
IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 1

Clustering Dynamic Textures with the
Hierarchical EM Algorithm for Modeling Video

Adeel Mumtaz, Emanuele Coviello, Gert. R. G. Lanckriet, Antoni B. Chan

Abstract—The dynamic texture (DT) is a probabilistic generative model, defined over space and time, that represents a video as the
output of a linear dynamical system (LDS). The DT model has been applied to a wide variety of computer vision problems, such as
motion segmentation, motion classification, and video registration. In this paper, we derive a new algorithm for clustering DT models
that is based on the hierarchical EM algorithm. The proposed clustering algorithm is capable of both clustering DTs and learning
novel DT cluster centers that are representative of the cluster members, in a manner that is consistent with the underlying generative
probabilistic model of the DT. We also derive an efficient recursive algorithm for sensitivity analysis of the discrete-time Kalman
smoothing filter, which is used as the basis for computing expectations in the E-step of the HEM algorithm. Finally, we demonstrate
the efficacy of the clustering algorithm on several applications in motion analysis, including hierarchical motion clustering, semantic
motion annotation, and learning bag-of-systems codebooks for dynamic texture recognition.

Index Terms—Dynamic Textures, Expectation Maximization, Kalman Filter, Bag of Systems, Video Annotation, Sensitivity Analysis.

F

1 INTRODUCTION
Modeling motion as a spatio-temporal texture has shown
promise in a wide variety of computer vision problems, which
have otherwise proven challenging for traditional motion rep-
resentations, such as optical flow [1, 2]. In particular, the
dynamic texture model, proposed in [3], has demonstrated
a surprising ability to abstract a wide variety of complex
global patterns of motion and appearance into a simple spatio-
temporal model. The dynamic texture (DT) is a probabilistic
generative model, defined over space and time, that represents
a video (i.e., spatio-temporal volume) as the output of a linear
dynamical system (LDS). The model includes a hidden-state
process, which encodes the motion of the video over time, and
an observation variable that determines the appearance of each
video frame, conditioned on the current hidden state. Both the
hidden-state vector and the observation vector are representa-
tive of the entire image, enabling a holistic characterization of
the motion for the entire sequence. The DT model has been ap-
plied to a wide variety of computer vision problems, including
video texture synthesis [3], video registration [4, 5], motion
and video texture segmentation [6, 7, 8, 9, 10], human activity
recognition [11], human gait recognition [12], and motion clas-
sification [13, 14, 15, 16, 17, 18, 19, 20]. These successes illus-
trate both the modeling capabilities of the DT representation,
and the robustness of the underlying probabilistic framework.

In this paper, we address the problem of clustering
dynamic texture models, i.e., clustering linear dynamical
systems. Given a set of DTs (e.g., each learned from a
small video cube extracted from a large set of videos), the

• A. Mumtaz and A. B. Chan are with the Department of Computer Science,
City University of Hong Kong.
E-mail: adeelmumtaz@gmail.com, abchan@cityu.edu.hk.

• E. Coviello and G. R. G. Lanckriet are with the Department of Electrical
and Computer Engineering, University of California, San Diego.
E-mail: emanuetre@gmail.com, gert@ece.ucsd.edu.

goal is to group similar DTs into K clusters, while also
learning a representative DT “center” that can sufficiently
summarize each group. This is analogous to standard K-
means clustering, except that the datapoints are dynamic
textures, instead of real vectors. A robust DT clustering
algorithm has several potential applications in video analysis,
including: 1) hierarchical clustering of motion; 2) video
indexing for fast video retrieval; 3) DT codebook generation
for the bag-of-systems motion representation; 4) semantic
video annotation via weakly-supervised learning. Finally, DT
clustering can also serve as an effective method for learning
DTs from a large dataset of video via hierarchical estimation.

The parameters of the LDS lie on a non-Euclidean space
(non-linear manifold), and hence cannot be clustered directly
with the K-means algorithm, which operates on real vectors in
Euclidean space. One solution, proposed in [18], first embeds
the DTs into a Euclidean space using non-linear dimensional-
ity reduction (NLDR), and then performs K-means on the low-
dimensional space to obtain the clustering. While this performs
the task of grouping the DTs into similar clusters, [18] is not
able to generate novel DTs as cluster centers. These limitations
could be addressed by clustering the DTs’ parameters directly
on the non-linear manifold, e.g., using intrinsic mean-shift
[21] or LLE [22]. However, these methods require analytic
expressions for the log and exponential map on the manifold,
which are difficult to compute for the DT parameters.

An alternative to clustering with respect to the manifold
structure is to directly cluster the probability distributions of
the DTs. One method for clustering probability distributions,
in particular, Gaussians, is the hierarchical expectation-
maximization (HEM) algorithm for Gaussian mixture models
(GMMs), first proposed in [23]. The HEM algorithm of
[23] takes a Gaussian mixture model (GMM) with Kb

mixture components and reduces it to another GMM with
Kr components (Kr < Kb), where each of the new Gaussian
components represents a group of the original Gaussians (i.e.,

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 2

forming a cluster of Gaussians). HEM proceeds by generating
virtual samples from each of the Gaussian components in
the base GMM. Using these virtual samples, the reduced
GMM is then estimated using the standard EM algorithm.
The key insight of [23] is that, by applying the law of large
numbers, a sum over virtual samples can be replaced by an
expectation over the base Gaussian components, yielding a
clustering algorithm that depends only on the parameters of
the base GMM. The components of the reduced GMM are
the Gaussian cluster centers, while the base components that
contributed to these centers are the cluster members.

In this paper, we propose an HEM algorithm for clustering
dynamic textures through their probability distributions [24].
The resulting algorithm is capable of both clustering DTs and
learning novel DT cluster centers that are representative of
the cluster members, in a manner that is consistent with the
underlying generative probabilistic model of the DT. Besides
clustering dynamic textures, the HEM algorithm can be used
to efficiently learn a DT mixture from large datasets of
video, using a hierarchical estimation procedure. In particular,
intermediate DT mixtures are learned on small portions of
the large dataset, and the final model is estimated by running
HEM on the intermediate models. Because HEM is based on
maximum-likelihood principles, it drives model estimation
towards similar optimal parameter values as performing
maximum-likelihood estimation on the full dataset.

we demonstrate the efficacy of the HEM clustering
algorithm for DTs on several computer visions problems. First,
we perform hierarchical clustering of video textures, showing
that HEM groups perceptually similar motion together.
Second, we use HEM to learn DT mixture models for semantic
motion annotation, based on the supervised multi-class
labeling (SML) framework [25]. DT annotation models are
learned efficiently from weakly-labeled videos, by aggregating
over large amounts of data using the HEM algorithm. Third,
we generate codebooks with novel DT codewords for the bag-
of-systems motion representation, and demonstrate improved
performance on the task of dynamic texture recognition.

The contributions of this paper are three-fold. First,
we propose and derive the HEM algorithm for clustering
dynamic textures (linear dynamical systems). This involves
extending the original HEM algorithm [23] to handle mixture
components with hidden states (which are distinct from the
hidden assignments of the overall mixture). Second, we derive
an efficient recursive algorithm for calculating the E-step
of this HEM algorithm, which makes a novel contribution
to the subfield of “suboptimal filter analysis” or “sensitivity
analysis” [26]. In particular, we derive expressions for the
behavior (mean, covariance, and cross-covariance) of the
Kalman smoothing filter when a mismatched source is
applied. Third, we demonstrate the applicability of our HEM
algorithm on a wide variety of tasks, including hierarchical
DT clustering, DTM density estimation from large amounts of
data, and estimating DT codebooks for BoS representations.

The remainder of this paper is organized as follows. Section
2 discusses related work, and we review dynamic texture mod-
els in Section 3. In Section 4, we derive the HEM algorithm for
DT mixture models, and in Appendix A we derive an efficient

algorithm for sensitivity analysis of the Kalman smoothing
filter. Finally, Section 5 concludes the paper by presenting
three applications of HEM with experimental evaluations.

2 RELATED WORK
[18] proposes to cluster DT models using non-linear dimen-
sionality reduction (NLDR). First, the DTs are embedded into
a Euclidean space using multidimensional scaling (MDS) and
the Martin distance function. Next, the DTs are grouped to-
gether by applying K-means clustering on the low-dimensional
embedded points. Generating representative DTs correspond-
ing to the K-means cluster centers is challenging, due to the
pre-image and out-of-sample limitations of kernelized NLDR
techniques. [18] works around this problem by selecting the
DT whose low-dimensional embedding is closest to the low-
dimensional cluster center as the representative DT for the
cluster.

The HEM algorithm for GMMs, proposed in [23], has been
employed in [27] to build GMM hierarchies for efficient image
indexing, and in [25] to estimate GMMs from large image
datasets for semantic annotation. In this paper, we extend the
HEM algorithm to dynamic texture mixtures (DTMs), where
each mixture component is an LDS. In contrast to GMMs,
the E-step inference of HEM for DTMs requires a substantial
derivation to obtain an efficient algorithm, due to the hidden
state variables of the LDS.

Other approaches to clustering probability distributions
have also been proposed in the literature. [28] introduces a
generic clustering algorithm based on Bregman divergences.
Setting the Bregman divergence to the discrete KL divergence
yields an algorithm for clustering multinomials. When the
Bregman divergence is the sum of the Mahalonobis distance
and the Burg matrix divergence, the result is a clustering
algorithm for multivariate Gaussians [29], which uses the
covariance and means of the base Gaussians. Similarly, [30]
minimizes the weighted sum of the Kullback-Leibler (KL)
divergence between the cluster center and each probability
distribution, yielding an alternating minimization procedure
identical to [29]. While this approach could also be applied
to clustering dynamic textures, it would require calculating
prohibitively large (if not infinite) covariance matrices.

Previous works on sensitivity analysis [31, 32] focus on the
actual covariance matrix of the error, i.e., the covariance of
the error between the state estimate of the Kalman smoothing
filter and the true state when a mismatched source LDS is
applied. In contrast, the HEM E-step requires the expectation,
covariance, and cross-covariance of the smoothed state
estimator under a different LDS, i.e., the actual expected
behavior of the Kalman smoothing filter when a mismatched
source is applied. Some of these quantities are related to the
actual error covariance matrix, and some are not. Hence, the
results from [31, 32] cannot be directly used to obtain our
HEM E-step, or vice versa.

With respect to our previous work, the HEM algorithm for
DTMs was originally proposed in [24]. In contrast to [24], this
paper presents a more complete analysis of HEM-DTM and
significantly more experimental results: 1) a complete deriva-
tion of the HEM algorithm for DT mixtures; 2) a complete

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 3

derivation of the sensitivity analysis of the Kalman smoothing
filter, used for the E-step in HEM-DTM; 3) a new experiment
on semantic motion annotation using a video dataset of real
scenes; 4) new experiments on dynamic texture recognition
with the bag-of-systems representation using different datasets,
as well as comparisons with other state-of-the-art methods. Fi-
nally, we have also applied HEM-DTM to music annotation in
[33], which mainly focuses on large-scale experiments and in-
terpreting the parameters of the learned DT annotation models.

