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A Scalable and Accurate Descriptor for Dynamic
Textures using Bag of System Trees

Adeel Mumtaz, Emanuele Coviello, Gert. R. G. Lanckriet, Antoni B. Chan

Abstract—The bag-of-systems (BoS) representation is a descriptor of motion in a video, where dynamic texture (DT) codewords
represent the typical motion patterns in spatio-temporal patches extracted from the video. The efficacy of the BoS descriptor depends
on the richness of the codebook, which depends on the number of codewords in the codebook. However, for even modest sized
codebooks, mapping videos onto the codebook results in a heavy computational load. In this paper we propose the BoS Tree, which
constructs a bottom-up hierarchy of codewords that enables efficient mapping of videos to the BoS codebook. By leveraging the tree
structure to efficiently index the codewords, the BoS Tree allows for fast look-ups in the codebook and enables the practical use of larger,
richer codebooks. We demonstrate the effectiveness of BoS Trees on classification of four video datasets, as well as on annotation of
a video dataset and a music dataset. Finally, we show that, although the fast look-ups of BoS Tree result in different descriptors than
BoS for the same video, the overall distance (and kernel) matrices are highly correlated resulting in similar classification performance.

Index Terms—Dynamic Textures, Bag of Systems, Video Annotation, Music Annotation, Dynamic Texture Recognition, Efficient
Indexing, Large Codebooks.
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1 INTRODUCTION
The bag-of-systems (BoS) representation [1], a high-level
descriptor of motion in a video, has seen promising results in
video texture classification [2, 3, 4]. The BoS representation
of videos is analogous to the bag-of-words representation of
text documents, where documents are represented by counting
the occurrences of each word, or the bag-of-visual-words
representation of images, where images are represented by
counting the occurrences of visual codewords in the image.
Specifically, in the BoS framework the codebook is formed by
generative time-series models (in particular, linear dynamical
systems or dynamic textures [5]) instead of words, each of
them compactly characterizing typical textures and dynamics
patterns of pixels or low-level features in a spatio-temporal
patch. Hence, each video is represented by a BoS histogram
with respect to the codebook, by assigning individual spatio-
temporal patches to the most likely codeword, and then count-
ing the frequency with which each codeword is selected. An
advantage of the BoS approach is that it decouples modeling
content from modeling classes. As a consequence, a codebook
of sophisticated generative models can be robustly compiled
from a large collection of videos, while simpler models,
based on standard text mining algorithms, are used to capture
statistical regularities in the BoS histograms representing the
subsets of videos associated to each individual class.

The BoS representation was originally proposed for video
texture classification [1], where the dynamic texture (DT)
codewords quantize prototypical patterns in spatio-temporal
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cubes corresponding to interest points in videos, and was
proven superior to standard methods based on modeling each
video with a single DT model [6]. The BoS representation is
not limited to video, but is also applicable as a descriptor to
any type of time-series data. In particular, the BoS framework
has also proven highly promising in automatic music anno-
tation and retrieval [7], registering significant improvements
with respect to current state of the art systems.

In practice, the efficacy of the BoS descriptor (or any
bag-of-words representation) depends on the richness of the
codebook, i.e., the ability to effectively quantize the feature
space, which directly depends on both the method of learning
codewords from training data, and the number of codewords in
the codebook. For the former, the learning of good codewords
is addressed in [2] by using a hierarchical EM algorithm. For
the latter, increasing the number of codewords also increases
the computational cost of mapping a video onto the code-
book; indeed, the computational complexity is linear in the
number of codewords. For the standard bag-of-visual-words,
increasing the number of codewords is typically not a problem,
since the simple L2-distance function is used to identify the
visual codeword closest to an image patch. On the other hand,
for the BoS in [2], finding the closest codewords to a video
patch requires calculating the likelihood of a video patch under
each DT codeword using the Kalman filter. For even modest
sized codebooks, this results in a heavy computational load.
For example, the BoS codebooks of [2] are limited to only 8
codewords and [3] uses a maximum of 64 codewords.

In order to handle an extremely large bag-of-visual-words
codebook (e.g., 106 codewords), Nister and Stewenius [8] pro-
posed a tree-structured vector quantizer (TSVQ) for Euclidean
vectors, which creates a hierarchical quantization of the feature
space for efficient indexing of the vector codewords. Inspired
by this idea, to address the computational challenges of the
BoS representation, in this paper we propose the BoS Tree,
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which combines the expressiveness of a large BoS codebook
with the efficiency of a small BoS codebook. Our proposed
approach constructs a bottom-up hierarchy of codewords,
and then leverages the tree structure to efficiently index the
codewords by choosing only the most-likely branches when
traversing the tree. In this way, the proposed BoS Tree allows
for fast look-ups on the codebook and consequently enables
the practical use of a larger BoS codebook. The novelty of
our approach is that we extend tree-structured search to a
codebook consisting of time-series models (i.e., DT models),
instead of to a VQ codebook of Euclidean vectors. Although
a VQ codebook could be extended to video patches, e.g., by
concatenating all frames into a single vector, the resulting
image codewords would not handle spatio-temporal variations
well, and would be extremely high dimensional.

The contributions of this paper are three-fold. First, we
propose the BoS Tree for fast-indexing of large BoS code-
books. Second, we experiment with the BoS Tree on a variety
of applications, including video annotation, music annotation
and retrieval, and video texture classification, and demonstrate
that BoS Tree reduces the computational cost by at least one
order of magnitude versus a standard large codebook, while
achieving similar performance. Finally, we perform a detailed
analysis of the BoS Tree projections and present evidence
for the obtained results by comparing BoS Tree and BoS
histograms.

The remainder of this paper is organized as follows. We
discuss related work in Section 2. In Section 3, we review the
BoS representation and DT model. Next we propose the BoS
Tree in Section 4. After that in Section 5, we present three
applications of the BoS Tree with experimental evaluations.
Finally in Section 6, we present a detailed analysis of the
BoS Tree descriptor as compared to that of the BoS.

2 RELATED WORK

Most state of the art methods for dynamic texture recognition
are based on either DT models [9, 10, 11, 1] or aggregations
of local descriptors [12, 13]. At first [9, 10] represented
each video as a DT model and then performed classifica-
tion by either nearest neighbors or support vector machine
(SVM), by adopting an appropriate distance (dissimilarity)
measure between dynamic textures, e.g.., Martin distance [9]
or Kullback-Leibler divergence [10]. The resulting descriptors
suffers the drawback of only modeling a particular viewpoint
of each texture because they work on the holistic or global
appearance of the video, i.e., the video frame as a whole. In
order to address this issue, subsequent methods addressed the
problems of translation-invariance and view-point variation:
[11] proposed a new distance (dissimilarity) measure between
DTs, which is based only on the spectrum or cepstrum of the
hidden-state process and ignores the appearance component
of the model; [1] proposes a bag-of-systems (BoS) represen-
tation in which spatio-temporal patches are extracted from
videos using interest-point operators, and then assigned to DT
codewords. Experimental results in [1] show that the patch-
based framework of the BoS is more adaptive to changes in
viewpoint, as compared to approaches based on modeling the
holistic appearance of a video with a DT [9, 10]. The BoS Tree

studied in this paper is an efficient method for computing a
BoS descriptor when the number of codewords is large.

The bag-of-features “cousin” of our BoS Tree is the tree-
structured vector quantizer (TSVQ) [14], which creates a
hierarchical quantization of a feature space, and was proposed
by Nister et al. for efficiently indexing a large vocabulary of
image codewords [8], and by Grauman et al. to define the bins
of multi-resolution histograms [15]. The difference between
existing methods and our proposed approach is that the BoS
Tree extends tree-structured search to a codebook formed by
time-series models (i.e., DT models), which are well suited to
handle spatio-temporal variations in videos. In practice, this
allows for an efficient deployment of a BoS codebook with a
large number of codewords.

Efficient indexing of codewords is also related to fast ap-
proximate nearest-neighbor (NN) search. Typical approaches
to fast NN for real-vectors also exploit a tree data structure,
e.g., KD-trees and metric ball trees, and use branch and bound
methods to traverse the tree to find the nearest neighbor
[16, 17]. Cayton [18] generalizes metric ball trees to Bregman
divergences, enabling fast NN search of histograms using
the KL divergence. Alternatively, approximate search can be
performed efficiently using randomized trees [19], by building
a forest of KD trees [20] and randomly selecting splitting
dimensions with high variance, or using locality-sensitive
hashing (LSH) [21], which maps similar items into the same
hashing bucket with high probability.

