
IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 1

Clustering Dynamic Textures with the
Hierarchical EM Algorithm for Modeling Video

Adeel Mumtaz, Emanuele Coviello, Gert. R. G. Lanckriet, Antoni B. Chan

F

APPENDIX A
SENSITIVITY ANALYSIS OF THE KALMAN
SMOOTHING FILTER
In this section, we derive a novel efficient algorithm for performing
sensitivity analysis of the Kalman smoothing filter, which is used
to compute the E-step expectations. We begin with a summary
of the Kalman smoothing filter, followed by the derivation of
sensitivity analysis of the Kalman filter and Kalman smoothing filter.
Finally, we derive an efficient algorithm for computing the expected
log-likelihood using these results.

A.1 Kalman smoothing filter
The Kalman filter [36, 26] computes the mean and covariance of the
state xt of an LDS, conditioned on the partially observed sequence
y1:t−1 = {y1, . . . , yt−1},

x̃t|t−1 = Ex|y1:t−1
[xt], Ṽt|t−1 = covx|y1:t−1

(xt), (42)

while the Kalman smoothing filter estimates the state conditioned
on the fully observed sequence y1:τ ,

x̃t|τ = Ext|y1:τ [xt],

Ṽt|τ = covxt|y1:τ (xt),

Ṽt,t−1|τ = covxt−1,t|y1:τ (xt, xt−1).

(43)

Both filters are summarized in Algorithm 2. The Kalman filter
consists of a set of forward recursive equations (Alg. 2, line 4),
while the Kalman smoothing filter contains an additional backward
recursion (Alg. 2, line 8).

For sensitivity analysis, it will be convenient to rewrite the state
estimators in (50) and (56) as functions only of x̃t|t−1 and x̃t|τ ,

x̃t|t−1 = Ft−1x̃t−1|t−2 +Gt−1(yt−1 − ȳ), (44)
x̃t−1|τ = Ht−1x̃t|t−1 + Jt−1x̃t|τ , (45)

where {Ft, Gt, Jt, Ht} are defined in (52), (53).
Finally, note that the conditional covariances, Ṽt|τ and Ṽt,t−1|τ

in (54) and (55), and matrices {Ft, Gt, Jt, Ht}, are not functions
of the observed sequence y1:τ . Hence, we have

V̂t = Ey|Θb [Ṽ
(r)

t|τ] = Ṽ
(r)

t|τ ,

V̂t,t−1 = Ey|Θb [Ṽ
(r)

t,t−1|τ] = Ṽ
(r)

t,t−1|τ .
(46)

• A. Mumtaz and A. B. Chan are with the Department of Computer Science,
City University of Hong Kong.
E-mail: adeelmumtaz@gmail.com, abchan@cityu.edu.hk.

• E. Coviello and G. R. G. Lanckriet are with the Department of Electrical
and Computer Engineering, University of California, San Diego.
E-mail: emanuetre@gmail.com, gert@ece.ucsd.edu.

Algorithm 2 Kalman filter and Kalman smoothing filter
1: Input: DT parameters Θ = {A,Q,C,R, µ, S, ȳ}, video y1:τ .
2: Initialize: x̃1|0 = µ, Ṽ1|0 = S.
3: for t = {1, · · · , τ} do
4: Kalman filter – forward recursion:

Ṽt|t−1 = AṼt−1|t−1A
T +Q, (47)

Kt = Ṽt|t−1C
T (CṼt|t−1C

T +R)−1, (48)

Ṽt|t = (I −KtC)Ṽt|t−1, (49)

x̃t|t−1 = Ax̃t−1|t−1, (50)

x̃t|t = x̃t|t−1 +Kt(yt − Cx̃t|t−1 − ȳ), (51)

Gt = AKt, Ft = A−AKtC. (52)

5: end for
6: Initialize: Ṽτ,τ−1|τ = (I −KτC)AṼτ−1|τ−1.
7: for t = {τ, · · · , 2} do
8: Kalman smoothing filter – backward recursion:

Jt−1 = Ṽt−1|t−1A
T Ṽ −1

t|t−1
, Ht−1 = A−1 − Jt−1, (53)

Ṽt−1|τ = Ṽt−1|t−1 + Jt−1(Ṽt|τ − Ṽt|t−1)JTt−1, (54)

Ṽt−1,t−2|τ = Ṽt−1|t−1J
T
t−2 + Jt−1(Ṽt,t−1|τ −AṼt−1|t−1)JTt−2,

(55)
x̃t−1|τ = x̃t−1|t−1 + Jt−1(x̃t|τ −Ax̃t−1|t−1). (56)

9: end for
10: Output: Kalman filter matrices {Ṽt|t−1, Ṽt|τ , Ṽt,t−1|τ , Gt, Ft, Ht},

and state estimators {x̃t|t−1, x̃t|t, x̃t|τ}.