3 DYNAMIC TEXTURE MODELS
A dynamic texture [3] (DT) is a generative model for
both the appearance and the dynamics of video sequences.
The model consists of a random process containing an
observation variable yt, which encodes the appearance
component (vectorized video frame at time t), and a hidden
state variable xt, which encodes the dynamics (evolution of
the video over time). The appearance component is drawn at
each time instant, conditionally on the current hidden state.
The state and observation variables are related through the
linear dynamical system (LDS) defined by

xt = Axt−1 + vt, (1)
yt = Cxt + wt + ȳ, (2)

where xt ∈ Rn and yt ∈ Rm are real vectors (typically
n � m). The matrix A ∈ Rn×n is a state transition matrix,
which encodes the dynamics or evolution of the hidden state
variable (i.e., the motion of the video), and the matrix C ∈
Rm×n is an observation matrix, which encodes the appearance
component of the video sequence. The vector ȳ ∈ Rn is the
mean of the dynamic texture (i.e., the mean video frame). vt is
a driving noise process, and is zero-mean Gaussian distributed,
i.e., vt ∼ N (0, Q), where Q ∈ Rn×n is a covariance matrix.
wt is the observation noise and is also zero-mean Gaussian,
i.e., wt ∼ N (0, R), where R ∈ Rm×m is a covariance matrix
(typically, it is assumed the observation noise is i.i.d. between
the pixels, and hence R = rIm is a scaled identity matrix).
Finally, the initial condition is specified as x1 ∼ N (µ, S),
where µ ∈ Rn is the mean of the initial state, and S ∈ Rn×n
is the covariance. The dynamic texture is specified by the pa-
rameters Θ = {A,Q,C,R, µ, S, ȳ}. A number of methods are
available to learn the parameters of the dynamic texture from a
training video sequence, including maximum-likelihood (e.g.,
expectation-maximization [34]), or a suboptimal, but compu-
tationally efficient, greedy least-squares procedure [3].

While a dynamic texture models a time-series as a
single sample from a linear dynamical system, the dynamic
texture mixture (DTM), proposed in [8], models multiple
time-series as samples from a set of K dynamic textures.
The DTM model introduces an assignment random variable
z ∼ multinomial(π1, · · · , πK), which selects the parameters
of one of the K dynamic texture components for generating
a video observation, resulting in system equations{

xt = Azxt−1 + vt
yt = Czxt + wt + ȳz,

(3)

where each mixture component is parameterized by
Θz = {Az, Qz, Cz, Rz, µz, Sz, ȳz}, and the DTM model is

parameterized by Θ = {πz,Θz}Kz=1. Given a set of video
samples, the maximum-likelihood parameters of the DTM can
be estimated with recourse to the expectation-maximization
(EM) algorithm [8]. The EM algorithm for DTM alternates
between estimating first and second-order statistics of the
hidden states, conditioned on each video, with the Kalman
smoothing filter (E-step), and computing new parameters
given these statistics (M-step).

4 THE HEM ALGORITHM FOR DYNAMIC
TEXTURES
The hierarchical expectation-maximization (HEM) algorithm
was proposed in [23] to reduce a Gaussian mixture
model (GMM) with a large number of components into a
representative GMM with fewer components. In this section
we derive the HEM algorithm when the mixture components
are dynamic textures.

4.1 Formulation
Let Θ(b) = {π(b)

i ,Θ
(b)
i }K

(b)

i=1 denote the base DT mixture
model with K(b) components. The likelihood of the observed
random variable y1:τ ∼ Θ(b) is given by

p(y1:τ |Θ(b)) =

K(b)∑
i=1

π
(b)
i p(y1:τ |z(b) = i,Θ(b)), (4)

where y1:τ is the video, τ is the video length, and
z ∼ multinomial(π

(b)
1 , · · ·π(b)

K(b)) is the hidden variable that
indexes the mixture components. p(y1:τ |z(b) = i,Θ(b)) is
the likelihood of the video y1:τ under the ith DT mixture
component, and π(b)

i is the prior weight for the ith component.
The goal is to find a reduced DT mixture model, Θ(r), which
represents (4) using fewer mixture components. The likelihood
of the observed video random variable y1:τ ∼ Θ(r) is

p(y1:τ |Θ(r)) =

K(r)∑
j=1

π
(r)
j p(y1:τ |z(r) = j,Θ(r)), (5)

where K(r) is the number of DT components
in the reduced model (K(r) < K(b)), and
z(r) ∼ multinomial(π

(r)
1 , · · · , π(r)

K(r)) is the hidden variable
for indexing components in Θ(r). Note that we will always
use i and j to index the components of the base model Θ(b)

and the reduced model Θ(r), respectively. We will also use
the short-hand Θ

(b)
i and Θ

(r)
j to denote the ith component

of Θ(b) and the jth component of Θ(r), respectively. For
example, we denote p(y1:τ |z(b) = i,Θ(b)) = p(y1:τ |Θ(b)

i).

4.2 Parameter estimation
To obtain the reduced model, HEM [23] considers a set of N
virtual samples drawn from the base model Θ(b), such that
Ni = Nπ

(b)
i video samples are drawn from the ith component.

The DT, however, has both observable Y and hidden state
X variables (which are distinct from the hidden assignments
of the overall mixture). To adapt HEM to DT models with
hidden state variables, the most straightforward approach is to
draw virtual samples from both X and Y according to their
joint distribution. However, when computing the parameters
of a new DT of the reduced model, there is no guarantee

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 4

that the virtual hidden states from the base models live in
the same basis (equivalent DTs can be formed by scaling,
rotating, or permuting A, C, and X). This basis mismatch
will cause problems when estimating parameters from the
virtual samples of the hidden states. The key insight is that,
in order to remove ambiguity caused by multiple equivalent
hidden state representations, we must only generate virtual
samples from the observable Y , while treating the hidden
states X as additional missing information in HEM.

We denote the set of Ni virtual video samples for the ith
component as Yi = {y(i,m)

1:τ }
Ni
m=1, where y(i,m)

1:τ ∼ Θ
(b)
i is a

single video sample and τ is the length of the virtual video
(a parameter we can choose). The entire set of N samples is
denoted as Y = {Yi}K

(b)

i=1 . To obtain a consistent hierarchical
clustering, we also assume that all the samples in a set Yi
are eventually assigned to the same reduced component Θ

(r)
j ,

as in [23]. The parameters of the reduced model can then
be computed using maximum likelihood estimation with the
virtual video samples,

Θ(r)∗ = argmax
Θ(r)

log p(Y |Θ(r)), (6)

where

log p(Y |Θ(r)) = log

K(b)∏
i=1

p(Yi|Θ(r))

= log

K(b)∏
i=1

K(r)∑
j=1

π
(r)
j p(Yi|z(r)

i = j,Θ(r))

= log

K(b)∏
i=1

K(r)∑
j=1

π
(r)
j

∫
p(Yi, Xi|Θ(r)

j)dXi (7)

and Xi = {x(i,m)
1:τ }

Ni
m=1 are the hidden-state variables corre-

sponding to Yi, and z(r)
i is the hidden variable assigning Yi to

a mixture component in Θ(r). (7) requires marginalizing over
hidden states {X,Z}, and hence (6) can be solved using the
EM algorithm [35], which is an iterative optimization method
that alternates between estimating the hidden variables with
the current parameters, and computing new parameters given
the estimated hidden variables (the “complete data”), given by

E-Step: Q(Θ(r), Θ̂(r)) = EX,Z|Y,Θ̂(r) [log p(X,Y, Z|Θ(r))],

M-Step: Θ̂(r)∗ = argmax
Θ(r)

Q(Θ(r), Θ̂(r)),

where Θ̂(r) is the current estimate of the parameters,
p(X,Y, Z|Θ(r)) is the “complete-data” likelihood, and
EX,Z|Y,Θ̂(r) is the conditional expectation with respect to the
current model parameters.

As is common with the EM formulation with mixture
models, we introduce a hidden assignment variable zi,j ,
which is an indicator variable for when the video sample
set Yi is assigned to the jth component of Θ(r), i.e., when

z
(r)
i = j. The complete-data log-likelihood is then

log p(X,Y, Z|Θ(r))

= log

K(b)∏
i=1

K(r)∏
j=1

(
π

(r)
j p(Yi, Xi|Θ(r)

j)
)zi,j

=

K(b)∑
i=1

K(r)∑
j=1

zi,j log π
(r)
j + zi,j log p(Yi, Xi|Θ(r)

j). (8)

We next derive the Q function, E-step, and M-step.

4.3 Q function for HEM-DTM
In the E-step, the Q function is obtained by taking the
conditional expectation, with respect to the hidden variables
{X,Z}, of the complete-data likelihood in (8)

Q(Θ(r), Θ̂(r)) =

K(b)∑
i=1

K(r)∑
j=1

EX,Z|Y,Θ̂(r)

[
zi,j log π

(r)
j

+ zi,j log p(Yi, Xi|Θ(r)
j)
]

=

K(b)∑
i=1

K(r)∑
j=1

EZ|Y,Θ̂(r) [zi,j] log π
(r)
j

+ EZ|Y,Θ̂(r) [zi,j]EX|Y,Θ̂(r)
j

[log p(Yi, Xi|Θ(r)
j)]

(9)

=

K(b)∑
i=1

K(r)∑
j=1

ẑi,j log π
(r)
j

+ ẑi,jEXi|Yi,Θ̂(r)
j

[
log p(Yi, Xi|Θ(r)

j)
]
,

(10)

where (9) follows from

EX,Z|Y,Θ̂(r) [zi,j log p(Yi, Xi|Θ(r)
j)]

= EZ|Y,Θ̂(r)EX|Z,Y,Θ̂(r) [zi,j log p(Yi, Xi|Θ(r)
j)]

= EZ|Y,Θ̂(r) [zi,j]EX|Y,zi,j=1,Θ̂(r) [log p(Yi, Xi|Θ(r)
j)]

= ẑi,jEX|Y,Θ̂(r)
j

[log p(Yi, Xi|Θ(r)
j)],

and ẑi,j is the probability that sample set Yi is assigned to
component j in Θ(r), obtained with Bayes’ rule,

ẑi,j = EZ|Y,Θ̂(r) [zi,j] = p(z
(r)
i = j|Yi, Θ̂(r))

=
π

(r)
j p(Yi|Θ̂(r)

j)∑K(r)

j′=1 π
(r)
j′ p(Yi|Θ̂

(r)
j′)

. (11)

For the likelihood of the virtual samples, p(Yi|Θ̂(r)
j), we can

obtain an approximation that only depends on the model
parameters Θ

(b)
i that generated the samples,

log p(Yi|Θ̂(r)
j) =

Ni∑
m=1

log p(y
(i,m)
1:τ |Θ̂

(r)
j)

= Ni

[
1

Ni

Ni∑
m=1

log p(y
(i,m)
1:τ |Θ̂

(r)
j)

]
≈ NiEy|Θ(b)

i

[
log p(y1:τ |Θ̂(r)

j)
]
, (12)

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 5

where (12) follows from the law of large numbers [23] (as
Ni → ∞). Substituting into (11), we get the expression for
ẑi,j , similar to the one derived in [23],

ẑi,j =
π

(r)
j exp

(
NiEy|Θ(b)

i
[log p(y1:τ |Θ̂(r)

j)]
)

∑K(r)

j′=1 π
(r)
j′ exp

(
NiEy|Θ(b)

i
[log p(y1:τ |Θ̂(r)

j′)]
) . (13)

For the last term in (10), we have

E
Xi|Yi,Θ̂(r)

j
[log p(Yi, Xi|Θ(r)

j)]

=

Ni∑
m=1

E
x
(i,m)
1:τ |y(i,m)

1:τ ,Θ̂
(r)
j

[log p(y
(i,m)
1:τ , x

(i,m)
1:τ |Θ

(r)
j)]

≈ NiEy|Θ(b)
i

[
E
x|y,Θ̂(r)

j
[log p(y1:τ , x1:τ |Θ(r)

j)]
]
, (14)

where, again, (14) follows from the law of large numbers.
Hence, the Q function is given by

Q(Θ(r), Θ̂(r)) =

K(b)∑
i=1

K(r)∑
j=1

ẑi,j log π
(r)
j (15)

+ ẑi,jNiEy|Θ(b)
i

[
E
x|y,Θ̂(r)

j
[log p(y1:τ , x1:τ |Θ(r)

j)]
]
.