The BoS Tree proposed here is similar to the Bregman-ball
tree in [18], in that both use KL divergence-based clustering
to hierarchically construct a tree. The main differences are that
our BoS Tree is based on probability distributions (in fact ran-
dom processes) with hidden states, while [18] is limited to only
exponential family distributions, and that our nearest-neighbor
search is based on data likelihood, not KL divergence. In
addition, we use a simple forward search to traverse the tree,
whereas [18] uses a more complicated branch and bound
method. Experimentally, we found that the forward search was
both efficient and produced satisfactory BoS descriptors. The
approximate branch and bound method proposed in [22] is
applicable to a BoS Tree but is limited to NN search based
on KL divergence. Finally, our BoS Tree is also related to fast
image retrieval work by [23], where each image is modeled
as a Gaussian distribution and a retrieval tree is constructed
using the HEM algorithm for Gaussian models. In contrast to
[23], our work retrieves time-series models (linear dynamical
systems) instead of Gaussians, and calculates similarities using
log-likelihood scores.

In contrast to using DT models, several approaches perform
DT recognition using aggregations of local descriptors. [13]
uses a combination of local binary pattern (LBP) histograms
extracted from three orthogonal planes in space-time (XY,
XT, YT), while [12] uses distributions of local space-time
oriented structures. Although these two local descriptors are
more robust to viewpoint variations, compared to holistic
appearance models, they are not capable of capturing longer-
term motion dynamics of the texture process, as a consequence
of the aggregation operation. Similarly [24] performs only
spatial binning, where descriptors are extracted from a set of
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spatiotemporal oriented filters over different spatial windows
of the video and then concatenated. Although the spatial
binning captures location-dependent texture patterns, it is not
able to well represent long-term temporal dynamics present in
the texture processes.

Finally, with respect to our previous work, the BoS Tree
was originally proposed in [25]. In contrast to [25], this paper
presents a more complete analysis and significantly more ex-
perimental results, including: 1) a new experiment on semantic
motion annotation using a video dataset of real scenes; 2) a
new experiment on dynamic texture recognition using a large
natural scene data set from [24], with comparisons to other
state-of-the-art methods; 3) an insightful comparison of the
descriptors produced by the BoS Tree and those produced by
the standard BoS approach.

3 THE BOS REPRESENTATION

Analogous to the bag-of-words representation for text doc-
uments, the bag-of-systems (BoS) descriptor [1] represents
videos with respect to a vocabulary, where generative time-
series models, specifically linear dynamical systems or dy-
namic textures, are used in lieu of words.

3.1 The dynamic texture model
In general, the content of a video is represented by a set of P
time series of low-level feature vectors Y = {y(1), . . . ,y(P )},
which correspond to spatio-temporal cubes sampled from the
video, where P depends on the size of the video and the
granularity of the sampling process. Each time series y(p) =

[y
(p)
1 , · · · , y(p)τ ] is composed of τ vectorized image patches

extracted from consecutive frames. In the BoS representation,
the codebook discretizes the space of time-series using a set
of dynamic texture codewords.

The dynamic texture (DT) model [5] represents time series
data by assuming that it is generated by a doubly embedded
stochastic process, in which a lower dimensional hidden
Gauss-Markov process xt ∈ Rn encodes the temporal evo-
lution of the observation process yt ∈ Rm. Specifically, the
DT model is described by a linear dynamical system (LDS),

xt = Axt−1 + vt, (1)
yt = Cxt + wt + ȳ, (2)

and is specified by the parameters Θ = {A,Q,C, R, µ, S, ȳ},
where the state transition matrix A ∈ Rn×n encodes the
dynamics of the hidden state variable (e.g., the evolution), the
observation matrix C ∈ Rm×n encodes the basis functions for
representing the sequence, vt ∼ N (0, Q) and wt ∼ N (0, R)
are respectively the driving and observation noises, ȳ ∈ Rn
is the mean feature vector, and N (µ, S) specifies the initial
condition.

3.2 Learning the codebook
The BoS codebook C is learned from a training set Xc, i.e., a
collection of representative videos. A two-stage procedure is
typically used, where first each video is summarized with a
set of DTs, followed by clustering of the video DTs to obtain
the codewords.

In [1], spatio-temporal (ST) interest point operators are
used to extract interesting motion patches, and DT parameters
Θ = {A,Q,C,R, µ, S, ȳ} are estimated for each patch.
The video DTs are then embedded into a Euclidean space
via non-linear dimensionality reduction in tandem with the
Martin distance [26, 9]. The embedded DTs are clustered in
the Euclidean space using the K-means clustering algorithm.
Finally, to represent each cluster, the learned DTs, which map
the nearest to the cluster centers in the embedding, are selected
as the codewords.

An alternative approach, presented in [2, 3], is based on
the probabilistic framework of the DT. For each video, spatio-
temporal patches are extracted using dense sampling, and a
dynamic texture mixture (DTM) is learned for each video
using the EM algorithm [27]. The video DTs are then directly
clustered using the hierarchical EM algorithm, producing
novel DT cluster centers that are used as the codewords.

Finally, a third approach [4] defines a distance between DTs
as the minimal distance after aligning the two DTs in their
equivalence space. The distance is then used with a generalized
K-means algorithm to cluster the video patch DTs, forming a
novel DT codewords.

While these three approaches effectively produce small-
sized codebooks (both [1, 2] use 8 codewords, [3] uses 64,
and [4] uses 56), they are only applicable to small and simple
datasets, e.g., UCLA 8-class [1]. Indeed, they are not rich
enough to produce accurate classifications when applied to
larger or more challenging datasets, as demonstrated in the
experiments in Section 5. A final approach [28] forms a large
codebook by directly selecting each DT from the video-level
DTMs as a codeword. This forms a very large (and hence rich)
codebook (400 codewords), but has significant computational
cost when mapping to the codebook.

3.3 Projection to the codebook
Given a codebook C, a video Y is represented by a BoS
histogram hY ∈ R|C| that records how often each codeword
appears in that video. To build the BoS histogram, we extract a
dense sampling of spatio-temporal cubes from Y . Each cube
y(p) is compared to each codeword Θi ∈ C by using the
likelihood of the codeword generating the cube, p(y(p)|Θi),
which can be efficiently computed with the “innovations” form
using the Kalman filter [29]. Defining a quantization threshold
k ∈ {1, . . . , |C|}, each cube is then assigned to the k most
likely codewords, and the BoS histogram for Y is finally
built by counting the frequency with which each codeword is
selected. Specifically, the weight of codeword Θi is calculated
with

hY [i] =
1

|Y|
∑

y(p)∈Y

1

k
1[i ∈ k

argmax
j

p(y(p)|Θj)], (3)

where argmaxkj returns the indices of the codewords with the
k-largest likelihoods, and 1[·] is the indicator function.

When the quantization threshold k is equal to 1, then (3)
reduces to the typical notion of the term frequency (TF) rep-
resentation. The effect of k > 1 is to counteract quantization
errors that can occur when a time series is approximated
equally well by multiple codewords.
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An alternative to the standard TF representation is the term
frequency-inverse document frequency (TF-IDF) representa-
tion, which takes into account the statistics of the training
set by assigning more weight to codewords that appear less
frequently in the collection, and down-weighting codewords
that are more common. Specifically, given the BoS histogram
hY , the corresponding TF-IDF representation is obtained with
the following mapping:

ĥY [i] =
1

α
hY [i] · IDF [i], for i = 1, . . . , |C|, (4)

where α normalizes the histogram, and the IDF factor is
computed as

IDF [i] = log
|Xc|

|{Y ∈ Xc : hY [i] > 0}| . (5)

The denominator in (5) is the number of training videos that
exhibit at least one codeword Θi. Hence if all videos contain
the codeword Θi, then the IDF factor will be 0 and the
codeword is uninformative.

Mapping a video Y to its BoS histogram hY requires a total
of |Y||C| likelihood computations, i.e., each spatio-temporal
cube y(p) ∈ Y is compared to each codeword Θi ∈ C.
When both |Y| and |C| are large, projecting one video on
the codebook is computationally demanding, especially when
using large video patches, which makes individual likelihood
comparisons slow. Therefore, the deployment of a large code-
book is impractical due to the associated long delays. However,
representing the variety of visual information typical of large
and diverse video collections requires a rich, large codebook.
In the next section we propose the BoS Tree which, by
organizing codewords in a bottom-up hierarchy, reduces the
number of computations necessary to index a large collection
of codewords.

4 THE BOS TREES

In this section we propose the BoS Tree, which consists of a
bottom-up hierarchy of codewords learned from a corpus of
representative videos. The bottom level of the tree is formed
by a large collection of codewords. A tree structure is then
formed by repeatedly using the HEM algorithm to cluster the
codewords at one level, and using the novel cluster centers as
codewords at the new level. Branches are formed between the
codewords at a given level and their cluster centers at the next
higher level.

When mapping a new video onto the codebook, each video
patch is first mapped onto the codewords forming the top-level
of the BoS Tree. Next, the video patch is propagated down the
tree, by identifying branches with the most-promising code-
words (i.e., with largest likelihood). Selecting the most-likely
branches reduces the number of likelihood computations,
while also preserving the descriptor quality, since portions of
the tree that are not explored are not likely to be codewords
for that patch. In this way, the BoS Tree efficiently indexes
codewords while preserving the quality of the BoS descriptor,
and hence enables the deployment of larger codebooks in
practical applications.