A.2 Sensitivity Analysis of the Kalman smoothing
filter
We consider the two LDS, Θb and Θr , and their
associated Kalman filters {F (b)

t , G
(b)
t , H

(b)
t , x̃

(b)

t|t−1, x̃
(b)

t|τ} and
{F (r)

t , G
(r)
t , H

(r)
t , x̃

(r)

t|t−1, x̃
(r)

t|τ}. The goal is to compute the mean
and covariance of the Kalman smoothing filter for Θr , when the
source distribution is Θb,

x̂t = Ey|Θb
[
x̃

(r)

t|τ

]
, κ̂t = covy|Θb(yt, x̃

(r)

t|τ),

χ̂t = covy|Θb(x̃
(r)

t|τ), χ̂t,t−1 = covy|Θb(x̃
(r)

t|τ , x̃
(r)

t−1|τ).
(57)

To achieve this, we first analyze the forward recursion, followed by
the backward recursion.

A.2.1 Forward recursion
For the forward recursion, the Kalman filters for Θb and Θr are
recursively defined by (44),[

x̃
(b)

t|t−1

x̃
(r)

t|t−1

]
=

[
F

(b)
t−1x̃

(b)

t−1|t−2 +G
(b)
t−1(y

(b)
t−1 − ȳb)

F
(r)
t−1x̃

(r)

t−1|t−2 +G
(r)
t−1(y

(b)
t−1 − ȳr)

]
,

where {y(b)
t } are the observations from source Θb. Substituting (2)

of the base model, i.e., y(b)
t−1 = Cbx

(b)
t−1 + w

(b)
t−1 + ȳb, and including

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 2

Algorithm 3 Sensitivity Analysis of Kalman filter
1: Input: DT parameters Θb and Θr , Kalman filter matrices
{G(b)

t , F
(b)
t , G

(r)
t , F

(r)
t }, length τ .

2: Initialize: x̂1 =

µbµb
µr

 , V̂1 =

Sb 0 0
0 0 0
0 0 0

.

3: for t = {2, · · · , τ + 1} do
4: Form block matrices:

At−1 =

 Ab 0 0

G
(b)
t−1Cb F

(b)
t−1 0

G
(r)
t−1Cb 0 F

(r)
t−1

 ,
B =

I0
0

 , Ct−1 =

 0

G
(b)
t−1

G
(r)
t−1

 , Dt−1 =

 0
0

G
(r)
t−1

 .
(59)

5: Update means and covariances:

x̂t = At−1x̂t−1 + Dt−1(ȳb − ȳr), (60)

V̂t = At−1V̂t−1A
T
t−1 + BQbB

T + Ct−1RbC
T
t−1. (61)

6: end for
7: Output: x̂t, V̂t.

the recursion of the associated state-space x(b)
t−1 given in (1), we have x

(b)
t

x̃
(b)

t|t−1

x̃
(r)

t|t−1

=

Abx
(b)
t−1 + v

(b)
t

F
(b)
t−1x̃

(b)

t−1|t−2 +G
(b)
t−1(Cbx

(b)
t−1 + w

(b)
t−1)

F
(r)
t−1x̃

(r)

t−1|t−2 +G
(r)
t−1(Cbx

(b)
t−1 + w

(b)
t−1 + ȳb − ȳr)

which can be rewritten succinctly as

xt = At−1xt−1 + Bv
(b)
t + Ct−1w

(b)
t−1 + Dt−1(ȳb − ȳr), (58)

where xt = [(x
(b)
t)T , (x̃

(b)

t|t−1)T , (x̃
(r)

t|t−1)T]T , and the block matrices
{At−1,B,Ct−1,Dt−1} are defined in (59).