Note that the form of the Q function in (15) is similar to
that of the EM algorithm for DTM [8]. The first difference is
the additional expectation w.r.t. Θ

(b)
i . In HEM, each base DT

Θ
(b)
i takes role of a “data-point” in standard EM, where an

additional expectation w.r.t. Θ
(b)
i averages over the possible

values of the “data-point”, yielding the double expectation
E
y|Θ(b)

i
[E
x|y,Θ̂(r)

j
[·]]. The second difference is the additional

weighting of Ni on the second term, which accounts for the
prior probabilities of each base DT.

Given these two differences with EM-DTM, the Q function
for HEM-DTM will have the same form as that of EM
[8, eqn. 16], but with two modifications: 1) conditional
statistics of the hidden state will be computed using a double
expectation, E

y|Θ(b)
i

[E
x|y,Θ̂(r)

j
[·]]; 2) an additional weight

Ni will be applied when aggregating these expectations.
Therefore, it can be shown that the HEM-DTM Q function is

Q(Θ(r); Θ̂(r)) =
∑
j

N̂j log πj (16)

− 1

2

∑
j

tr(R−1
j (Λ̂j − Γ̂jC

T
j − CjΓ̂Tj + CjΦ̂jC

T
j))

+ tr(S−1
j (η̂j − ξ̂jµTj − µj ξ̂Tj + M̂jµjµ

T
j))

+ tr(Q−1
j (ϕ̂j − Ψ̂jA

T
j −AjΨ̂T

j +Aj φ̂jA
T
j))

+ M̂j(τ log |Rj |+ (τ − 1) log |Qj |+ log |Sj |),

where we define the aggregate statistics,

N̂j =
∑
i ẑi,j , Φ̂j =

∑
i ŵi,j

∑τ
t=1 P̂

(i)
t,t|j ,

M̂j =
∑
i ŵi,j , Ψ̂j =

∑
i ŵi,j

∑τ
t=2 P̂

(i)
t,t−1|j ,

ξ̂j =
∑
i ŵi,j x̂

(i)
1|j , ϕ̂j =

∑
i ŵi,j

∑τ
t=2 P̂

(i)
t,t|j ,

η̂j =
∑
i ŵi,jP̂

(i)
1,1|j , φ̂j =

∑
i ŵi,j

∑τ
t=2 P̂

(i)
t−1,t−1|j ,

γ̂j =
∑
i ŵi,j

∑τ
t=1 û

(i)
t , Λ̂j =

∑
i ŵi,j

∑τ
t=1 Û

(i)
t|j ,

β̂j =
∑
i ŵi,j

∑τ
t=1 x̂

(i)
t|j , Γ̂j =

∑
i ŵi,j

∑τ
t=1 Ŵ

(i)
t|j ,

with ŵi,j = ẑi,jNi = ẑi,jπ
(b)
i N . The individual conditional

state expectations are

x̂
(i)
t|j = E

y|Θ(b)
i

[
E
x|y,Θ̂(r)

j
[xt]
]
, (17)

P̂
(i)
t|j = E

y|Θ(b)
i

[
E
x|y,Θ̂(r)

j
[xtx

T
t]
]
, (18)

P̂
(i)
t,t−1|j = E

y|Θ(b)
i

[
E
x|y,Θ̂(r)

j
[xtx

T
t−1]

]
, (19)

Ŵ
(i)
t|j = E

y|Θ(b)
i

[
(yt − ȳj)Ex|y,Θ̂(r)

j
[xt]

T
]
, (20)

Û
(i)
t|j = E

y|Θ(b)
i

[
(yt − ȳj)(yt − ȳj)T

]
, (21)

û
(i)
t = E

y|Θ(b)
i

[yt] , (22)

where Θ̂
(r)
j is the current parameter estimate for the jth

component of the reduced model. Note that the expectations
of the hidden state, conditioned on each component Θ

(b)
i ,

are computed through a common DT model Θ̂
(r)
j . Hence, the

potential problem with mismatches between the hidden-state
bases of Θ(b) is avoided. We next derive an efficient algorithm
for computing the E-step expectations.

4.4 E-step expectations
To simplify notation, we denote the parameters of a given base
mixture component Θ

(b)
i as Θb = {Ab, Qb, Cb, Rb, µb, Sb, ȳb},

and likewise for a reduced mixture component Θ̂
(r)
j

as Θr = {Ar, Qr, Cr, Rr, µr, Sr, ȳr}. We denote the
corresponding expectations in (17-22) by dropping the i and
j indices, {x̂t, P̂t, P̂t|t−1, Ŵt, Ût, ût}.

The inner expectations in (17-20), Ex|y,Θr [·], are related
to the conditional state estimator of the Kalman smoothing
filter of Θr, when given an observation y1:τ [34, 26],

x̃
(r)
t|τ = Ext|y1:τ ,Θr [xt],

Ṽ
(r)
t|τ = covxt|y1:τ ,Θr (xt),

Ṽ
(r)
t,t−1|τ = covxt−1,t|y1:τ ,Θr (xt, xt−1),

(23)

where ã(r)
t|s denotes the expectation at time t, conditioned on

sequence y1:s, w.r.t. Θr. Rewriting (17-20) in terms of the
Kalman smoothing filter in (23),

x̂t = Ey|Θb
[
x̃

(r)
t|τ

]
,

P̂t = Ey|Θb
[
Ṽ

(r)
t|τ + x̃

(r)
t|τ (x̃

(r)
t|τ)T

]
= V̂t + χ̂t + x̂t(x̂t)

T ,

P̂t,t−1 = Ey|Θb
[
Ṽ

(r)
t,t−1|τ + x̃

(r)
t|τ (x̃

(r)
t−1|τ)T

]
= V̂t,t−1 + χ̂t,t−1 + x̂t(x̂t−1)T ,

Ŵt = Ey|Θb
[
(yt − ȳr)(x̃(r)

t|τ)T
]

= κ̂t + (ût − ȳr)(x̂t)T ,

(24)

where we define the double expectations,

V̂t = Ey|Θb [Ṽ
(r)
t|τ], V̂t,t−1 = Ey|Θb [Ṽ

(r)
t,t−1|τ],

κ̂t = covy|Θb(yt, x̃
(r)
t|τ), χ̂t = covy|Θb(x̃

(r)
t|τ),

χ̂t,t−1 = covy|Θb(x̃
(r)
t|τ , x̃

(r)
t−1|τ).

(25)

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 6

Note that x̂t is the output of the state estimator from a Kalman
smoothing filter for Θr when the observation y is generated
from a different model Θb. This is also known as “suboptimal
filter analysis” or “sensitivity analysis” [26, 36], where the
goal is to analyze filter performance when an optimal filter, ac-
cording to some source distribution, is run on a different source
distribution. Hence, the expectations in (24) and (25) can be
calculated by sensitivity analysis of the Kalman smoothing
filter for model Θr and source Θb. This procedure is summa-
rized here, with the derivation appearing in Appendix A. First,
given the Kalman filter for Θb and Θr, which calculates the
statistics of the state xt given the previous observations y1:t−1,

x̃
(b)
t|t−1 = Ext|y1:t−1,Θb [xt], Ṽ

(b)
t|t−1 = covxt|y1:t−1,Θb(xt),

x̃
(r)
t|t−1 = Ext|y1:t−1,Θr [xt], Ṽ

(r)
t|t−1 = covxt|y1:t−1,Θr (xt),

(26)

sensitivity analysis of the Kalman filter consists of
marginalizing over the distribution of partial observations,
y1:t−1 ∼ Θb, and computing the mean and covariance,

x̂t = EΘb

 x
(b)
t

x̃
(b)
t|t−1

x̃
(r)
t|t−1

 , V̂t = covΘb(

 x
(b)
t

x̃
(b)
t|t−1

x̃
(r)
t|t−1

), (27)

of the true state x
(b)
t and the state estimators x̂

(b)
t|t−1 and

x̂
(r)
t|t−1. Second, using these results for the Kalman filter,

sensitivity analysis of the Kalman smoothing filter consists of
marginalizing (23) over the distribution of full observations,
y1:τ ∼ Θb, yielding the expectations in (25) and (24).

The remaining two expectations in (21-22) are calculated
from the marginal statistics of Θb,

Ût = Ey|Θb
[
(yt − ȳr)(yt − ȳr)T

]
= covy|Θb(yt, yt) + (ût − ȳr)(ût − ȳr)T

= CbV̂
[1,1]
t CTb +Rb + (ût − ȳr)(ût − ȳr)T , (28)

ût = Ey|Θb [yt] = Cbx̂
[1]
t + ȳb, (29)

Finally, for the soft assignments ẑi,j , the expected log-
likelihood term, Ey|Θb [log p(y|Θr)], is calculated efficiently
by expressing the observation log-likelihood of the DT in
“innovation” form and marginalizing over y ∼ Θb, resulting
in (35-37). This is derived in Appendix A.

Algorithm 1 summarizes the procedure for calculating
the E-step expectations in (17-22). First, the Kalman filter
and Kalman smoothing filter are run on Θb and Θr, using
Algorithm 2. Next, sensitivity analysis is performed on the
Kalman filter and Kalman smoothing filter via Algorithms 3
and 4, where Θr is the model and Θb is the source. Finally,
the expectations and expected log-likelihood are calculated
according to (30-37).
4.5 M-step
In the M-step of HEM for DTM, the paramters Θ(r) are
updated by maximizing the Q function. The form of the HEM
Q function in (16) is identical to that of EM for DTM [8].
Hence, the equations for updating the parameters are identical

Algorithm 1 Expectations for HEM-DTM
1: Input: DT parameters Θb and Θr , length τ .
2: Run Kalman smoothing filter (Algorithm 2) on Θb and Θr to obtain
{Ṽ (b)
t|t−1

, Ṽ
(b)
t|τ , Ṽ

(b)
t,t−1|τ} and {Ṽ (r)

t|t−1
, Ṽ

(r)
t|τ , Ṽ

(r)
t,t−1|τ}.

