
disease from social interactions.” in ICWSM, 2012.

[62] S. J. Vaughan-Nichols, “Will mobile computing’s future be loca-
tion, location, location?” Computer, vol. 42, no. 2, pp. 14–17, 2009.

[63] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility:
user movement in location-based social networks,” in KDD, 2011,
pp. 1082–90.

[64] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive
tracking,” in ECCV, 2012, pp. 864–877.

[65] Y. Wu, J. Lim, and M.-H. Yang, “Online Object Tracking: A Bench-
mark,” in CVPR, 2013.

[66] ——, “Object tracking benchmark,” IEEE TPAMI, vol. 37(9), pp.
1834–48, 2015.

Lei Yu received the B.S. and M.S. degree in
Information and Computing Science, and Com-
puter Software and Theory from the Hunan Nor-
mal University, Changsha, China, in 2010 and
2013, respectively. She is currently working to-
wards the PhD degree in Computer Science
at the City University of Hong Kong. Her re-
search interests include Computer Vision, Ma-
chine Learning and Optimization.

Tianyu Yang received the B.E. degree from
Liaocheng University, Liaocheng, China, and the
M.E. degree from Shenzhen Institutes of Ad-
vanced Technology, Chinese Academy of Sci-
ences, Shenzhen, China, in 2010 and 2013, re-
spectively. He is currently a PhD student at City
University of Hong Kong, China. His current re-
search interests include visual tracking and deep
learning.

Antoni B. Chan received the B.S. and M.Eng.
degrees in electrical engineering from Cornell
University, Ithaca, NY, in 2000 and 2001, and
the Ph.D. degree in electrical and computer en-
gineering from the University of California, San
Diego (UCSD), San Diego, in 2008. He is cur-
rently an Associate Professor in the Department
of Computer Science, City University of Hong
Kong. His research interests include computer
vision, machine learning, pattern recognition,
and music analysis.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2018.2845371

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