Finally, taking the expectation of (58), with respect to
{x1:τ , y1:τ} ∼ Θb, yields the recursive equations for x̂t in
(60). Similarly, taking the covariance of (58) yields a recursive
equation for V̂t in (61), where we have used the fact that
{v(b)
t , w

(b)
t−1} ⊥⊥ {x

(b)
t−1, x̃

(b)

t−1|t−2, x̃
(r)

t−1|t−2}, and v(b)
t ⊥⊥ w

(b)
t . The

recursive equations for the sensitivity analysis of the Kalman filter
are summarized in Algorithm 3.

A.2.2 Backward recursion
Taking the expectation of (45) yields a recursion for x̂t,

x̂t−1 = Ey|Θb [x̃
(r)

t−1|τ]

= H
(r)
t−1Ey|Θb [x̃

(r)

t|t−1] + J
(r)
t−1Ey|Θb [x̃

(r)

t|τ]

= H
(r)
t−1x̂

[3]
t + J

(r)
t−1x̂t, (62)

with initial condition

x̂τ = Ey|Θb [x̃
(r)

τ |τ] = A−1
r Ey|Θb [x̃

(r)

τ+1|τ] = A−1
r x̂

[3]
τ+1. (63)

Taking the covariance of (45), we obtain the recursion,

χ̂t−1 = covy|Θb(x̃
(r)

t−1|τ)

= covy|Θb(Ht−1x̃t|t−1 + Jt−1x̃t|τ)

=
[
H

(r)
t−1 J

(r)
t−1

] [
V̂

[3,3]
t ω̂Tt
ω̂t χ̂t

][
(H

(r)
t−1)T

(J
(r)
t−1)T

]
, (64)

where ω̂t = covy|Θb(x̃
(r)

t|t−1, x̃
(r)

t|τ), and the initial condition is

χ̂τ = covy|Θb(x̃
(r)

τ |τ) = covy|Θb(A
−1
r x̃

(r)

τ+1|τ)

= A−1
r covy|Θb(x̃

(r)

τ+1|τ)A−Tr = A−1
r V̂[3,3]A−Tr . (65)

Substituting (45) into the definition of χ̂t,t−1 yields

Algorithm 4 Sensitivity Analysis of Kalman smoothing filter
1: Input: DT parameters Θb and Θr , Kalman smoothing filter matrices
{G(b)

t , F
(b)
t } and {G(r)

t , F
(r)
t , H

(r)
t , J

(r)
t }, Kalman filter sensitivity

analysis {x̂t, V̂t}, length τ .
2: Initialize: x̂τ = A−1

r x̂
[3]
τ+1, χ̂τ = A−1

r V̂
[3,3]
τ+1A

−T
r , Lτ = A−1

r ,
Mτ = 0.

3: for t = {τ, · · · , 1} do
4: Compute cross-covariance:

ρ̂t =
(
LtF

(r)
t V̂

[3,2]
t + (LtG

(r)
t Cb +Mt)V̂

[1,1]
t

)
CTb + LtG

(r)
t Rb.

(67)

5: if t > 1 then
6: Compute sensitivity:

ω̂t = LtF
(r)
t V̂

[3,3]
t + (LtG

(r)
t Cb +Mt)V̂

[2,3]
t , (68)

x̂t−1 = H
(r)
t−1x̂

[3]
t + J

(r)
t−1x̂t, (69)

χ̂t−1 =
[
H

(r)
t−1 J

(r)
t−1

] [
V̂

[3,3]
t ω̂Tt
ω̂t χ̂t

][
(H

(r)
t−1)T

(J
(r)
t−1)T

]
, (70)

χ̂t,t−1 = ω̂t(H
(r)
t−1)T + χ̂t(J

(r)
t−1)T . (71)

7: Update matrices:

Lt−1 = H
(r)
t−1 + J

(r)
t−1LtF

(r)
t , (72)

Mt−1 = J
(r)
t−1(LtG

(r)
t Cb +Mt)Ab. (73)

8: end if
9: end for

10: Output: {x̂t, χ̂t, χ̂t,t−1, κ̂t = ρ̂Tt }.