In this section, we first discuss the HEM algorithm for
clustering dynamic textures, followed by the algorithms used
for forming and using the BoS Tree.

4.1 The HEM algorithm
Given a collection of DTs, the HEM algorithm for DTMs
(HEM-DTM) [2, 3] partitions them into K clusters of DTs
that are “similar” in terms of their probability distributions,
while also learning a novel DT to represent each cluster. This
is similar to K-means clustering, with the difference that the
data points are DTs instead of Euclidean vectors.

Specifically, the HEM-DTM takes as input a DTM with
K(b) components and reduces it to a new DTM with fewer
components K(r) < K(b). Given the input DTM Θ(b) =

{Θ(b)
i , π

(b)
i }K

(b)

i=1 , the likelihood of a spatio-temporal cube y
is given by

p(y|Θ(b)) =

K(b)∑
i=1

π
(b)
i p(y|z(b) = i,Θ

(b)
i ), (6)

where z(b) ∼ multinomial(π
(b)
1 , · · · , π(b)

K(b)) is the hidden
variable that indexes the mixture components. p(y|z(b) =

i,Θ
(b)
i ) is the likelihood of y under the ith mixture component,

and π(b)
i is the prior weight for the ith component.

The goal is to find a reduced model Θ(r), which represents
(6) using fewer mixture components. The likelihood of the
spatio-temporal cube y given the reduced mixture Θ(r) =

{Θ(r)
j , π

(r)
j }K

(r)

j=1 is given by

p(y|Θ(r)) =

K(r)∑
j=1

π
(r)
j p(y|z(r) = j,Θ

(r)
j ), (7)

where z(r) ∼ multinomial(π
(r)
1 , · · · , π(r)

K(r)) is the hidden
variable for indexing components in Θ(r).

The HEM-DTM algorithm estimates (7) from (6) by max-
imizing the likelihood of N virtual spatio-temporal cubes
Y = {Y i}K(b)

i=1 generated accordingly to Θ(b), where Y i is
a set of Ni = π

(b)
i N samples drawn from Θ

(b)
i . In order

to produce a consistent clustering of the input DTs, the
HEM algorithm assigns the whole sample set Y i to a single
component of the reduced model. Assuming that the size of the
virtual sample is appropriately large, the law of large number
allows the virtual samples to be replaced with an expectation
with respect to the input DTs. A complete description of HEM-
DTM appears in [2, 3], while here we note that the output of
the HEM algorithm is: 1) a clustering of the original K(b)

components into K(r) groups, where the cluster membership
is encoded by the assignments ẑi,j = p(z(r) = j|z(b) = i), and
2) novel cluster centers represented by the individual mixture
components of (7), i.e., {Θ(r)

j }K
(r)

j=1 .

4.2 Building a BoS Tree
A BoS Tree is built from a collection of representative videos
Xc with an unsupervised clustering process based on the HEM-
DTM algorithm (Figure 1a). The bottom level of the tree
C(1) = {Θ(1)

i }K1
i=1 consists of a large codebook compiled by

pooling together the DT codewords extracted from individual
videos in Xc (as in [28]). For each video, a DTM with Kv

components is learned using the EM algorithm [27], and the
DTMs from all videos are pooled to form K1 = Kv|Xc|
codewords. Next, starting from the bottom level, a BoS
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(a) Building a BoS Tree. (b) Indexing with a BoS Tree.

Fig. 1: (a) A BoS Tree is built from a collection of videos Xc by
forming a hierarchy of codewords. (b) The tree structure of the BoS
Tree enables efficient indexing of codewords.

Tree of L levels is built recursively using the HEM-DTM
algorithm L − 1 times. Each new level of the BoS Tree,
i.e., C(`+1) = {Θ(`+1)

j }K`+1

j=1 , is formed by clustering the K`

DTs at the previous level ` into K`+1 < K` groups using
the HEM-DTM algorithm. In particular, the input mixture is
given by the DT codewords at level ` with uniform weight,
i.e., Θ(b) = {Θ(`)

i , 1
K`
}K`i=1, and the novel DT cluster centers

learned by the HEM-DTM algorithm are used as codewords
at the new level, i.e., C(`+1) = {Θ(r)

j }
K`+1

j=1 .

The branches between contiguous levels in the BoS Tree
are instantiated as dictated by the assignment variables ẑi,j
of the HEM-DTM algorithm, which is a function of the
Kullback-Leibler (KL) divergence between DTs at each level.
In particular, to connect level ` + 1 to level `, we define the
set of branches for each codeword j ∈ [1K`+1] from level
`+ 1 as

B(`+1)
j = {i ∈ [1K`]|j = argmin

h
KL(Θ

(`)
i ||Θ

(`+1)
h )}. (8)

This is effectively the set of input DTs (at level `) that are
assigned to cluster j when constructing level `+ 1 of the BoS
Tree. Finally, the BoS Tree T is the collection of codewords
at each level and their corresponding branch sets, i.e., T =
{C(1), · · · , C(L),B(2), · · · ,B(L)}.

It is worth mentioning here that BoS Tree is built in a
bottom-up manner, unlike tree-structured vector quantizers [8],
which use a top-down approach to cluster the entire collection
of feature vectors from the training videos. The reasons are
two-fold. First, the top-down approach requires running the
EM algorithm [27] on the full training set (densely sampled
patches from all training videos) to learn DTMs at each level
of the tree. Although the training videos are split between
branches of the tree, all videos are still being processed by
EM at each level. In contrast, for the bottom-up approach,
the training videos are only used for EM learning on the
bottom-level of the tree. The subsequent higher-levels are
obtained by directly clustering the DT codewords from the
lower-levels. Hence, the bottom-up approach is more scalable,
especially when E-step inference is computationally intensive

as in the case for DTMs.1 Second, the bottom-up strategy
computes a “video-based” codebook with codewords that are
spread out evenly among the training videos, i.e., each video
contributes a few representative codewords. Recent work [30]
shows that a “video-based” codebook obtains better annota-
tion/retrieval performance than a “collection-based” codebook,
where codewords are learned from the whole training set at
once. [30] suggests that the “video-based” codebook has better
discrimination ability since it contains more codewords in the
high-density regions of the feature space.
4.3 Fast codewords indexing with BoS Trees
The BoS Tree T allows for quick look-ups in the large
codebook C(1), which forms the bottom level of the tree, by
leveraging the hierarchical structure to index the codewords
efficiently (Figure 1b). To map a video Y to its BoS histogram
hY ∈ RK1 , we extract a dense sampling of spatio-temporal
cubes and propagate each cube down only the more promising
paths of the BoS Tree. In particular, each cube y is initially
compared to the codewords at the top level of the BoS Tree
(i.e., level L), and assigned to the κ(L) most likely ones,

J (L) =
κ(L)

argmax
j∈[1KL]

p(y|Θ(L)
j ). (9)

J (L) is the set codewords indices at level L that will be
explored, and the parameter κ(L) controls how many branches
are explored at level L. Next, the cube y is propagated down
to the successive level following the branches that depart from
the codewords selected at the current level,

J (`) =
κ(`)

argmax
i∈⋃

j∈J (`+1) B(`+1)
j

p(y|Θ(`)
i ), (10)

for ` = L− 1, L− 2, . . . , 2, 1. At the bottom level of the BoS
Tree (i.e., ` = 1), the number of occurrences of each codeword
is registered, and TF or TF-IDF histograms are then computed.

Setting the quantization thresholds [κ(1), . . . , κ(L)] to values
larger than 1 counteracts the effect of quantization errors and
improves the accuracy of the BoS (in comparison to the full
codebook computation), but increases the number of likelihood
computations.

An alternative to selecting a fixed number of codewords at
one level, is to select a variable number of codewords based on
the uncertainty of the BoS quantization. This is implemented
by defining the operator

Ω(J ,T) = {j ∈ J |p(y|Θj) ≥ Tmax
h∈J

p(y|Θh)}

which selects all codewords whose likelihood is within a
threshold T from the largest, and replacing (9) and (10) with

J (L) = Ω([1KL],T(L)) (11)

J (`) = Ω(∪j∈J (`+1)B(`+1)
j ,T(`)). (12)

1. Formally, consider a two-level tree with K1 and K2 codewords at the
bottom and top levels (branching factor of B = K1/K2), which is built
from N training patches. For the top-down approach, the data is clustered
into K2 groups, and then each group is clustered into B sub-groups, resulting
in O(N(B+K2)) E-step inference operations. For the bottom-up approach,
patches from each video are grouped into Kv clusters, and then the resulting
K1 codewords are grouped into K2 clusters, which yields O(NKv+K1K2)
E-step operations. Under the reasonable assumption that K1 � N , the
bottom-up approach will be more efficient when Kv < B + K2. In our
experiments, a typical setting is Kv = 4, K1 = 640, K2 = 64, B = 10,
and N = 72000.
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EM-DTM Algorithm

HEM Algorithm

(b)

L2 HEM Algorithm L3
BoS Tree

L1
Fig. 2: Comparison of SML-DTM framework and BoS Tree framework: (a) Learning DT annotation models using HEM-DTM algorithm.
(b) Building a BoS Tree with 3 levels.