3: Run sensitivity analysis on the Kalman filters, Θb and Θr , (Algorithm
3) to obtain {x̂t, V̂t}.

4: Run sensitivity analysis for the Kalman smoothing filters, Θb and Θr ,
(Algorithm 4) to obtain {x̂t, χ̂t, χ̂t,t−1, κ̂t}.

5: Compute E-step expectations, for t = {1, · · · , τ}:

ût = Cbx̂
[1]
t + ȳb, (30)

Ût = CbV̂
[1,1]
t CTb +Rb + (ût − ȳr)(ût − ȳr)T , (31)

P̂t = Ṽ
(r)
t|τ + χ̂t + x̂t(x̂t)

T , (32)

P̂t,t−1 = Ṽ
(r)
t,t−1|τ + χ̂t,t−1 + x̂t(x̂t−1)T , (33)

Ŵt = κ̂t + (ût − ȳr)(x̂t)T . (34)

6: Compute expected log-likelihood `:

Σ̂t = CrṼ
(r)
t|t−1

CTr +Rr, Λ̂t = V̂
[3,3]
t + x̂

[3]
t (x̂

[3]
t)T , (35)

λ̂t = CbV̂
[2,3]
t + (Cbx̂

[1]
t + ȳb − ȳr)(x̂

[3]
t)T , (36)

` =

τ∑
t=1

−1
2

tr
[
Σ̂−1
t (Ût − λ̂tCTr − Crλ̂Tt + CrΛ̂tC

T
r)
]

− 1
2

log
∣∣∣Σ̂t∣∣∣− m

2
log(2π).

(37)

7: Output: {x̂t, P̂t, P̂t,t−1, Ŵt, Ût, ût}, `.

to EM for DTM, although the aggregate expectations are
different. Each DT component Θ

(r)
j is updated as

C∗j = Γ̂jΦ̂
−1
j , R∗j = 1

N̂j
(Λ̂j − C∗j Γ̂j),

A∗j = Ψ̂j φ̂
−1
j , Q∗j = 1

N̂j
(ϕ̂j −A∗j Ψ̂T

j),

µ∗j = 1
N̂j
ξ̂j , S∗j = 1

N̂j
η̂j − µ∗j (µ∗j)T ,

π∗j =
N̂j
K(b) , ȳ∗j = 1

N̂j
(γ̂j − C∗j β̂j).

(38)

5 APPLICATIONS AND EXPERIMENTS
In this section, we discuss several novel applications of HEM-
DTM to video and motion analysis, including hierarchical
motion clustering, semantic motion annotation, and DT code-
book generation for the bag-of-systems video representation,
which are illustrated in Figure 1. These applications exploit
several desirable properties of HEM to obtain promising
results. First, given a set of input DTs, HEM estimates a
novel set of fewer DTs that represents the input in a manner
that is consistent with the underlying generative probabilistic
models, by maximizing the log-likelihood of “virtual” samples
generated from the input DTs. As a result, the clusters formed
by HEM are also consistent with the probabilistic framework.
Second, HEM can estimate models on large datasets, by break-
ing the learning problem into smaller pieces. In particular,
intermediate models are learned on small non-overlapping
portions of a large dataset, and the final model is estimated
by running HEM on the intermediate models. Because HEM
is based on maximum-likelihood principles, it drives model
estimation towards similar optimal parameter values as per-
forming maximum-likelihood estimation on the full dataset.
However, the computer memory requirements are significantly
less, since we no longer have to store the entire dataset during
parameter estimation. In addition, the intermediate models are
estimated independently of each other, so the task can be easily

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 7

DT estimation [6
]

L1HEM AlgorithmHEM Algorithm L2

(a)

EM-DTM Algorithm

Road tag model Candle tag model
HEM AlgorithmHEM Algorithm

Road videos Candle videos(b)

BoS Codebook

EM-DTM Algorithm HEM Algorithm(c)

Fig. 1: Applications of the HEM-DTM algorithm: a) hierarchical clustering of video textures; b) learning DT annotation models; c) training
a bag-of-systems (BoS) codebook.
parallelized. In the remainder of the section, we present three
applications of HEM-DTM to video and motion analysis.

5.1 Implementation notes
In the following experiments, the EM-DTM algorithm is first
used to learn video-level DTMs from overlapping vector-
ized video patches (spatio-temporal cubes) extracted from the
video. We initialize EM-DTM using an iterative “component
splitting” procedure suggested in [8], where EM is run re-
peatedly with an increasing number of mixture components.
Specifically, we start by estimating a DTM with K = 1 com-
ponents by running EM-DTM to convergence. Next, we select
the DT component, and duplicate it to form two components
(this is the “splitting”), followed by slightly perturbing the
DT parameters. This new DTM with K = 2 components
serves as the initialization for EM-DTM, which is again run
until convergence. The process is repeated until the desired
number of components is reached. We use a growing schedule
of K = {1, 2, 4, 8, 16}, and perturb the observation matrix
C when creating new DT components. We use a similar
procedure to initialize the reduced DTM when running HEM-
DTM. We set the virtual sample parameters to τ = 20 and
N = 1000. The state-space dimension is set to n = 10. The
likelihood of a video under a DT, p(y1:τ |Θ), is calculated
efficiently using the innovation form of the likelihood in
(74). Finally, we make a standard i.i.d. assumption on the
observation noise of the DT, i.e., R = rI . In this case, the
inversion of large m×m covariance matrices, e.g., in (37) and
(48), is calculated efficiently using the matrix inversion lemma.

5.2 Hierarchical clustering of video textures
We first consider hierarchical motion clustering of video tex-
tures, by successively clustering DTs with the HEM algorithm,
as illustrated in Figure 1a. Given a set of K1 video textures,
spatio-temporal cubes are extracted from the video and a DT is
learned for each video texture. This forms the first level of the
hierarchy (the video-level DT). The next level in the hierarchy
is formed by clustering the DTs from the previous level into
K2 groups with the HEM algorithm (K2 < K1). The DT
cluster centers are selected as the representative models at this

a)

b) river-far, escalator grass, fire plant-a, river-far
Fig. 2: Video texture examples: a) video with 2 textures; b)
ground-truth labels.

level, and the process is continued with each level in the hier-
archy learned from the preceding level. The result is a tree rep-
resentation of the video dataset, with similar textures grouped
together in the hierarchy. Note that this type of hierarchy
could not be built in a straightforward manner using the EM
algorithm on the original spatio-temporal cubes. While it is
possible to learn several DTMs with successively smaller val-
ues of K, there is no guarantee that the resulting mixtures, or
the cluster memberships of the video patches, will form a tree.
5.2.1 Experimental setup
We illustrate hierarchical motion clustering on the video tex-
ture dataset from [8]. This dataset is composed of 99 video se-
quences, each containing 2 distinct video textures (see Figure
2 for examples). There are 12 texture classes in total, ranging
from water (sea, river, pond) to plants (grass and trees), to fire
and steam. To obtain the first level of the hierarchy, we learn
one DT for each texture in each video (the locations of the
textures are known), and pool these DTs together to form a
DTM with K1 = 198 components. Each DT is learned using
[6] on 100 spatio-temporal cubes (5× 5× 60 pixels) sampled
from the texture segment. The second level of the hierarchy
is obtained by running HEM on the level-1 DT mixture to
reduce the number of components to K2 = 12. Finally, the

!"#$$

%&'(')!

*(#)+!#

*(#)+!'

*&),

-$.#(#+&"

"'/-"!0#"

"'/-"

$-#!0#"

1-((20'$3

%&'(')!

0'"-

$+-#4

5
-
/
-
(6
7

8 9 :

!"#$$

%&'(')!

*(#)+!#

*(#)+!'

-$.#(#+&" *&),

"'/-"!0#"

"'/-"

$-#!0#"

1-((20'$3

%&'(')!

0'"-

$+-#4

5
-
/
-
(6
:

8 9 : 7 ; <

*(#)+!# !"#$$ %&'(')! *(#)+!' -$.#(#+&" *&), $-#!0#" "'/-"

"'/-"!0#"

"'/-"

1-((20'$3 %&'(')!

0'"-

$+-#4

5
-
/
-
(6
9

86 96 :6 76 ;6 <6 =6 >6 ?6 8@ 88 89

.(A$+-"6)A4%-"

5
-
/
-
(6
8

6

6

9@6 7@6 <@6 >@6 8@@ 89@ 87@ 8<@ 8>@

Fig. 3: Hierarchical clustering of video textures: The arrows and
brackets show the cluster membership from the preceding level (the
groupings between Levels 1 and 2 are omitted for clarity).

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 8

third and fourth levels are obtained by running HEM on the
previous level for K3 = 6 and K4 = 3 clusters, respectively.
5.2.2 Clustering Results
Figure 3 shows the hierarchical clustering that is obtained with
HEM. The first level contains the DTs that represent each
texture segment in the database. Each vertical bar represents
one DT, where the color indicates the ground-truth cluster label
(texture name). In the second level, the 12 DT components are
shown as vertical bars, where the colors indicate the proportion
of the cluster membership with a particular ground-truth clus-
ter label. In most cases, each cluster corresponds to a single
texture (e.g., grass, escalator, pond), which illustrates that
HEM is capable of clustering DTs into similar motions. The
Rand index for the level-2 clustering using HEM is 0.973 (for
comparison, clustering histograms-of-oriented-optical-flow us-
ing K-means yields a Rand index of 0.958). One error is seen
in the HEM cluster with both the river and river-far textures,
which is reasonable considering that the river-far texture
contains both near and far perspectives of water. Moving up to
the third level of the hierarchy, HEM forms two large clusters
containing the plant textures (plant-i, plant-a, grass) and water
textures (river-far, river, sea-far). Finally, in the fourth level,
the video textures are grouped together according to broad
categories: plants (grass, plant-a, plant-i), water (pond, river-
far, river, sea-far), and rising textures (fire, jellyfish, and
steam). These results illustrate that HEM for DT is capable
of extracting meaningful clusters in a hierarchical manner.

5.3 Semantic video texture annotation
In this section, we formulate the annotation of video sequences
as a supervised multi-class labeling (SML) problem [25]
using DTM models.
5.3.1 Video Annotation Framework
A video sequence is first decomposed into spatio-temporal
cubes as Y = {y(i)

1:τ}Ni=1 where each y(i)
1:τ is a vectorized video

patch of length τ . The number of video cubes N depends on
the size and length of the video. Semantic content of the video
can be represented with a vocabulary V = {w1, · · · , w|V|} of
unique tags (e.g., trees, river, and directed motion), with size
|V|. Each video is represented with an annotation vector of
the form c = {c1, . . . , c|V|}, where a particular entry ck > 0
if there is some association of the video with the kth tag in
the vocabulary.