χ̂t,t−1 = covy|Θb(x̃
(r)

t|τ , x̃
(r)

t−1|τ)

= covy|Θb(x̃
(r)

t|τ , H
(r)
t−1x̃

(r)

t|t−1 + J
(r)
t−1x̃

(r)

t|τ)

= ω̂t(H
(r)
t−1)T + χ̂t(J

(r)
t−1)T . (66)

Finally, the cross-covariances, ω̂t = covy|Θb(x̃
(r)

t|t−1, x̃
(r)

t|τ) and
κ̂Tt = ρ̂t = covy|Θb(x̃

(r)

t|τ , yt), are calculated efficiently using the
recursion in (67) and (68), where {Lt,Mt} are recursively given by
(72) and (73). The derivation is quite involved and appears in the
Appendix B. The algorithm for sensitivity analysis of the Kalman
smoothing filter is summarized in Algorithm 4.

A.3 Expected Log-Likelihood
The expected log-likelihood Ey|Θb [log p(y|Θr)] can be calculated
efficiently using the results from the sensitivity analysis for Kalman
filters. First, the observation log-likelihood of the DT is expressed
in “innovation” form

log p(y|Θr) =

τ∑
t=1

log p(yt|y1:t−1,Θr)

=

τ∑
t=1

logN (yt|Crx̃(r)

t|t−1 + ȳr,Σt) (74)

=

τ∑
t=1

−1
2

tr
[
Σ−1
t (yt − ȳr − Crx̃(r)

t|t−1)(yt − ȳr − Crx̃(r)

t|t−1)T
]

− 1
2

log |Σt| − m
2

log(2π), (75)

where Σt = CrṼ
(r)

t|t−1C
T
r +Rr . Taking the expectation of (75), and

noting that Ṽ (r)

t|t−1 and Σt are not a functions of the observations
y1:t−1,

` = Ey|Θb [log p(y|Θr)]

=

τ∑
t=1

−1
2

tr
[
Σ−1
t (Ût − λ̂tCTr − Crλ̂Tt + CrΛ̂tC

T
r)
]

− 1

2
log |Σt| −

m

2
log(2π), (76)

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 3

where

Λ̂t = Ey|Θb [x̃
(r)

t|t−1(x̃
(r)

t|t−1)T]

= covy|Θb(x̃
(r)

t|t−1) + Ey|Θb [x̃
(r)

t|t−1]Ey|Θb [x̃
(r)

t|t−1]T

= V̂
[3,3]
t + x̂

[3]
t (x̂

[3]
t)T , (77)

and

λ̂t = Ey|Θb [(yt − ȳr)(x̃
(r)

t|t−1)T]

= covy|Θb(yt − ȳr, x̃
(r)

t|t−1) + Ey|Θb [yt − ȳr]Ey|Θb [x̃
(r)

t|t−1]T

= CbV̂
[2,3]
t + (Cbx̂

[1]
t + ȳb − ȳr)(x̂[3]

t)T . (78)

APPENDIX B
EFFICIENT CALCULATION OF THE CROSS-
COVARIANCE TERMS
In this section, we derive efficient expressions for calculating the
cross-covariance terms,

ω̂t = covy|Θb(x̃
(r)

t|τ , x̃
(r)

t|t−1), ρ̂t = κTt = covy|Θb(x̃
(r)

t|τ , yt).

First, we derive an expression of the Kalman smoothing filter x̃(r)

t|τ

as a function of only x̃
(r)

t|t−1 and observations yt:τ . Filling in the
backward recursion of the Kalman smoothing filter in (45),

x̃
(r)

t|τ = H
(r)
t x̃

(r)

t+1|t + J
(r)
t x̃

(r)

t+1|τ

= H
(r)
t x̃

(r)

t+1|t + J
(r)
t (H

(r)
t+1x̃

(r)

t+2|t+1 + J
(r)
t+1x̃

(r)

t+2|τ)

= H
(r)
t x̃

(r)

t+1|t + J
(r)
t (H

(r)
t+1x̃

(r)

t+2|t+1 + J
(r)
t+1(· · ·

+ J
(r)
τ−2(H

(r)
τ−1x̃

(r)

τ |τ−1 + J
(r)
τ−1x̃

(r)