The BoS Tree reduces the number of likelihood computa-
tions necessary to map a video to its codebook representation.
Assuming that a BoS Tree has K top-level codewords, L
levels, and B branches on average per codeword, the average
number of likelihood computations required for the BoS Tree
look-up is (K + B(L − 1)), which is much less than the
K · BL−1 computations required for directly indexing the
bottom-level of the tree. Therefore, the BoS Tree enables the
use of large and rich codebooks while still maintaining an
acceptable look-up time. As the portions of the BoS Tree that
are not explored are the ones that are not likely to provide
appropriate codewords for a given video (in both the likelihood
sense for a tested codeword, and KL-divergence sense for the
children of that codeword), there is not expected to be a big
loss in performance with respect to linear indexing of a large
codebook. We demonstrate this experimentally in Section 5.

5 APPLICATIONS AND EXPERIMENTS

In this section we present an empirical evaluation of the BoS
Tree. We first present an application of the BoS Tree to
semantic motion annotation of videos and to dynamic scene
recognition. Then, to demonstrate the applicability of the BoS
Tree framework to time series data other than video, we
present an experiment on automatic music annotation.

5.1 Implementation notes
In the following experiments, the EM algorithm for DTMs
(EM-DTM) [27] is first used to learn video-level DTMs from
overlapping video patches (spatio-temporal cubes) extracted
from the video. These individual mixture components of
the video-level DTMs form the bottom level of the BoS
Tree as described in Section 4.2. We initialize the EM-DTM
algorithm using an iterative “component splitting” procedure,
as described in [27], where EM is run repeatedly with an
increasing number of mixture components. Specifically, we
start by estimating a DTM with K = 1 components by
running EM-DTM to convergence.2 Next, we select a DT
component, and duplicate it to form two components (this
is the “splitting”), followed by slightly perturbing the DT
parameters. This new DTM with K = 2 components serves
as the initialization for EM-DTM, which is again run until
convergence. The process is repeated until the desired number

2. The single component is initialized using the least-squares method [5].

of components is reached. We use a growing schedule of
K = {1, 2, 4, 8, 16}, and perturb the observation matrix C
when creating new DT components.

We use a similar procedure for initializing the HEM-DTM
algorithm [3], which is used to build successive levels in the
BoS Tree. We set the number of virtual samples of the HEM-
DTM algorithm to N = 1000 and temporal length τ = 20.
The state-space dimension is set to n = 10. Finally, we use
an isotropic covariance matrix for the observation noise of the
DT, i.e., R = rI .
5.2 Types of BoS descriptors

In our experiments we test the following types of BoS descrip-
tors, which vary in their size and indexing method:
• BoS Tree: A BoS Tree (BoST) codebook is formed from

all videos in the training set, as described in Section 4.2
and illustrated in Figure 2b. The 1st (bottom) level of the
BoS Tree is used as the codebook. A video is mapped
to a BoS histogram using the fast tree-based indexing
described in Section 4.3.

• large BoS: The bottom level codebook of the BoS Tree is
used as the codebook. Given a video, the BoS histogram
is calculated using direct indexing of the codewords. The
expressive power of the large BoS is the same as the BoS
Tree; the main difference is in the indexing method.

• reduced BoS: A BoS with a reduced number of code-
words is generated by applying the HEM algorithm to
the large BoS as in [2, 3]. This is equivalent to using the
DTs at the 2nd-level of the BoS Tree as the codewords.
The BoS histogram is calculated using direct indexing.

The BoS histograms are then converted to TF or TF-IDF
descriptors. Note that the reduced and large BoS use direct-
indexing, and hence they can be regarded as instances of [2, 3].

5.3 Semantic video texture annotation

In the first experiment, we perform video annotation on the
DynTex data set [31] using BoS Tree, and compare results
with supervised multi-class labeling with DTM models (SML-
DTM) [3]. We use the BoS Tree to map videos to their
histogram representations over the codebook, and successively
fit a classifier to make prediction based on these histograms.

In our earlier SML-DTM work [3], each tag was modeled
with a DTM, which was learned by applying the HEM-DTM
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algorithm directly to the video-level DTMs associated with
that tag, as shown in Figure 2a. A video is then annotated by
computing the likelihood of its video patches under the tag
DTMs, and then selecting the k most likely tags. Note that
the SML-DTM framework in [3] represents each video as a
set of patches, whereas the BoS Tree framework uses a higher
level encoding (i.e., the BoS histogram).

5.3.1 BoS tree video annotation framework
In this section we present a framework for video annotation
using BoS Trees. First, all videos are represented using TF-
IDF descriptors, which are obtained using the BoS Tree, and
a support vector machine (SVM) classifier [32] is trained for
each tag model.3 In order to account for the simplicial structure
of the BoS histograms, we used a kernel SVM with the
Bhattacharyya kernel (see Table 3), since this kernel produced
the best results in previous work on BoS classification [3]. In
practice, the Bhattacharyya kernel is taking the square root
of the histogram entries. This has the effect of projecting the
points on a simplex to the shell of a sphere, where they are
more likely to be linearly separable. SVM parameters were
determined using 10-fold cross-validation on the training set.

To annotate a test video, first its BoS Tree representation
is computed, and then the probability of the video being the
positive class is calculated for each binary tag classifier. The
probabilities from the binary classifiers are concatenated and
normalized, producing a semantic multinomial for annotation.
For implementation of binary classifiers and probability esti-
mates, we used the LibSVM package [33].

5.3.2 Dataset
We performed video annotation experiments on the DynTex
database [31], which is a collection of 385 video sequences
of everyday surroundings with ground-truth annotations. We
follow the benchmark protocol established in [3], which com-
prises of the 35 most frequent tags (337 sequences). These
tags are grouped into two major categories: process tags, which
are mainly based on the appearance and describes the physical
texture process (e.g., flag, road, and windmill); structural tags,
which describe only the motion characteristics and can have a
wide range of appearances (e.g., waving and turbulent). Videos
are labeled with variable number of tags with an average of
2.34 tags per video. This benchmark consists of 5 trials, where
videos are randomly split into 50% training and 50% test sets.4

Examples from the dataset are presented in the Appendix.

5.3.3 Experimental setup
Following the settings in [3], videos are first truncated to 50
frames, converted to grayscale, and downsampled by 3 times
using bicubic interpolation. Overlapping spatio-temporal cubes
of size 7× 7× 20 (step of 4× 4× 10) are then extracted from
these videos. Video-level DTMs are learned with Kv = 4
components, giving on average of 670 codeword in the large
codebook at the bottom level C(1) of the tree. A two-level BoS

3. In particular, for a given tag, a 1-vs-all binary classifier is trained
with positive examples corresponding to videos with that tag, and negative
examples as the remaining videos.

4. Details of the benchmark and more experimental results can be found
at: http://visal.cs.cityu.edu.hk/research/hemdtm/

TABLE 1: Annotation results on the DynTex dataset.

Avg. Avg. Avg.
Precision Recall F-Measure X-speedup

SML-DTM [3] 0.420 0.507 0.397 1.0

BoSTree (K=670) 0.467 0.484 0.430 3.8
large BoS (K=670) 0.468 0.510 0.442 0.41
reduced BoS (K=16) 0.133 0.157 0.124 17.5

tree is formed by reducing the large codebook of size 670 to
16 codewords only.

Following the procedure in [34] we measured annotation
performance by computing precision, recall and F-score for
each individual tag, as well as their averages across all tags.
Precision for a tag is the probability that the model correctly
uses the tag while annotating a video and recall for a tag is
the probability that the model annotates a video that should
have been annotated with the tag. Precision, recall and F-score
measure for a tag w are defined as:

P = |WC |
|WA| , R = |WC |

|WT | , F = 2((P )−1 + (R)−1)−1, (13)

where |WT | is the number of sequences that have tag w in
the ground truth, |WA| is the number of times the annotation
system uses w when automatically tagging a video, and |WC |
is the number of times w is correctly used. When a tag is
never selected for annotation, the corresponding precision (that
otherwise would be undefined) is set to the tag prior from
the training set, which equals the performance of a random
classifier.

We compared the annotation performance of the BoS Tree
(BoST) representation with DTM tag models (SML-DTM) [3].
In addition to BoS Trees, we also consider several alternative
methods for BoS histograms: a large BoS of size K = 670
and a reduced BoS of size K = 16. All results are averaged
over 5 trials in the benchmark.