Each tag wk is modeled as a probability distribution over
the video cubes, i.e., p(y(i)

1:τ |wk), which in our case will be a
DTM model. The annotation task is then to find a subsetW =
{w1, . . . , wA} ⊆ V of A tags, that best describes a novel video
Y . Given the novel video, the most relevant tags are those with
highest posterior probability according to Bayes’ rule,

p(wk|Y) = p(Y|wk)p(wk)
p(Y) , (39)

where p(wk) is the kth tag prior, p(Y) is the prior
for the video and p(Y|wk) =

∏N
i=1 p(y

(i)
1:τ |wk). The

video can then be represented as a semantic multinomial
p = [p(w1|Y), . . . , p(w|V||Y)]. The top A tags according to
the semantic multinomial p are then selected as the annota-
tions of the video. To promote annotation using a diverse set
of tags, we also assume a uniform prior, p(wk) = 1/|V|.

5.3.2 Learning tag models with HEM
For each tag wk, the tag distribution p(y

(i)
1:τ |wk) is modeled

with a DTM model, which is estimated from the set of
training videos associated with the particular tag. One
approach to estimation is to extract all the video fragments
from the relevant training videos for the tag, and then run the
EM algorithm [8] directly on this data to learn the tag-level
DTM. This approach, however, requires storing many video
fragments in memory (RAM) for running the EM algorithm.
For even modest-sized databases, the memory requirements
can exceed the RAM capacity of most computers.

To allow efficient training in computation time and memory
requirements, the learning procedure is split into two steps.
First, a video-level DTM model is learned for each video in
the training set using the standard EM algorithm [8]. Next,
a tag-level model is formed by pooling together all the video
level DTMs associated with a tag, to form a large mixture (i.e.,
each DT component in a relevant video-level DTM becomes
a component in the large mixture). However, a drawback of
this model aggregation approach is that the number of DTs
in the DTM tag model grows linearly with the size of the
training data, making inference computationally inefficient
when using large training sets. To alleviate this problem, the
DTM tag models formed by model aggregation are reduced
to a representative DTM with fewer components by using the
HEM algorithm. The HEM algorithm clusters together similar
DTs in the video-level DTMs, thus summarizing the common
information in videos associated with a particular tag. The
new DTM tag model allows for more efficient inference, due
to fewer mixture components, while maintaining a reliable
representation of the tag-level model. The process for learning
a tag-level DTM model from video level DTMs is illustrated
in Figure 1b.

5.3.3 Experimental setup
For the annotation experiment we use the DynTex dataset
[37], which consists of over 650 videos, mostly in everyday

sea(16) field(9) tree(40) escalator(6) stream(26) boiling(7)

shower(3) river(19) flag(17) candle(8) plant(27) sky(3)

mobile(5) road(4) basin(20) fountain(60) waterfall(19) pond(7)

foam(6) source(11) windmill(6) net(4) aquarium(4) anemone(19)

rain(4) toilet(4) laundry(6) server(3) waving(78) dmotion(94)

turbulent(95) oscillating(95) dmotions(38) random(11) intrinsic(15)

Fig. 4: List of tags with example thumbnails and video count for
the DynText dataset. “Structural” tags are in bold.

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 9

TABLE 1: Annotation Results for different methods on the DynTex
dataset.

Average Average Average Tags with
Precision Recall F-Measure Recall > 0

DTM-HEM 0.420 0.507 0.397 33

GMM-HEM-DCT 0.275 0.461 0.292 34
GMM-HEM-OPF 0.191 0.201 0.144 30

surroundings. Ground truth annotation information is present
for 385 sequences (called the “golden set”), based on a
detailed analysis of the physical processes underlying the
dynamic textures. We select the 35 most frequent tags in
DynTex for annotation comprising of 337 sequences. The tags
are also grouped into two categories: 1) process tags, which
describe the physical texture process (e.g., sea, field, and
tree), and are mainly based on the appearance; 2) structural
tags, which describe only the motion characteristics (e.g.,
turbulent and oscillating), and are largely independent of
appearance. Note that videos with a particular structural tag
can have a wide range of appearances, since the tag only
applies to underlying motion. Each video has an average of
2.34 tags 1. Figure 4 shows an example of each tag alongside
the number of sequences in the dataset.

Each video is truncated to 50 frames, converted to grayscale
and downsampled 3 times using bicubic interpolation,
resulting in a size of 192 × 240 × 50. Overlapping spatio-
temporal cubes of size 7×7×20 (step: 4×4×10) are extracted
from the videos. We only consider patches with significant
motion, by ignoring a patch if any pixel has variance < 5 in
time. Video-level DTMs are learned with K = 16 components
to capture enough of the temporal diversity present in each
sequence, while tag-level DTMs use K(r) = 8 components.

Annotation performance is measured following the
procedure described in [25]. Annotation accuracy is reported
by computing precision, recall and F-score for each tag, and
then averaging over all tags. Per-tag precision is the probability
that the model correctly uses the tag when annotating a video.
Per-tag recall is the probability that the model annotates a
video that should have been annotated with the tag. Precision,
recall and F-score measure for a tag w are defined as:

P = |WC |
|WA| , R = |WC |

|WH | , F = 2((P)−1 + (R)−1)−1, (40)

where |WH | is the number of sequences that have tag w in
the ground truth, |WA| is the number of times the annotation
system uses W when automatically tagging a video, and
|WC | is the number of times w is correctly used. In case
a tag is never selected for annotation, the corresponding
precision (that otherwise would be undefined) is set to the
tag prior from the training set, which equals the performance
of a random classifier.

To investigate the advantage of the DTM’s temporal
representation, we compare the annotation performance of
HEM-DTM to the hierarchically-trained Gaussian mixture
models using DCT features [25] (GMM-HEM-DCT) and
using optical flow features [9] (GMM-HEM-OPF). The dataset
is split into 50% training and 50% test sets, with each video

1. Details of the data set and more results can be found at:
http://visal.cs.cityu.edu.hk/research/hemdtm/

(a) (b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Recall

P
re

ci
si

o
n

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35

0.4

tag level

A
ve

ra
ge

 F
−M

ea
su

re

DTM−HEM
GMM−HEM−DCT
GMM−HEM−OPF

Fig. 5: (a) Average precision/recall plot; (b) F-measure plot, showing
all tag-levels, for different methods on DynTex data set.
appearing exactly once in either set. Results are averaged
over 5 trials, using different random training/test sets.
5.3.4 Annotation Results
Table 1 shows the average precision, recall, and F-measure
for annotation with A = 3 tags, while Figure 5 shows these
values for all 35 tag levels. Video annotation using DTMs
outperforms using DCT and optical flow features, with
an F-score of 0.397 versus 0.292 and 0.144. Overall, this
suggests that the DTM can better capture both the appearance
and dynamics of the video texture processes.

TABLE 2: Per Tag performance on DynTex data set.

Precision Recall F-Measure
DTM DCT OPF DTM DCT OPF DTM DCT OPF

pr
oc

es
s

ta
gs

anemone 0.291 0.297 0.103 0.751 0.773 0.606 0.410 0.421 0.173
aquarium 0.140 0.090 0.026 0.167 0.633 0.500 0.150 0.152 0.050
basin 0.150 0.216 0.056 0.353 0.263 0.067 0.191 0.220 0.054
boiling 0.235 0.421 0.120 1.000 0.720 0.390 0.372 0.528 0.175
candle 0.482 0.117 0.022 1.000 0.860 0.050 0.631 0.204 0.031
escalator 0.733 0.583 0.800 0.450 0.617 0.300 0.513 0.598 0.420
field 0.486 0.328 0.072 0.312 0.761 0.460 0.350 0.457 0.118
flag 0.226 0.380 0.311 0.575 0.501 0.365 0.308 0.417 0.320
foam 0.362 0.125 0.082 0.667 0.733 0.300 0.431 0.204 0.126
fountain 0.437 0.383 0.627 0.501 0.222 0.390 0.463 0.277 0.476
laundry 0.138 0.085 0.061 0.800 0.520 0.267 0.232 0.141 0.096
mobile 0.800 0.080 0.300 0.217 0.217 0.200 0.340 0.108 0.233
net 0.700 0.600 0.020 0.400 0.733 0.267 0.480 0.628 0.037
plant 0.261 0.255 0.086 0.781 0.571 0.378 0.390 0.352 0.137
pond 0.273 0.196 0.058 0.720 0.640 0.133 0.367 0.273 0.081
rain 1.000 0.390 0.083 0.733 0.533 0.133 0.800 0.326 0.102
river 0.287 0.256 0.243 0.456 0.349 0.145 0.351 0.292 0.176
road 1.000 0.238 1.000 0.600 0.600 0.600 0.700 0.320 0.700
sea 0.539 0.474 0.072 0.896 0.745 0.096 0.661 0.572 0.082
server 1.000 0.056 0.000 0.700 0.300 0.000 0.800 0.094 0.000
shower 0.000 0.017 0.000 0.000 0.100 0.000 0.000 0.029 0.000
sky 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
source 0.323 0.057 0.025 0.350 0.267 0.033 0.316 0.093 0.029
stream 0.335 0.331 0.186 0.249 0.282 0.097 0.249 0.279 0.128
toilet 0.600 0.157 0.000 0.600 0.567 0.000 0.527 0.234 0.000
tree 0.503 0.594 0.140 0.827 0.741 0.183 0.624 0.656 0.154
waterfall 0.119 0.153 0.089 0.187 0.153 0.197 0.133 0.140 0.111
windmill 0.179 0.059 0.000 0.400 0.567 0.000 0.217 0.106 0.000

st
ru

ct
ur

al
ta

gs

dmotion 0.468 0.457 0.510 0.335 0.152 0.123 0.385 0.221 0.189
dmotions 0.212 0.254 0.235 0.269 0.247 0.091 0.227 0.230 0.114
interinsic 0.491 0.174 0.064 0.725 0.578 0.106 0.560 0.263 0.077
oscillating 0.681 0.796 0.214 0.722 0.609 0.104 0.692 0.689 0.138
random 0.383 0.169 0.072 0.251 0.157 0.157 0.229 0.161 0.092
turbulent 0.498 0.427 0.409 0.429 0.268 0.131 0.456 0.326 0.198
waving 0.374 0.409 0.616 0.313 0.152 0.150 0.339 0.221 0.235

Process 0.414 0.248 0.164 0.525 0.499 0.220 0.393 0.290 0.143
Structural 0.444 0.384 0.303 0.435 0.309 0.123 0.412 0.302 0.149

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 10

55fc410 644b510
(truth)boiling,turbulent
(DTM)boiling,turbulent,laundry,flag,waving
(DCT)boiling,candle,interinsic,turbulent,flag
(OPF)candle,laundry,turbulent,interinsic,flag

(truth)plant,oscillating
(DTM)plant,oscillating,tree,anemone,fountain
(DCT)foam,anemone,oscillating,plant,basin
(OPF)field,plant,toilet,anemone,oscillating

645c610 646a320
(truth)road,dmotions
(DTM)road,dmotions,foam,waterfall,waving
(DCT)road,waving,dmotions,turbulent,dmotion
(OPF)road,waterfall,turbulent,net,dmotion

(truth)flag,waving
(DTM)flag,waving,laundry,turbulent,boiling
(DCT)flag,waving,windmill,laundry,candle
(OPF)flag,waving,laundry,windmill,turbulent

6483510 6487910
(truth)fountain,foam,turbulent,dmotions
(DTM)foam,stream,dmotions,fountain,turbulent
(DCT)waterfall,foam,stream,oscillating,dmotion
(OPF)toilet,plant,field,oscillating,anemone

(truth)plant,oscillating
(DTM)plant,oscillating,tree,aquarium,stream
(DCT)waterfall,stream,oscillating,foam,plant
(OPF)toilet,plant,field,oscillating,anemone

Fig. 6: Annotation examples from the DynTex database, showing ground truth, DTM, GMM-DCT, and GMM-OPF annotations. Automatic
annotations that match the ground-truth annotations are in bold.