τ |τ) · · ·))

= H
(r)
t x̃

(r)

t+1|t + J
(r)
t (H

(r)
t+1x̃

(r)

t+2|t+1 + J
(r)
t+1(· · ·

+ J
(r)
τ−2(H

(r)
τ−1x̃

(r)

τ |τ−1 + J
(r)
τ−1A

−1
r x̃

(r)

τ+1|τ) · · ·))

= H
(r)
t x̃

(r)

t+1|t +

τ∑
s=t+2

(

s−2∏
i=t

J
(r)
i)H

(r)
s−1x̃

(r)

s|s−1

+ (

τ−1∏
i=t

J
(r)
i)A−1

r x̃
(r)

τ+1|τ

=

τ+1∑
s=t+1

Jt,s−2Ĥs−1x̃
(r)

s|s−1, (79)

where we define Ĥt =

{
H

(r)
t , t < τ

A−1
r , t = τ

, and Jt,s ={
I , t > s

J
(r)
t J

(r)
t+1 · · · J

(r)
s , t ≤ s

. Next, we rewrite the Kalman

filter terms x̃
(r)

s|s−1, where s > t, as a function of x̃
(r)

t|t−1 and
{yt, · · · , ys−1}. Note that we drop the constant ȳr term since it
will not affect the covariance operator later. Substituting the forward
recursions in (44), we have

x̃
(r)

t+1|t = F
(r)
t x̃t|t−1 +G

(r)
t yt, (80)

x̃
(r)

t+2|t+1 = F
(r)
t+1x̃t+1|t +G

(r)
t+1yt+1

= F
(r)
t+1(F

(r)
t x̃t|t−1 +G

(r)
t yt) +G

(r)
t+1yt+1, (81)

x̃
(r)

t+3|t+2 = F
(r)
t+2x̃t+2|t+1 +G

(r)
t+2yt+2

= F
(r)
t+2(F

(r)
t+1(F

(r)
t x̃t|t−1 +G

(r)
t yt)

+G
(r)
t+1yt+1) +G

(r)
t+2yt+2,

(82)

or in general, for s > t,

x̃
(r)

s|s−1 = Fs−1,t+1(F
(r)
t x̃t|t−1 +G

(r)
t yt)︸ ︷︷ ︸

αs

+

s−1∑
j=t+1

Fs−1,j+1G
(r)
j yj︸ ︷︷ ︸

βs

= αs + βs,
(83)

where we define Fs,t =

{
I , s < t

FsFs−1 · · ·Ft , s ≥ t
, and the quantities

αs and βs as above. Note that βt+1 = 0.
We now substitute x̃(r)

s|s−1 = αs + βs into (79). First, substituting
the αs terms into (79),

α̂t =

τ+1∑
s=t+1

Jt,s−2Ĥs−1αs

=

τ+1∑
s=t+1

Jt,s−2Ĥs−1Fs−1,t+1︸ ︷︷ ︸
Lt

(F
(r)
t x̃t|t−1 +G

(r)
t yt), (84)

where Lt can be computed recursively,

Lt =

τ+1∑
s=t+1

Jt,s−2Ĥs−1Fs−1,t+1

= Jt,t−1ĤtFt,t+1 +

τ+1∑
s=t+2

Jt,s−2Ĥs−1Fs−1,t+1 (85)

= Ĥt +

τ+1∑
s=t+2

Jt,s−2Ĥs−1Fs−1,t+1

= Ĥt + J
(r)
t

(
τ+1∑
s=t+2

Jt+1,s−2Ĥs−1Fs−1,t+2

)
F

(r)
t+1 (86)

= H
(r)
t + J

(r)
t Lt+1F

(r)
t+1, (87)

where in (85) we have separated the first term of the summation
(s = t+ 1) , and in (86) we have used Jt,s−2 = J

(r)
t Jt+1,s−2 and

Fs−1,t+1 = Fs−1,t+2F
(r)
t+1, when s ≥ t. The initial condition for

the Lt backward recursion is

Lτ = Jτ,τ−1ĤτFτ,τ+1 = Ĥτ = A−1
r . (88)