5.3.4 Annotation results
Table 1 presents an overall comparison between different
annotation methods based on average precision, recall, and
F-measure for annotation with top 3 tags. Annotation using
BoST outperforms SML-DTM with an average F-score of
0.430 versus 0.397. Figure 3 plots the PR curve and F-score for
all 35 annotation levels for BoST and SML-DTM, and shows
that the BoST annotation dominates SML-DTM at almost
all levels of recall. Table 2 breaks down the performances
of SML-DTM and BoS Trees on individual tags, as well as
averaged over process and structural categories. Once again
BoS Trees dominating in most of the individual tags with an
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Fig. 3: (a) Average precision/recall plot; (b) F-measure plot, showing
all annotation levels, using BoSTree and SML-DTM on DynTex.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPAMI.2014.2359432

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XXX XXXX 8

TABLE 2: Per-tag performance of BoSTree and SML-DTM anno-
tation on DynTex. Average number of training videos available for
each tag are in parenthesis.

Precision Recall F-Measure
SML-DTM BoST SML-DTM BoST SML-DTM BoST

pr
oc

es
s

ta
gs

anemone(9.8) 0.291 0.451 0.751 0.678 0.410 0.519
aquarium(1.8) 0.140 0.333 0.167 0.400 0.150 0.317
basin(9.8) 0.150 0.610 0.353 0.192 0.191 0.208
boiling(3.6) 0.235 0.533 1.000 0.580 0.372 0.514
candle(4.4) 0.482 0.588 1.000 0.960 0.631 0.709
escalator(2.8) 0.733 0.467 0.450 0.517 0.513 0.474
field(3.6) 0.486 0.645 0.312 0.593 0.350 0.593
flag(8.4) 0.226 0.486 0.575 0.529 0.308 0.501
foam(3.8) 0.362 0.267 0.667 0.333 0.431 0.293
fountain(29.4) 0.437 0.514 0.501 0.745 0.463 0.607
laundry(3) 0.138 0.707 0.800 0.840 0.232 0.687
mobile(1.6) 0.800 0.600 0.217 0.167 0.340 0.260
net(1.4) 0.700 0.400 0.400 0.267 0.480 0.300
plant(14.2) 0.261 0.275 0.781 0.557 0.390 0.366
pond(4) 0.273 0.400 0.720 0.213 0.367 0.274
rain(2) 1.000 0.600 0.733 0.467 0.800 0.500
river(8) 0.287 0.282 0.456 0.206 0.351 0.230
road(1.8) 1.000 0.900 0.600 0.733 0.700 0.753
sea(7) 0.539 0.750 0.896 0.876 0.661 0.799
server(1.4) 1.000 0.800 0.700 0.900 0.800 0.800
shower(1.6) 0.000 0.000 0.000 0.000 0.000 0.000
sky(2) 0.000 0.000 0.000 0.000 0.000 0.000
source(6) 0.323 0.750 0.350 0.350 0.316 0.436
stream(12.6) 0.335 0.268 0.249 0.198 0.249 0.185
toilet(1.6) 0.600 0.400 0.600 0.300 0.527 0.333
tree(20.8) 0.503 0.459 0.827 0.721 0.624 0.554
waterfall(10.2) 0.119 0.347 0.187 0.152 0.133 0.183
windmill(4.2) 0.179 0.279 0.400 0.400 0.217 0.258

st
ru

ct
ur

al
ta

gs

dmotion(45.8) 0.468 0.409 0.335 0.779 0.385 0.532
dmotions(21.8) 0.212 0.298 0.269 0.295 0.227 0.291
interinsic(8) 0.491 0.643 0.725 0.684 0.560 0.627
oscillating(49) 0.681 0.700 0.722 0.893 0.692 0.783
random(4.8) 0.383 0.267 0.251 0.069 0.229 0.100
turbulent(46.2) 0.498 0.543 0.429 0.735 0.456 0.620
waving(38.2) 0.374 0.367 0.313 0.621 0.339 0.461

Process 0.414 0.468 0.525 0.460 0.393 0.416
Structural 0.444 0.461 0.435 0.582 0.412 0.488

average process category F-score of 0.416 versus 0.393 and
average structural category F-score of 0.488 versus 0.412.
On the individual process tags, BoST typically outperforms
SML-DTM when there are more training examples for the
tag. Likewise, BoST outperforms SML-DTM on almost all
the structural tags, since these tags are groups of process tags
and hence more training data is available. By construction,
tags with fewer training examples have fewer codewords in
the codebook. Because there are fewer dedicated codewords
for these tags, it may be more difficult for the tag model to
overcome noise in the descriptor.

Table 1 also reports the speedup (in terms of average number
of likelihood calculations relative to SML-DTM) used for an-
notating a video. BoST requires almost 4 times less likelihood
calculations than SML-DTM. These results suggest that BoS
Trees is a quicker and more accurate method for computing the
descriptor for video annotation. Next we compare BoST and
the large BoS with direct indexing. For the same-sized large
codebook, BoS and BoST obtain similar average precision,

but BoS has better average recall. However, this improved
recall comes at the expense of using more than 9 times more
likelihood computations. Finally, BoS with a small codebook
performs significantly worse than BoS/BoST with the large
codebook. These results demonstrate that a large codebook can
significantly improve accuracy, while using BoS Tree reduces
the computational requirements with an acceptable loss in
recall.

5.4 Dynamic texture recognition

We validate the BoS codebook trees on the task of dynamic
texture recognition, while comparing with existing state-of-
the-art methods [24, 35, 36, 37, 38, 10, 39, 40, 41].

5.4.1 Datasets
We validate our proposed BoS Tree on four datasets, following
the protocols established by their respective papers and com-
paring to their published results. Example frames from these
datasets are presented in the Appendix.

YUPENN dynamic scenes: [24] introduces a new dataset
that emphasizes scene specific temporal information over short
time durations due to objects and surfaces rather than camera-
induced ones, which are predominant in the Maryland data set
[38]. YUPENN consists of fourteen dynamic scene categories,
each containing 30 color videos. Representative images of
each class are shown in Figure 4. The average dimensions
of the videos are 250 × 370 × 145 (H x W x L). This
dataset is very challenging and consists of videos obtained
from various sources such as footage captured by the authors,
YouTube, BBC Motion Gallery and Getty Images. Due to
the diversity of video sources, the videos contain significant
differences in image resolution, frame rate, scene appearance,
scale, illumination conditions, and camera viewpoint.

UCLA-39: The UCLA-39 dataset [40] contains 312 gray-
scale videos representing 39 spatially stationary classes, which
were selected from the original 50 UCLA texture classes [6].

Beach Elevator Forest Fire

Fountain Highway Lightning Storm

Ocean Railway Rushing River

Sky-Clouds Snowing Street

Waterfall Windmill Farm

Fig. 4: Examples from YUPENN dynamic scenes data set.
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TABLE 3: Distances and kernels used for classification.

square-root distance (SR) ds(h1, h2) = arccos(
∑
k

√
h1kh2k)

χ2-distance (CS) dχ2 (h1, h2) = 1
2

∑
k

|h1k−h2k|
h1k+h2k

χ2 kernel (CSK) kχ2 (h1, h2) = 1−∑
k

(h1k−h2k)2

1
2
(h1k+h2k)

Intersection kernel (HIK) kI(h1, h2) =
∑
kmin(h1k, h2k)

Bhattacharyya kernel(BCK) kB(h1, h2) =
∑
k

√
h1kh2k

Each video is cropped into a right portion and a left portion
(each 48 × 48), with one used for training and the other for
testing. Classification of UCLA-39 is the most challenging
variant of the UCLA-based datasets (e.g., [6, 1, 39]), and tests
the translation invariance of the feature descriptor, since the
training video patch is visually quite different from the testing
patch.

UCLA-8: [1] groups related classes from the original 50
UCLA texture classes into 9 super-classes, where each super-
class contains different viewpoints of the same texture process.
In [1], experiments are conducted on 8 of these classes. The
original uncropped videos are used.

DynTex-35: The DynTex-35 dataset [41] is a collection of
videos from 35 texture classes from everyday surroundings.
Originally, the data consisted of a single video of size 192×
240 × 50 per class. As in [41], each video is split into 10
non-overlapping sub-videos (each having different spatial and
temporal dimensions).

5.4.2 Experiment setup
For the YUPENN, each video is truncated to 150 frames,
converted to grayscale, and downsampled such that the largest
spatial dimension is 128 (while keeping the same aspect ratio).
Overlapping spatio-temporal cubes of size 7 × 7 × 20 (step:
5× 5× 15) are then extracted from the YUPENN videos. For
UCLA-39 and UCLA-8, overlapping spatio-temporal cubes
with size 5 × 5 × 75 (step: 2 × 2 × 75) pixels are extracted
densely from the grayscale video. For DynTex35, the videos
are converted to grayscale, and overlapping spatio-temporal
cubes with size 7×7×50 (step: 5×5×30) pixels are extracted.
We retain only video cubes with a minimum total variance of
5 for YUPENN dynamic scenes dataset, and 1 for UCLA-39,
UCLA-8 and DynTex35, hence discarding cubes that do not
contain significant motion.