Table 2 presents the annotation performance for the
individual tags, as well as averages over the process
and structural categories. For the process category, DTM
outperforms DCT on average F-score (0.393 versus 0.290),
although the performance on individual tags is mixed. In some
cases, appearance (via DCT features) is sufficient to identify
the relevant texture (e.g.. net). For the structural category,
DTM also outperforms DCT with an average F-score of 0.412
versus 0.302, while also dominating DCT on all but one
individual structural tags. In these cases, appearance features
cannot sufficiently model the structural tags, since these tags
contain significant variation in appearance. On the other hand,
DTM is able to learn the common motion characteristics, in
spite of the variation in appearance. Finally, Figure 6 presents
some example annotations for different videos using the top-5
tags. To give a sense of the computational cost of these
annotation experiments, the average runtime using a standard
PC (3.16 Ghz, C++, OpenCV) was 3.3 minutes to learn a
video-level DTM, 2.4 minutes to learn a tag model from
video-level DTMs, and 2.3 minutes to annotate a single video.

5.3.5 Effect of various training parameters

We further investigated the effect of varying the number of
states, number of components, and training set size. Figures
7(a) and 7(b) show the F-score when varying the number of

(a) (b)

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35

0.4

tag level

A
ve

ra
ge

 F
−M

ea
su

re

K(b)=4

K(b)=8
K(b)=16

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35

0.4

tag level

A
ve

ra
ge

 F
−M

ea
su

re

K(r)=2

K(r)=4
K(r)=8

(c) (d)

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35

0.4

tag level

A
ve

ra
ge

 F
−M

ea
su

re

n=5
n=7
n=10

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

0.3

0.35

0.4

tag level

A
ve

ra
ge

 F
−M

ea
su

re

25%
50%
75%
100%

Fig. 7: Effect on annotation performance when varying the number
of: (a) base components; (b) tag-level components; (c) states; (d)
training videos.

video-level components and tag-level components. In general,
increasing the number of components at the video- and
tag-level improves performance, since the DTM can better
capture the variations in underlying dynamics of the video
sequence. Figure 7(c) shows the annotation performance
while varying the dimension of the state space n. Increasing
n tends to improve performance. Finally, Figure 7(d) presents
the average F-score while changing the size of the training
set, by selecting a subset of the training set. The performance
improves consistently with the increase in number of videos.
5.4 HEM-trained bag-of-systems codebook for
dynamic texture recognition
The bag-of-systems (BoS) representation [18] is a descriptor of
motion in a video, where dynamic texture (DT) codewords rep-
resent the typical motion patterns in spatio-temporal patches
extracted from the video. The BoS representation of videos is
analogous to the bag-of-visual-words representation of images,
where images are represented by counting the occurrences
of visual codewords in the image. Specifically, in the BoS
framework the codebook is formed by generative time-series
models instead of words, each of them compactly characteriz-
ing typical textures and dynamics patterns of pixels in a spatio-
temporal patch. Hence, each video is represented by a BoS his-
togram with respect to the codebook, by assigning individual
spatio-temporal patches to the most likely codeword, and then
counting the frequency with which each codeword is selected.

To learn the DT codebook, [18, 38] first estimate individual
DTs, learned from spatio-temporal cubes extracted at
spatio-temporal interest points [18],or from non-overlapping
samples from the video [38]. Codewords are then generated
by clustering the individual DTs using a combination of
non-linear dimensionality reduction (NLDR) and K-means
clustering. Due to the pre-image problem of kernelized
NLDR, this clustering method is not capable of producing
novel DT codewords, as discussed in Section 2. In this
section, we use the HEM-DTM algorithm to generate novel
DT codewords for the bag-of-systems representation, thus
improving the robustness of the motion descriptor. We
validate the HEM-trained BoS codebook on the task of
dynamic texture recognition, while comparing with existing
state-of-the-art methods [14, 39, 40, 18, 20].
5.4.1 Learning a BoS Codebook with HEM-DTM
The procedure for learning a BoS codebook is illustrated in
Figure 1c. First, for each video in the training corpus, a dense
sampling of spatio-temporal cubes is extracted, and a DTM

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 11

is learned with the EM algorithm [8]. Next, these DTMs are
pooled together to form one large DTM, and the number
of mixture components is reduced using the HEM-DTM
algorithm. Finally, the novel DT cluster centers are selected
as the BoS codewords. Note that this method of codebook
generation is able to exploit all the training data, as opposed
to only a subset selected via interest-point operators as in
[18], or non-overlapping samples as in [38]. This is made
possible through the efficient hierarchical learning of the
codebook model, as discussed in the previous sections.

Given the BoS codebook, the BoS representation of a
video is formed by first counting the number of occurrences
of each codeword in the video, where each spatio-temporal
cube is assigned to the codeword with largest likelihood.
Next, a BoS histogram (weight vector w) is formed using
the standard term frequency (TF) or term frequency inverse
document frequency (TFIDF) representations,

TF: wik = Nik
Ni
, TFIDF: wik = Nik

Ni
log
(
V
Vk

)
, (41)

where wik is the kth codeword entry for the ith video, Nik
is the number of times codeword k appears in video i,
Ni =

∑
kNik is the total number of codewords for video

i, V is the total number of training videos, and Vk is the
number of training videos in which codeword k occurs.
5.4.2 Related Work and Datasets
Current approaches to dynamic texture recognition use DT
models [13, 14, 20, 18] or aggregations of local descriptors
[39, 40]. [13, 14] represent each video as a DT model, and
then leverage nearest neighbors or support vector machine
(SVM) classifiers, by adopting an appropriate distance

big-leaves blossom-tree1-c1 blossom-tree2-c1 boiling-water2-c boiling-water2-c

curly-hair danube danube-close danube-far escalator1-c

escalator2-c escalator3-c1 escalator3-c2 flag-close flame

lift-downward naked-tree rideau-jaune see-waves shower-drops1

shower-low shower-medium shower-strong small-leaves smoke

square-sheet steam1-c1 steam1-c2 steam1-c1 straw

straw-far stream-wtr1-c stream-wtr2-c updown-tide water-grass

Fig. 8: Examples from DynTex35.

functions between dynamic textures, e.g.., Martin distance
[13] or Kullback-Leibler divergence [14]. The resulting
classifiers are largely dependent on the appearance of the
video, i.e., the particular viewpoint of each texture. Subsequent
methods address this issue by proposing translation-invariant
or viewpoint-independent approaches: [20] proposes distances
between DTs based only on the spectrum or cepstrum of
the hidden-state process xt, while ignoring the appearance
component of the model; [18] proposes a bag-of-systems
representation for videos, formed by assigning spatio-temporal
patches, which are selected by interest-point operators, to
DT codewords. The patch-based framework of BoS is less
sensitive to changes in viewpoint than the approaches based
on holistic appearance [13, 14].

In contrast to using DT models, [39, 40] aggregate local
descriptors to form a video descriptor. [39] uses distributions
of local space-time oriented structures, while [40] concatenates
local binary pattern (LBP) histograms extracted from three or-
thogonal planes in space-time (XY, XT, YT). While these two
descriptors are less sensitive to viewpoint, they both ignore the
underlying long-term motion dynamics of the texture process.

The datasets used by the above papers are either based on
the UCLA [13] or DynTex [37] video textures datasets, with
modifications in order to test viewpoint-invariance:

• UCLA50: the original UCLA dataset [13] consists of 50
classes, with 4 videos per class. The original videos are
grayscale with a frame size of 160× 110. [13, 14] crop
the videos to a representative 48 × 48 video patch so
that the texture is from the same viewpoint. In our BoS
experiments, we use the original uncropped versions.

• UCLA39: [20] considers 39 classes from UCLA, which
do not violate the assumption of spatial stationarity. Each
video is cropped into a left subvideo and a right subvideo
(both 48×48), where one side is used for training and the
other for testing. This classification task is significantly
more challenging than UCLA50, since the appearances
of the training videos are quite different than those of
the test videos.

• UCLA9: [18] groups related classes in UCLA into 9
super-classes, where each super-class contains different
viewpoints of the same texture process. Experiments are
conducted on subsets of these 9 super-classes: water vs
fountain (UCLA9wf), fountain vs waterfall (UCLA9wff),
4 classes (UCLA9c4), and 8 classes (UCLA9c8). The
original uncropped videos are used.

• UCLA7: [39] also groups similar classes from UCLA
into 7-super classes, using the uncropped video.

• DynTex35: [40] uses the old DynTex dataset2, consisting
of 35 sequences. Each sequence is decomposed into 10
subvideos, by splitting spatially and temporally, resulting
in 35 classes, with 10 videos per class. Example frames
from each class in DynTex35 are presented in Figure 8.

In this paper, we validate our proposed HEM-trained BoS
on each of these datasets, following the protocols established
by their respective papers and comparing to their published
results.

2. This is an old version of the DynTex dataset used in the previous section.

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 12

TABLE 3: Distances and kernels used for classification.

square-root distance (SR) ds(w1, w2) = arccos(
∑
k

√
w1kw2k)

χ2 distance (CS) dχ2 (w1, w2) = 1
2

∑
k
|w1k−w2k|
w1k+w2k

χ2 kernel (CSK) K(w1, w2) = 1−
∑
k

(w1k−w2k)
2

1
2
(w1k+w2k)

Exponentiated χ2 kernel(ECS) K(w1, w2) = exp(−γdχ2 (w1, w2))

Bhattacharyya kernel (BCK) K(w1, w2) =
∑
k

√
w1kw2k

5.4.3 Experimental setup
For the UCLA-based datasets, overlapping spatio-temporal
cubes with size 5 × 5 × 75 (step: 2 × 2 × 75) pixels are
extracted densely from the grayscale video. For the DynTex35
dataset, the videos are converted to grayscale, and overlapping
spatio-temporal cubes with size 7× 7× 50 (step: 5× 5× 30)
pixels are extracted. We ignore patches without significant
motion by only selecting patches with overall pixel variance
> 1. For all datasets, we learn video-level DTMs with
K = 4 components. The BoS codebook is then learned by
running HEM with K = 64 on the mixture formed from all
the training video DTMs. For UCLA9, we also consider a
codebook size of K = 8 in order to obtain a fair comparison
with [18]. Each video is then represented by its TF and
TFIDF vectors using the BoS codebook.

We mainly follow the protocol of [18] to train dynamic
texture classifiers, using the various distances and kernel
functions listed in Table 3 and the BoS representation. First,
we use k-nearest neighbor classifiers using χ2 and square-root
distances, denoted as CS1 and SR1 for k = 1 and CS3 and
SR3 for k = 3. Second, we consider support vector machines
(SVM) using kernel functions related to the CS and SR
distances, such as the χ2 kernel (CSK), exponentiated χ2

kernel (ECS), and Bhattacharyya kernel (BCK). SVM training
and testing is performed with libSVM [41], with kernel and
SVM parameters selected using 10-fold cross-validation on
the training set. Finally, a generative classification approach,
namely a naive Bayes (NB) classifier, was also tested, as in
[18]. All classification results are averaged over a number of
trials using different training and test sets, depending on the

protocol of the dataset.
5.4.4 Classification results
Table 4 presents the video classification results for the various
classifiers using the HEM-BoS codebook and either TF or
TFIDF representations, and existing state-of-the-art reference
methods for each dataset. Reference results (Ref) are those
provided in the respective papers. The row labeled “Best”
refers to the best accuracy among the various classifiers using
the HEM-BoS codebook. First, looking at K = 64 codewords,
the best classifier using the HEM-BoS codebook consistently
outperforms the reference methods of [14, 39, 40, 18, 20]. To
identify the best-performing (i.e., most consistent) classifier,
we rank all the HEM-BoS classifiers on each individual
dataset, and then calculate the average ranking over the 5
datasets. The best ranking classifier is the 1-NN classifier
using the square-root distance (TF-SR1). TF-SR1 is also
consistently more accurate than the reference methods. These
results demonstrate the efficacy of the HEM-BoS codebook
for representing of a wide range of dynamic textures, while
maintaining viewpoint and translation invariance.

Among the datasets, accuracy on UCLA39 is the most
improved, from 20% [20] or 42.3% [39] to 56.4% for HEM-
BoS. In contrast to [20], which is based solely on motion
dynamics, and [39], which models local appearance and in-
stantaneous motion, the BoS representation is able to leverage
both the local appearance (for translation invariance) and
motion dynamics of the video to improve the overall accuracy.

Next, we compare the two methods of learning a BoS
codebook, the HEM algorithm and NLDR/clustering [18],
using K = 8 as in [18]. On both the 4- and 8-class UCLA9
datasets, the accuracy using HEM-BoS improves significantly
over NLDR-BoS, from 89% to 97.92% on the 4-class problem,
and from 80% [18] or 84% [38] to 92.83% on the 8-class
problem3. The improvement in performance is due to both the

3. Using the same patch sizes as in [38], we get similar performances on
the 8-class problem: 92.83% accuracy for 20× 20× 25 patches, and 90.10%
for 30× 30× 25.

TABLE 4: BoS Classification Results. Average Rank is calculated from the individual ranks on each dataset for K = 64 (shown in
parenthesis). [A/B] refers to “method A as reported in B”.

K=8 K=64
Method UCLA9wf UCLA9wff UCLA9c4 UCLA9c8 UCLA9c8 UCLA7 UCLA39 UCLA50 DynTex35 Average Rank

CS1 99.17 98.75 97.08 91.20 95.87 (9.0) 98.75 (8.5) 46.79 (12.0) 92.30 (10.0) 97.56 (3.0) 8.5
N CS3 98.75 97.50 92.50 85.43 90.65 (13.0) 97.75 (13.0) 46.47 (13.0) 86.00 (15.0) 95.12 (12.0) 13.2
N SR1 100.00 98.12 96.46 92.28 96.63 (5.0) 99.00 (6.0) 52.88 (8.5) 96.45 (2.0) 97.99 (2.0) 4.7

T SR3 98.75 95.62 93.33 83.37 89.89 (14.0) 98.50 (11.0) 52.88 (8.5) 89.15 (12.0) 96.27 (9.0) 10.9
F S CSK 100.00 97.19 92.50 86.41 97.28 (4.0) 99.00 (6.0) 52.88 (8.5) 93.90 (7.0) 97.29 (4.0) 5.9

V INT 100.00 96.56 92.29 75.54 95.22 (10.0) 99.50 (3.0) 57.69 (2.0) 96.55 (1.0) 95.71 (10.0) 5.2
M BCK 99.58 95.31 93.12 70.87 97.39 (1.5) 99.75 (1.5) 52.88 (8.5) 94.40 (5.5) 93.84 (14.0) 6.2

CS1 99.17 96.56 97.71 92.07 96.09 (7.0) 98.75 (8.5) 45.83 (14.0) 91.70 (11.0) 96.84 (5.0) 9.1
T N CS3 99.17 96.25 93.33 85.98 90.98 (12.0) 97.25 (14.0) 44.55 (15.0) 86.30 (14.0) 95.56 (11.0) 13.2
F N SR1 99.17 95.94 97.92 92.83 96.52 (6.0) 98.50 (11.0) 56.09 (4.0) 95.60 (4.0) 98.57 (1.0) 5.2
I SR3 99.17 95.00 95.42 85.00 89.46 (15.0) 98.50 (11.0) 56.41 (3.0) 89.10 (13.0) 96.70 (6.0) 9.6
D S CSK 97.50 93.12 93.33 83.91 97.39 (1.5) 99.00 (6.0) 53.53 (6.0) 93.10 (8.5) 96.42 (8.0) 6.0
F V INT 97.50 87.50 87.08 69.78 94.89 (11.0) 99.25 (4.0) 58.01 (1.0) 96.00 (3.0) 94.84 (13.0) 6.4

M BCK 97.50 87.19 90.21 67.39 97.28 (3.0) 99.75 (1.5) 55.13 (5.0) 93.10 (8.5) 92.97 (15.0) 6.6

NB 100.00 96.56 93.54 79.78 96.09 (8.0) 94.75 (15.0) 50.96 (11.0) 94.40 (5.5) 96.56 (7.0) 9.3

BEST 100 98.75 97.92 92.83 97.39 99.75 58.01 96.55 98.57 TFSR1
Ref 100 [18] 98 [18] 89 [18] 80 [18] 92.30 [39] 42.3 [39] 96 [14] 97.14 [40]

100 [13/18] 56.25 [13/18] 83 [13/18] 52.27 [13/18], 84 [38] 20 [20],15 [14/20] 89 [13/14], 81 [39]

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 13����������	
�����
	����������
������
���
	���
	������
����������	
�����
	����������
������
���
	���
	������

������ �
���

����� ����� ����� ����� ����� ����� ����� ���������� ����� ����� ����� ����� ����� ����� ���������� ����� ����� ����� ����� ����� ����� ���������� ����� ����� ���	� ����� ����� ����� ���������� ����� ����� ����� ��	
� ����� ���	� ���������� ����� ����� ����� ����� ���	� ����� ��������
� ����� ����� ����� ����� ����� ����� ���������� ����� ����� ����� ����� ����� ����� �����
����� ����� ����� ����� ����� ����� ����� ���������� ���	� ����� ����� ����� ����� ����� ���������� ����� ����� ����� ����� ����� ����� ���������� ����� ����� ����� ����� ����� ����� ���	������ ����� ����� ����� ����� ����� ����� ���������� ����� ����� ����� ����� ����� ����� ���������� ����� ����� ����� ����� ���
� ����� ���������� ����� ����� ����� ����� ����� ����� ��������� ����

Fig. 9: Confusion matrix on UCLA9c8 using: (a) HEM-trained BoS (b) BoS from [18].

generation of novel DT codewords, and the ability to learn
these codewords efficiently from more data, i.e., from a dense
sampling of spatio-temporal cubes, rather than those selected
by interest point operators. Figure 9 shows the confusion
matrix for UCLA9c8, using the HEM-BoS and the NLDR-BoS
from [18], respectively. HEM-BoS removes the misclassifica-
tions of “water” to “fire”, and “fountain” to “waterfall”. Again,
this illustrates the robustness of the BoS learned with HEM.
Figure 10 shows several examples of test videos with the
generated class labels. The average runtime was 1.5 hours to
learn a codebook from video-level DTMs for UCLA39, and 20
seconds to calculate the BoS representation for a single video.

Finally, we investigate the effect of increasing the codebook
size for the BoS representation. Figure 11 plots the accuracy
on UCLA{7, 39, 50} and DynTex35, versus a codebook
size of K = {8, 16, 32, 64}. In general, increasing the
number of codewords also increases the classifier accuracy,
with accuracy saturating for UCLA50 and UCLA7. Also,
increasing the codebook size increases the computational cost
of projecting to the codebook. A codebook size of K = 64
represents a good tradeoff between speed and performance
for BoS classification on these datasets.

6 CONCLUSIONS
In this paper, we have derived a hierarchical EM algorithm
that both clusters DTs and learns novel DT cluster centers that
are representative of the cluster members, in a manner that
is consistent with the underlying probabilistic models. The
clustering is achieved by generating “virtual” samples from
the input DTs, and maximizing the log-likelihood of these
virtual samples with respect to the DT cluster centers. Using
the law-of-large-numbers, the sum over virtual samples can
be replaced by an expectation over the input DTs, resulting

{boiling,boiling} {fire,fire} {flowers,flowers} {fountain,fountain}

{sea,sea} {smoke,sea} {water,water} {waterfall,waterfall}

Fig. 10: Classification examples from UCLA9c8 {ground truth,
classifier prediction}.

8 16 32 64
30

40

50

60

70

80

90

100

codebook size

cl
as

si
fic

at
io

n
ra

te

(a) ucla

ucla39

ucla50

ucla7

8 16 32 64
90

92

94

96

98

100

codebook size

cl
as

si
fic

at
io

n
ra

te

(b) DynTex

DynTex35

Fig. 11: Effect of increasing the codebook size on BoS classification
using different data sets.
in a clustering algorithm that depends only on the input
DT model parameters. For the E-step inference of HEM,
we also derive a novel efficient algorithm for sensitivity
analysis of the Kalman smoothing filter. Besides clustering,
the HEM algorithm for DTs can also be used for hierarchical
model estimation from large datasets, where DTMs are first
learned on subsets of the data (e.g., individual videos), and
the resulting DTMs are then aggregated using the HEM
algorithm. This formulation provides a significant increase
in computational and memory efficiency, in comparison to
running standard EM on the full dataset.

We apply the HEM algorithm to a variety of motion analysis
problems. First, we apply HEM to hierarchically cluster video
textures, and demonstrate that the algorithm produces
consistent clusters based on video motion. Second, we use
HEM to estimate motion annotation models using the SML
framework, where each annotation model is a DTM learned
with weakly-labeled training data. Third, we use HEM to
learn BoS codebooks and demonstrate state-of-the-art results
in dynamic texture recognition. Future work will be directed
at extending HEM to general graphical models, allowing a
wide variety of generative models to be clustered or used as
codewords in a bag-of-X representation. Finally, in this work
we have not addressed the model selection problem, i.e.,
selecting the number of reduced mixture components. Since
HEM is based on maximum likelihood principles, it is possible
to apply standard statistical model selection approaches, such
as Akaike information criterion (AIC) and Bayesian
information criterion (BIC) [42]. Alternatively, inspired by
Bayesian non-parametric statistics, the HEM formulation
could be extended to include a Dirichlet process prior [43],
with the number of components adapting to the data.