For each cross-validation split in our datasets, the BoS Tree
was learned from the training set only. For UCLA-39, UCLA-
8, DynTex35, a DTM with Kv = 4 components is learned for
each video from its spatio-temporal cubes. For YUPENN, the
video-level DTMs used only Kv = 2 due to the large size
of the training set. The DTs from all videos are collected to
form the DT codewords, i.e., K1 = Kv|Xc|, where |Xc| is
the size of the training set. The BoS Tree is then formed by
successively applying the HEM-DTM algorithm, as described
in the previous section. For YUPENN and UCLA-8, we build
a three level tree, using K2 = 64, K3 = 16 and K2 = 16,
K3 = 8 respectively. For UCLA-39 and DynTex35 we tested
different trees for L ∈ {2, 3, 4} levels, using K2 = 64, K3 =
32 and K4 = 16. We used κ(`) = κ = 1 or T(`) = T = 0.995
for traversing the BoS Trees.

For video classification, we first map all the videos to their
BoS histograms using the learned BoS Tree, and then represent
the visual content of each video as TF and TFIDF vectors.

We then use a k-nearest neighbor (k-NN) classifier or support
vector machine (SVM) for the video classification task. In
order to account for the simplicial structure of BoS histograms,
we build our k-NN classifier in terms χ2-distance (CS) or
square root-distance (SR) (Table 3), which are appropriate
distance metrics for histograms. Similarly, for SVM we use
the chi-squared kernel (CSK), Bhattacharyya kernel (BCK),
or histogram intersection kernel (HIK), as in Table 3. The
LibSVM software package [33] was used for the SVM, with
all parameters selected using a 10-fold cross-validation on the
training set.

In addition to BoS Trees, we also consider several alter-
native methods for BoS histograms: large BoS (838 code-
words for YUPENN, 184 for UCLA-8, 624 for UCLA-
39, and 630 for DynTex-35); and a reduced BoS of size
K ∈ {8, 16, 32, 64}. Note that the reduced codebook with
K = 64 corresponds to the BoS from [3].

We also consider a standard bag-of-visual-words (BoW)
representation for vectorized video patches, which is computed
using tree-structured vector quantization (TSVQ) [8]. PCA
is applied to the vectorized video patches to reduce the
dimension to 100.5 The TSVQ is trained from the same set
of (vectorized) video patches as the BOS Tree. We set the
branching factor (BF) for different levels of the VQ tree such
that the number of codewords at each level matches closely
with the BoS Tree.6 For video classification using TSVQ, we
first map all the videos to BoW descriptors, and then apply the
same set of classifiers used with BoS. To save space, we only
report the best TSVQ result among the various combinations
of distance/kernel and classifier.

For each experiment we registered average classification
accuracy. For experiments involving UCLA and DynTex
datasets we also counted the average number of likelihood
computations (per video) executed at test time to produce
the BoS histograms, from which we computed the speed up
with respect to the large BoS codebook (X-Speedup). A small
number of likelihood computations results in faster look-ups
in the codebook and a larger speedup. We used the same leave-
one-video-out protocol for YUPENN as in [24], resulting in a
total of 420 trials. Results are averaged over 20 random trials
on UCLA-8 (50% training and 50% test videos) as in [1], 2
trials on UCLA-39 (training on the right sub-video, and testing
on the left, and vice versa) as in [40], and leave-one-sub-video-
out classification for DynTex-35, with one sub-video from all
classes used for testing and the remainder for training [41].

5.4.3 Video classification results
Table 4 summarises the classification results on YUPENN,
and compares to TSVQ [8] and various spatial, temporal, and
spatiotemporal methods reported in [24]. BoS Tree achieves
the best overall results with mean recognition rate of 85%,
which is 16% higher than the best performing TSVQ (using

5. Not applying PCA obtained similar results, but with slower speed.
6. For YUPENN, we build a three-level tree with BF ∈ {16, 4, 13}

resulting in {16, 64, 832} codewords at each level. For UCLA-8, we build
a two-level tree with BF ∈ {16, 12} resulting in {16, 192} codewords
at each level. For UCLA-39 and DynTex-35, we build 2-, 3- and 4-level
trees with BF ∈ {64, 10}, {32, 2, 10}, {16, 2, 2, 10} resulting in {64, 640},
{32, 64, 640} and {16, 32, 64, 640} codewords respectively at each level.
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Scene Color GIST HOF Chaos SOE TSVQ BoSTclasses [35] [36] [37] [38] [24] [8]
beach 50 90 37 27 87 63 83

c. street 47 50 83 17 83 70 90
elevator 83 53 93 40 67 73 100

f. fire 47 50 67 50 83 80 100
fountain 13 40 30 7 47 37 67
highway 30 47 33 17 77 73 87
l. storm 83 57 47 37 90 80 100
ocean 73 93 60 43 100 80 90

railway 43 50 83 3 87 73 80
r. river 57 63 37 3 93 73 80

sky 30 90 83 33 90 77 93
snowing 53 20 57 10 33 77 83
waterfall 30 33 60 10 43 53 67
w. farm 57 47 33 17 57 57 77

Avg. (%) 50 56 59 20 74 69 85

TABLE 4: Comparison of BoS Tree classification rates with TSVQ
[8] and various spatial and temporal methods reported in [24].

3-level tree with TF and CSK-SVM) and 11% higher than
the previous state-of-the-art results, based on spatiotemporal
oriented energy (SOE), reported in [24]. Looking at the indi-
vidual scene classes, BoS Tree obtains the highest accuracy on
10 out of 14 classes. Table 5 shows the confusion matrices for
BoS Tree and SOE from [24]. SOE exhibits the most confusion
between the snowing, waterfall, fountain, and elevator classes,
which have similar directional components. In contrast, BoST
mainly confuses classes with similar water textures, e.g.,
fountain vs. waterfall, and river vs. beach vs. ocean. Note that
SOE is based on color features and spatial context information
(through spatial binning), whereas our BoS tree uses only
grayscale and does not encode spatial context. Hence, our
results suggest that modeling the temporal dynamics of the
video (e.g., with DTs) can improve the recognition of these
scenes, even without accounting for spatial configurations or
color information.

Table 6 reports classification results on UCLA-8, UCLA-
39 and DynTex-35 using various classifiers and techniques to
build BoS histograms. Each row refers to the combination of
a specific classifier with TF or TF-IDF representation, while
columns correspond to different techniques to map videos to
BoS histograms (large BoS, reduced BoS, and BoST).

Several observations can be made from the results on
UCLA-39, which is the most challenging dataset. First, using

a codebook with a larger number of codewords substantially
increases the classification performance, e.g., with accuracy
increasing from 41.35% for 16 codewords to 81.73% for
624 codewords, using TF-IDF and HIK-SVM. However, the
computational cost also increases substantially by a factor
of 39 times (from 7377 likelihood computations per video,
about 5 seconds on a standard desktop PC, to 287,690 or
about 182 seconds). Second, using BoST leads to the highest
accuracy while requiring only a fraction of the likelihood com-
putations necessary when directly indexing a large codebook.
For example with TF-IDF and HIK-SVM, using a 2-level
codebook improves accuracy to 82.37%, while also decreasing
the average number of likelihood computations by a factor of 8
(36,393 computations or 23 seconds). For other classifiers, the
accuracy is on par, or decreases slightly, compared to the large
CB. These results demonstrate that the BoST efficiently and
effectively indexes codewords, and hence allows practical use
of a large and rich codebook. Third, although they use about
the same number of likelihood operations, BoST significantly
outperform the reduced codebooks generated with HEM-DTM
in terms of classification accuracy. While the former leverages
the hierarchical structure of codewords to access a large
collection of codewords, the latter only reduces the size of
the codebook which does not result in a BoS rich enough to
produce highly accurate classification. Lastly, using the BoST
with L = 4 and setting the traversing threshold in (9) and (10)
to T = 0.995 leads to the best performance. By executing a
limited number of additional likelihood computations (only
30% more than BoST with L = 4), the threshold method is
able to explore the sub-trees of similar codewords when the
patch has near equal preference to both.

Looking at UCLA-8, BoST achieves best overall accuracy
of 97.28% using TF-IDF and CSK-SVM, which is equal to
the performance of large BoS with direct indexing. However,
BoST reduces the computations by a factor of 6.6, compared to
the large BoS. Similar observations can be drawn on DynTex-
35, although the differences in classification accuracy are less
substantial due to the easiness of the classification task. Figure
5 shows the speed vs. performance graphs using BoS code-
books of various sizes and BoS Trees of varying heights for
UCLA-39 and DynTex-35. Note that BoST achieves similar
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Sky 27 1 1 1
Beach 26 3 1
Ocean 30
Street 25 3 1 1

Railway 1 26 2 1
R. River 1 28 1
Highway 1 1 3 23 2
Snowing 1 6 10 4 2 3 1 3
Waterfall 2 2 13 7 3 2 1
Fountain 3 9 14 4
L.Storm 27 3
F. Fire 2 1 2 25

W. Farm 3 3 1 1 5 17
Elevator 2 3 4 1 20

TABLE 5: Confusion matrix for YUPENN data set using (a) a three-level BoS tree and (b) SOE (4 × 4 × 1). Bold shows the number of
correct classifications for each scene category.
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TABLE 6: Video classification results on UCLA-8, UCLA-39 and DynTex-35 using a large codebook, reduced codebooks, and BoS trees.
Each row reports the average classification accuracy of a different classifier/kernel combination. The final three rows report the speedup
relative to large BoS to build the BoS histograms at test time, and the TSVQ and reference results (Ref).

UCLA-8 UCLA-39 DynTex-35
Method large BoS reduced BoS BoST κ = 1 large BoS reduced BoS BoST κ = 1 T = 0.995 large BoS reduced BoS BoST κ = 1

|C| = 184 K = 16 K = 8 L = 2 |C| = 624 K = 64 K = 32 K = 16 L = 2 L = 3 L = 4 L = 4 |C| = 630 K = 64 K = 32 K = 16 L = 2 L = 3 L = 4
N CS 95.98 94.89 91.20 95.98 46.79 46.79 42.95 33.97 43.59 46.47 42.31 42.63 92.86 94.86 92.86 90.86 91.14 92.00 90.57

T N SR 96.74 96.30 92.28 96.09 62.82 52.88 42.31 34.94 60.90 58.01 55.13 58.33 98.00 98.57 97.71 94.57 98.29 98.00 98.29
F S CSK 97.17 95.33 86.41 97.07 62.82 52.88 44.87 33.33 60.26 58.97 57.05 59.29 98.29 97.14 96.29 89.43 98.00 98.29 98.86

V HIK 75.11 83.04 75.54 81.96 78.53 57.69 48.40 39.10 78.53 78.53 73.72 78.85 96.86 96.29 91.71 86.29 97.71 97.71 97.14
M BCK 81.09 85.43 70.87 89.13 71.79 52.88 45.19 38.78 71.15 71.15 69.55 72.12 96.57 94.57 92.57 84.29 96.29 96.86 96.57

T N CS 95.98 94.89 92.07 95.98 46.15 45.83 42.95 34.62 43.59 46.15 41.99 42.31 92.29 94.86 92.86 91.14 90.57 92.00 90.86
F N SR 96.74 95.98 92.83 96.41 65.38 56.09 45.19 36.22 61.22 58.97 56.41 60.58 98.00 98.29 97.43 94.29 98.00 98.00 98.00
I S CSK 97.28 94.57 83.91 97.28 61.22 53.53 45.51 37.50 61.86 59.94 59.62 60.90 98.29 97.14 96.29 89.43 97.71 97.43 98.00
D V HIK 74.13 81.85 69.78 81.85 81.73 58.01 48.40 41.35 82.37 82.37 79.81 83.33 97.14 96.57 92.29 85.43 97.43 97.43 97.71
F M BCK 80.43 84.02 67.39 89.24 74.36 55.13 51.92 40.06 73.72 74.04 72.76 75.32 96.57 95.14 91.71 82.57 96.57 96.29 96.29

Best 97.28 96.30 92.83 97.28 81.73 58.01 51.92 41.35 82.37 82.37 79.81 83.33 98.29 98.57 97.71 94.57 98.29 98.29 98.86
X-Speedup 1 11.50 23 6.66 1 9.75 19.50 39 7.91 12.46 17.39 12.74 1 9.84 19.69 39.37 8.31 13.56 19.47

Ref 80 [1], 52.27 [9], 84 [42] 42.3 [39], 20 [40], 15 [10] 97.14 [41]
TSVQ [8] 96.63 57.69 96.57

accuracy to the direct-indexed large BoS, while reducing the
computation by almost an order of magnitude. By organizing
codewords in a hierarchical structure, the BoS Tree efficiently
budgets the likelihood computations while indexing a larger
and more descriptive codebook.

Finally, BoST performance improves on the current state-
of-the-art reported in the literature [1, 9, 42, 39, 40, 10, 41] on
the three textures datasets (last row of Table 6). On UCLA-8,
the accuracy has improved from 52.27% [9] or 84% [42] to
97.28% for BoST. On UCLA-39, the accuracy has improved
from 20% [40] or 42.3% [39] to 82.37% for BoST. In contrast
to [40], which is based solely on motion dynamics, and [39],
which models local appearance and instantaneous motion,
the BoS representation is able to leverage both the local
appearance (for translation invariance) and motion dynamics
of the video to improve the overall accuracy.

Table 6 also shows the results for the best performing
TSVQ, which are the 2, 3 and 4 level TSVQ for UCLA-
8, UCLA-39 and DynTex-35, respectively. Similar to other
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Fig. 5: Speed/accuracy tradeoff for BoS and BoS Trees.

methods TSVQ also performs poorly on UCLA-39 (accuracy
of 57.69%) compared with BoST. On UCLA-8 and DynTex-
35, TSVQ has better accuracy (96%), but still worse than
BoST. The reason that TSVQ can achieve relatively high
accuracy on UCLA-8 and DynTex-35 is because the training
and test videos have very similar appearances, whereas for
UCLA-39 the appearances are more varied.

Finally, we compare the top-down and bottom-up ap-
proaches for building a BoS Tree. On the UCLA39 dataset, we
built a two-level top-down BoST with {640, 64} codewords
at each level, which has a similar size to the bottom-up BoST
with {624, 64} codewords in Table 6. Interestingly, the top-
down BoST can only achieve accuracy of 68.27%, compared
to 82.37% of the bottom-up version. Also building the BoST
with the top-down approach is almost 6 times more expensive
than the bottom-up approach. The top-down BoST requires
2993 total minutes (over all CPUs) versus 510 minutes for the
bottom-up BoST. Hence, these results suggest that the bottom-
up approach is a more efficient and more robust method for
building the BoS Trees as compared to the top-down approach.
5.5 Music annotation
In this section, we show the applicability of BoS Trees on an
additional type of time-series data, i.e., musical signals.
5.5.1 Dataset
We perform automatic music annotation on the CAL500
dataset (details in [43] and references therein), which is a
collection of 502 popular Western song, and provides binary
annotations with respect to a vocabulary of musically relevant
tags (annotations or labels), e.g., rock, guitar, romantic. In
our experiments we follow the same protocol as [28] and
consider the 97 tags associated to at least 30 songs in CAL500
(11 genre, 14 instrumentation, 25 acoustic quality, 6 vocal
characteristics, 35 mood and 6 usage tags).
5.5.2 Experiment setup
The acoustic content of a songs is represented by a time-
series of 34-bin Mel-frequency spectral features (see [43]),
extracted over half-overlapping windows of 92 ms of audio
signal. A dense sampling of audio-fragments (analogous to
spatio-temporal cubes in videos) is then formed by collecting
sequences of τ = 125 consecutive feature vectors (correspond-
ing to approximately 6 seconds of audio), with 80% overlap.
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TABLE 7: Music annotation results on CAL500, using a large
codebook, reduced codebooks, and BoS Trees. The last column
reports the speedup relative to large CB to build the BoS histograms
at test time.

Retrieval Annotation
MAP AROC P@10 P R F X-Speedup

large CB K = 1604 0.454 0.723 0.460 0.406 0.244 0.270 0.97

reduced CB
K = 128 0.403 0.668 0.402 0.342 0.209 0.227 12.18
K = 64 0.381 0.649 0.378 0.315 0.192 0.204 24.37
K = 32 0.368 0.634 0.368 0.298 0.180 0.191 48.74

BoS Tree
L = 2 0.445 0.712 0.451 0.398 0.24 0.261 8.00
L = 3 0.443 0.712 0.448 0.393 0.235 0.258 11.20
L = 4 0.439 0.711 0.448 0.394 0.232 0.255 13.89

SML-DTM [43] 0.446 0.708 0.460 0.446 0.217 0.264 1

A BoS Tree is learned for each cross-validation split from
only the training data. The first level of the BoS Tree is
formed by estimating a DTM with Ks = 4 components from
each training song, and then pooling all the DT components
together. BoS Trees for L ∈ {2, 3, 4} levels are tested, with
K2 = 128, K3 = 64 and K4 = 32. We use κ(1) = 5 and
κ(`) = 2 for ` > 1. We used the TF-IDF representation.

We cast music annotation as a multi-class multi-label clas-
sification task. In particular, given a training set of audio-
fragments and their annotations, for each tag we use logistic
regression (LR) to learn a linear classifier with a probabilistic
interpretation in tandem with the histogram intersection kernel.
Given a BoS descriptor corresponding to a new song, the
output of the LR classifiers is normalized to a semantic
multinomial, i.e., a vector of tag posterior probabilities. We
use the LibLinear software package [44] for the LR classifier,
with all parameters selected using 4-fold cross validation on
the training set.