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 14

ACKNOWLEDGMENTS

The authors thank R. Péteri for the DynTex dataset, and G.
Doretto for the UCLA dataset. AM and ABC were supported
by the Research Grants Council of the Hong Kong Special
Administrative Region, China [CityU 110610]. EC and
GRGL acknowledge support from Qualcomm, Inc., Yahoo!
Inc., the Hellman Fellowship Program, the Alfred P. Sloan
Foundation, NSF Grants CCF-0830535 and IIS-1054960,
and the UCSD FWGrid Project, NSF Research Infrastructure
Grant Number EIA-0303622. ABC, EC and GRGL also
received support from a Google Research Award.

REFERENCES
[1] B. Horn and B. Schunk, “Determining optical flow,” Artificial

Intelligence, vol. 17, pp. 185–204, 1981.
[2] B. Lucas and T. Kanade, “An iterative image registration

technique with an application to stereo vision,” in Proc.
DARPA Image Understanding Workshop, 1981, pp. 121–130.

[3] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic tex-
tures,” Intl. J. Computer Vision, vol. 51, no. 2, pp. 91–109, 2003.

[4] A. W. Fitzgibbon, “Stochastic rigidity: image registration for
nowhere-static scenes,” in ICCV, vol. 1, 2001, pp. 662–70.

[5] A. Ravichandran and R. Vidal, “Dynamic texture registration,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2009.

[6] G. Doretto, D. Cremers, P. Favaro, and S. Soatto, “Dynamic
texture segmentation,” in ICCV, vol. 2, 2003, pp. 1236–42.

[7] A. Ghoreyshi and R. Vidal, “Segmenting dynamic textures with
Ising descriptors, ARX models and level sets,” in Dynamical Vi-
sion Workshop in the European Conf. on Computer Vision, 2006.

[8] A. B. Chan and N. Vasconcelos, “Modeling, clustering, and
segmenting video with mixtures of dynamic textures,” IEEE
TPAMI, vol. 30, no. 5, pp. 909–926, May 2008.

[9] R. Vidal and A. Ravichandran, “Optical flow estimation &
segmentation of multiple moving dynamic textures,” in IEEE
Conf. Computer Vision and Pattern Recognition, vol. 2, 2005,
pp. 516–21.

[10] A. B. Chan and N. Vasconcelos, “Layered dynamic textures,”
IEEE Trans. on Pattern Analysis and Machine Intelligence:
Special Issue on Probabilistic Graphical Models in Computer
Vision, vol. 31, no. 10, pp. 1862–1879, October 2009.

[11] R. Chaudry, A. Ravichandran, G. Hager, and R. Vidal,
“Histograms of oriented optical flow and Binet-Cauchy kernels
on nonlinear dynamical systems for the recognition of human
actions,” in CVPR, 2009.

[12] A. Bissacco, A. Chiuso, and S. Soatto, “Classification
and recognition of dynamical models: The role of phase,
independent components, kernels and optimal transport.” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, pp. 1958–1972, 2007.

[13] P. Saisan, G. Doretto, Y. Wu, and S. Soatto, “Dynamic texture
recognition,” in CVPR, vol. 2, 2001, pp. 58–63.

[14] A. B. Chan and N. Vasconcelos, “Probabilistic kernels for the
classification of auto-regressive visual processes,” in CVPR,
vol. 1, 2005, pp. 846–851.

[15] S. V. N. Vishwanathan, A. J. Smola, and R. Vidal, “Binet-
cauchy kernels on dynamical systems and its application to the
analysis of dynamic scenes,” Intl. J. Computer Vision, vol. 73,
no. 1, pp. 95–119, 2007.

[16] R. Vidal and P. Favaro, “Dynamicboost: Boosting time series
generated by dynamical systems,” in IEEE Intl. Conf. on
Computer Vision, 2007.

[17] A. B. Chan and N. Vasconcelos, “Classifying video with kernel
dynamic textures,” in IEEE Conf. Computer Vision and Pattern
Recognition, 2007.

[18] A. Ravichandran, R. Chaudhry, and R. Vidal, “View-invariant
dynamic texture recognition using a bag of dynamical systems,”
in CVPR, 2009.

[19] B. Ghanem and N. Ahuja, “Phase based modelling of dynamic
textures,” in IEEE Intl. Conf. on Computer Vision, 2007.

[20] F. Woolfe and A. Fitzgibbon, “Shift-invariant dynamic texture
recognition,” in ECCV, 2006.

[21] H. Cetingul and R. Vidal, “Intrinsic mean shift for clustering
on Stiefel and Grassmann manifolds,” in CVPR, 2009.

[22] A. Goh and R. Vidal, “Clustering and dimensionality reduction
on Riemannian manifolds,” in CVPR, 2008.

[23] N. Vasconcelos and A. Lippman, “Learning mixture
hierarchies,” in Neural Information Processing Systems, 1998.

[24] A. B. Chan, E. Coviello, and G. Lanckriet, “Clustering
dynamic textures with the hierarchical EM algorithm,” in Intl.
Conference on Computer Vision and Pattern Recognition, 2010.

[25] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos,
“Supervised learning of semantic classes for image annotation
and retrieval,” IEEE TPAMI, vol. 29, no. 3, pp. 394–410,
March 2007.

[26] A. Gelb, Applied Optimal Estimation. MIT Press, 1974.
[27] N. Vasconcelos, “Image indexing with mixture hierarchies,” in

IEEE Conf. Computer Vision and Pattern Recognition, 2001.
[28] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh, “Clustering

with bregman divergences,” Journal of Machine Learning
Research (JMLR), vol. 6, pp. 1705–1749, 2005.

[29] J. V. Davis and I. Dhillon, “Differential entropic clustering of
multivariate gaussians,” in Adv. in Neural Inf. Proc. Sys. (NIPS,
2006.

[30] J. Goldberger and S. Roweis, “Hierarchical clustering of a
mixture model,” in In NIPS. MIT Press, 2005, pp. 505–512.

[31] R. E. Griffin and A. P. Sage, “Sensitivity analysis of discrete
filtering and smoothing algorithms,” AIAA Journal, vol. 7, pp.
1890–1897, Oct. 1969.

[32] J. Wall, A. Willsky, and N. Sandell, “On the fixed-interval
smoothing problem.” Stochastics., vol. 5, pp. 1–41, 1981.

[33] E. Coviello, A. Chan, and G. Lanckriet, “Time series models
for semantic music annotation,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 19, no. 5, pp. 1343
–1359, july 2011.

[34] R. H. Shumway and D. S. Stoffer, “An approach to time series
smoothing and forecasting using the EM algorithm,” Journal
of Time Series Analysis, vol. 3, no. 4, pp. 253–264, 1982.

[35] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” Journal
of the Royal Statistical Society B, vol. 39, pp. 1–38, 1977.

[36] S. M. Kay, Fundamentals of Statistical Signal Processing:
Estimation Theory. Prentice-Hall, 1993.

[37] R. Péteri, S. Fazekas, and M. J. Huiskes, “DynTex:
A comprehensive database of dynamic textures,” Pattern
Recognition Letters, vol. 31, no. 12, pp. 1627–32, 2010.
[Online]. Available: http://www.cwi.nl/projects/dyntex

[38] A. Ravichandran, R. Chaudhry, and R. Vidal, “Categorizing
dynamic textures using a bag of dynamical systems,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
vol. PP, no. 99, p. 1, 2012.

[39] K. G. Derpanis and R. P. Wildes, “Dynamic texture recognition
based on distributions of spacetime oriented structure,” in
CVPR, 2010.

[40] G. Zhao and M. Pietikainen, “Dynamic texture recognition
using local binary patterns with an application to facial
expressions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2007.

[41] C. Chang and C. Lin, “Libsvm: a library for support vector
machines,” ACM TIST, 2011.

[42] T. Hastie, R. Tibshirani, and J. Friedman, The elements
of statistical learning: data mining, inference and
prediction, 2nd ed. Springer, 2009. [Online]. Available:
http://www-stat.stanford.edu/ tibs/ElemStatLearn/

[43] D. M. Blei and M. I. Jordan, “Variational inference for dirichlet
process mixtures,” Bayesian Analysis, vol. 1, pp. 121–144, 2005.

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 15

Adeel Mumtaz received the B.S. degree in
computer science from Pakistan Institute of
Engineering and Applied Sciences and the M.S.
degree in computer system engineering from
Ghulam Ishaq Khan Institute of Engineering
Sciences and Technology, Pakistan, in 2004
and 2006, respectively. He is currently working
toward the PhD degree in Computer Science at
the City University of Hong Kong. He is currently
with the Video, Image, and Sound Analysis
Laboratory , Department of Computer Science,

CityU. His research interests include Computer Vision, Machine
Learning and Pattern recognition.

Emanuele Coviello received the ”Laurea
Triennale” degree in information engineering
and the ”Laurea Specialistica” degree in
telecommunication engineering from the
Università degli Studi di Padova, Padova, Italy,
in 2006 and 2008, respectively. He is currently
pursuing the Ph.D. degree in the Department of
Electrical and Computer Engineering, University
of California at San Diego (UCSD), La Jolla,
where he has joined the Computer Audition
Laboratory. Mr. Coviello received the ”Premio

Guglielmo Marconi Junior 2009” award, from the Guglielmo Marconi
Foundation (Italy), and won the ”2010 Yahoo! Key Scientific Challenge
Program,” sponsored by Yahoo!. His main interest is machine learning
applied to content based information retrieval and multimedia data
modeling, and automatic information extraction from the Internet.

Gert Lanckriet received the M.S. degree in
electrical engineering from the Katholieke
Universiteit Leuven, Leuven, Belgium, in 2000
and the M.S. and Ph.D. degrees in electrical
engineering and computer science from the
University of California, Berkeley, in 2001
and 2005, respectively. In 2005, he joined
the Department of Electrical and Computer
Engineering, University of California, San Diego,
where he heads the Computer Audition Lab-
oratory. His research focuses on the interplay

of convex optimization, machine learning, and signal processing, with
applications in computer audition and music information retrieval.
Prof. Lanckriet was awarded the SIAM Optimization Prize in 2008 and
is the recipient of a Hellman Fellowship, an IBM Faculty Award, an
NSF CAREER Award and an Alfred P. Sloan Foundation Research
Fellowship. In 2011, MIT Technology Review named him one of the 35
top young technology innovators in the world (TR35).

Antoni B. Chan received the B.S. and M.Eng.
degrees in electrical engineering from Cornell
University, Ithaca, NY, in 2000 and 2001,
respectively, and the Ph.D. degree in electrical
and computer engineering from the University
of California, San Diego (UCSD), San Diego,
in 2008. From 2001 to 2003, he was a Visiting
Scientist with the Vision and Image Analysis
Laboratory, Cornell University, Ithaca, NY, and
in 2009, he was a Postdoctoral Researcher with
the Statistical Visual Computing Laboratory,

UCSD. In 2009, he joined the Department of Computer Science, City
University of Hong Kong, Kowloon, Hong Kong, as an Assistant Profes-
sor. His research interests include computer vision, machine learning,
pattern recognition, and music analysis. Dr. Chan was the recipient of an
NSF IGERT Fellowship from 2006 to 2008, and an Early Career Award in
2012 from the Research Grants Council of the Hong Kong SAR, China.