On the test set, a novel test song is annotated with the 10
most likely tags, corresponding to the peaks in its semantic
multinomial. Retrieval given a one tag query involves rank
ordering all songs with respect to the corresponding entry in
their semantic multinomials. Performance is measured with
the same protocol as in [28]: for annotation, per-tag precision
(P), recall (R) and F-score (F), averaged over all tags; and
for retrieval, mean average precision (MAP), area under the
operating characteristic curve (AROC), and precision at the
first 10 retrieved objects (P@10), averaged over all one-tag
queries. In addition, we register the average (per song) number
of likelihood computations executed at test time. All reported
metrics are result of 5-fold cross validation, where each song
appears in the test set exactly once. We compare our BoS
Tree to recent results in music annotation based on a large
BoS codebook [28], and supervised multi-class labeling with
DTM models (SML-DTM) [43].

5.5.3 Music annotation results

In Table 7 we report annotation and retrieval performance on
the CAL500 dataset. We first note that the BoS Trees lead to
near optimal performance with respect to the direct-indexed
large codebook (implemented with k = 5 as in [28]) and
SML-DTM, but require an order of magnitude less likelihood
computations at test time. In particular, in our experiments,
the delay associated to likelihood computations was 8 to 14
seconds per song for the BoS Trees (depending on L), and 2
minutes for direct-indexed large codebook and for SML-DTM.

Second, as with video annotation and classification, increasing
the codebook size improves the accuracy of music annotation
and retrieval, by increasing the richness of the codebook.
Again, this justifies the efficacy of large BoS codebooks and
our proposed BoS Tree for efficient indexing.

6 ANALYSIS OF THE BOS TREE DESCRIPTOR
Experimental results presented in the previous sections show
that the BoS Tree (BoST) can achieve similar classification
performance to direct-indexed BoS framework, but with one
order of magnitude reduced computational cost. In this section,
we perform a detailed analysis to investigate how well the
indexing tree can recover the true BoS descriptor, and its effect
on the distance (kernel) matrix. Here we focus our analysis
on the large BoS (624 codewords) and BoST (two level 624-
64) extracted from UCLA-39, although similar results were
obtained for other datasets. In the experiments in Section 5.4,
the BoS and BoST obtain similar average classification accu-
racy (81.73% and 82.37%) using the histogram intersection
kernel. We next present an analysis moving from a high-level
perspective (e.g., similarity in distance matrices and nearest-
neighbor rankings) to low-level details (e.g., differences in
codeword assignment for individual patches).

6.1 Comparing distance matrices and NN ranks

As the NN (SVM) classifiers depend on distance (kernels),
we first examine the similarities between the distance matrices
produced using either BoS or BoST descriptors. Figure 6(a)
and 6(b) show the intersection distance7 matrices for UCLA-
39 using the BoS descriptors and the BoST descriptors,
respectively. The structure of the two distance matrices are
quite similar, and can be further visualized with the scatter
plot in Figure 7a. Quantitatively, the two distance matrices
are highly correlated, with a Pearson correlation coefficient
of ρ = 0.982. Therefore, the kernel matrices are also highly
correlated, and hence similar classification performance (about
80%) is achieved in both BoS and BoST experiments.

Similar distance matrices imply that the nearest neighbor
structure between videos for BoS and BoST should also be
similar. For each video, the list of the top-K nearest neighbors
were calculated using BoS and BoST. The two lists are
then compared by calculating their set intersection. Figure 8
plots the set intersection values for different levels of K and
averaged over all the videos. The 1st nearest neighbor is the
same 74% of the time, whereas there is 87% overlap for the
top-3 nearest neighbors. The high values of intersection for
small K indicate that the local nearest neighbor structure is
preserved well. For larger K, the average intersection value
steadily increases, indicating an improvement in overlapping
and preservation of the global structure. From these results
we conclude that, at the high-level, both BoS and BoST
descriptors generate similar kernel/distance matrices, and thus
are very similar for the purpose of classification.

6.2 Comparing descriptors

In this section we investigate more closely the relation between
the BoS and BoST histograms. Note, that similar structure

7. The intersection distance is defined as 1− kI(h1, h2).
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Fig. 6: Intersection distance matrix between (a) BoS histograms, (b) BoST histograms, (c) BoS and BoST histograms, for all videos in
UCLA-39. Videos are grouped by class, delineated by black lines.

Fig. 7: Scatter plots between the distance matrices from Figure 6.

in the kernel/distance matrices (observed in the previous
section) does not necessarily imply similarity of BoS and
BoST histograms. We next compare the BoS and BoST
histograms extracted from the same video. Figure 9 plots the
distance between BoS and BoST histograms for each video.
The average intersection distance between BoS and BoST is
about 0.30, which indicates that the two descriptors extracted
from the same video are similar, but not exactly the same.
Figure 6c shows the full distance matrix between BoS and
BoST histograms using the intersection distance (Figure 9 is
the reordered diagonal of this matrix). The distance matrix
looks quite similar to the distance matrices for BoS or BoST
in Figures 6a and 6b. The scatter plot between the BoS-BoS
distance matrix and BoS-BoST distance matrix appears in
Figure 7b, and indicates high correlation between the matrices
(ρ = 0.982). Similar results are obtained when comparing the
BoST-BoST distance matrix and that of BoS-BoST (Figure
7c). This high correlation suggests that, although the BoS and
BoST descriptors for a particular video are not exactly the
same, the distances between videos are still preserved well.
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Fig. 8: Average set intersection between top-K nearest neighbors
using BoS or BoST histograms, for all videos in UCLA39.
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Fig. 9: Distances between BoS and BoST histograms for each
video in UCLA-39. Videos are sorted according to the distance. The
horizontal line is the average distance.

6.3 Differences in codeword assignments

Finally, to understand how the BoS and BoST descriptors vary,
we next examine the differences in how patches are assigned
to codewords for BoS and BoST. For each video, the number
of patches that are assigned to the different codewords in BoS
and BoST is counted, and the percentage of disagreement is
calculated for each video,

diff =
# of disagreements

# of patches
. (14)
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Fig. 10: Percentage of patches that are assigned to different code-
words in BoS and BoST histograms for UCLA-39. Videos are sorted
by increasing assignment of patches.
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Fig. 11: Confusion of four example BoS codewords with BoS tree
codewords.
Figure 10 shows the differences in codeword assignment for
videos in UCLA-39. On average, 44.2% of the patches are
assigned to different codewords in BoS and BoST.

To evaluate how this affects classification, we next allow a
patch to be assigned to codewords from videos in the same
class (16 codewords). Figure 10 also plots the percentage of
disagreement of patches assigned to codewords of different
classes. At the class-level, 35.5% of patches are assigned to
codewords of videos in another class. Hence, for the patches
that are assigned differently, about 8.7% are assigned to
codewords belonging to videos in the same class.

To examine the misassignment of patches, we compute the
confusion matrix between BoS and BoST codewords where the
(i, j) entry is obtained by counting all patches assigned to the
ith codeword in the BoS codebook and the jth codeword in the
BoST codebook. Figure 11 shows four typical example rows
of the confusion matrix, representing confusion between a
particular BoS codeword (actual) and all the BoST codewords
(assigned). The peak in each plot indicates the percentage
of correct assignments for the codeword (on average 55.8%),
which is surrounded by assignments to within-class codewords
(on average 8.7%). The remaining assignments (on average
35.5%) are spread uniformly at random to the out-of-class
codewords.8

In summary, from the analysis in this section, we can
conclude that the BoS Tree can successfully generate a de-
scriptor that is equivalent to the original BoS descriptor, for
the purposes of classification. At the low-level, the BoS Tree
introduces uniform random noise to the descriptor. However,
this does not affect the structure of the kernel/distance ma-
trices. Therefore, the BoST descriptor can be used in place
of BoS in order to decrease the computational requirements,
while maintaining similar levels of classification accuracy.

7 CONCLUSIONS
In this paper we have proposed the BoS Tree, which effi-
ciently indexes DT codewords of a BoS representation using
a hierarchical indexing structure. The BoS Tree enables the
practical use of larger and richer collections of codewords in
the BoS representation. We demonstrated the efficacy of the
BoS Tree on video classification of four datasets, as well as

8. To show that the confusion among out-of-class codewords is close to
a uniform distribution, we first aggregated the out-of-class confusions in all
codewords to form an overall distribution of confusion. The entropy of this
distribution was 8.9, which is close to the maximum possible value of 9.3 for
a uniform distribution.

on annotation of a music and video dataset. In particular, the
BoS Tree achieves similar accuracy to the direct-indexed large
BoS, while reducing the computation by almost an order of
magnitude. Finally, we showed that, although the BoS Tree
and BoS descriptors are different for the same video, the
overall kernel (distance) matrices are highly correlated thus
leading to similar classification performance. In particular,
the BoS Tree adds uniform random noise to the descriptor,
which does not significantly affect the structure of the kernel
matrix. Finally, extending [22] to perform nearest-neighbor
search based on log-likelihoods (rather than KL divergence)
or adapting approximate search using randomized trees [19]
to time-series (using DTs) would be interesting future work.
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