Next, we substitute the βs terms into (79),

β̂t =

τ+1∑
s=t+1

Jt,s−2Ĥs−1βs

=

τ+1∑
s=t+1

Jt,s−2Ĥs−1

s−1∑
j=t+1

Fs−1,j+1G
(r)
j yj

=

τ+1∑
s=t+2

s−1∑
j=t+1

Jt,s−2Ĥs−1Fs−1,j+1G
(r)
j yj

=

τ∑
j=t+1

τ+1∑
s=j+1

Jt,s−2Ĥs−1Fs−1,j+1G
(r)
j yj , (89)

where in (89) we have collected the G(r)
j yj terms by switching the

double summation. Finally, using {α̂t, β̂t}, we rewrite the Kalman
smoothing filter of (79) as a function of x̃(r)

t|t−1 and yt+1:τ ,

x̃
(r)

t|τ =

τ+1∑
s=t+1

Jt,s−2Ĥs−1(αs + βs) = α̂t + β̂t

= Lt(F
(r)
t x̃

(r)

t|t−1 +G
(r)
t yt) + β̂t. (90)

IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, TO APPEAR, 2013 4

Note that β̂t is a function of {yt+1, · · · , yτ}.

B.1 Calculating ω̂t = covy|Θb(x̃
(r)
t|τ , x̃

(r)
t|t−1)

Next, we will derive an expression for ω̂t

ω̂t = covy|Θb(x̃
(r)

t|τ , x̃
(r)

t|t−1) = covy|Θb(α̂t + β̂t, x̃
(r)

t|t−1). (91)

Looking at the covariance with the β̂t term,

covy|Θb(β̂t, x̃
(r)

t|t−1)

= covy|Θb(

τ∑
j=t+1

τ+1∑
s=j+1

Jt,s−2Ĥs−1Fs−1,j+1G
(r)
j yj , x̃

(r)

t|t−1)

=

τ∑
j=t+1

τ+1∑
s=j+1

Jt,s−2Ĥs−1Fs−1,j+1G
(r)
j covy|Θb(yj , x̃

(r)

t|t−1)

=

τ∑
j=t+1

τ+1∑
s=j+1

Jt,s−2Ĥs−1Fs−1,j+1G
(r)
j CbA

j−t
b︸ ︷︷ ︸

Mt

V̂
[2,3]
t , (92)

where in the last line we have used (107). Mt can be computed
with a backward recursion,

Mt =

τ∑
j=t+1

τ+1∑
s=j+1

Jt,s−2Ĥs−1Fs−1,j+1G
(r)
j CbA

j−t
b

= J
(r)
t

[
τ∑

j=t+1

τ+1∑
s=j+1

Jt+1,s−2Ĥs−1

·Fs−1,j+1G
(r)
j CbA

j−t−1
b

]
Ab

= J
(r)
t

([
τ+1∑
s=t+2

Jt+1,s−2Ĥs−1Fs−1,t+2G
(r)
t+1Cb

]
(93)

+

τ∑
j=t+2

τ+1∑
s=j+1

Jt+1,s−2Ĥs−1Fs−1,j+1G
(r)
j CbA

j−(t+1)
b

)
Ab

= J
(r)
t (Lt+1G

(r)
t+1Cb +Mt+1)Ab, (94)

where in (93) we have separated the first term of the summation
(j = t + 1), and in (94) we have used the definition of Lt+1 and
Mt+1. The initial condition is Mτ = 0. Finally using (90), the
cross-covariance is

ω̂t = covy|Θb(x̃
(r)

t|τ , x̃
(r)

t|t−1)

= covy|Θb(Lt(F
(r)
t x̃

(r)

t|t−1 +G
(r)
t yt) + β̂t, x̃

(r)

t|t−1)

= LtF
(r)
t covy|Θb(x̃

(r)

t|t−1) + LtG
(r)
t covy|Θb(yt, x̃

(r)

t|t−1)

+ covy|Θb(β̂t, x̃
(r)

t|t−1)

= LtF
(r)
t V̂

[3,3]
t + LtG

(r)
t CbV̂

[2,3]
t +MtV̂

[2,3]
t (95)

= LtF
(r)
t V̂

[3,3]
t + (LtG

(r)
t Cb +Mt)V̂

[2,3]
t , (96)

where in (95) we have used (107) and (92).

B.2 Calculating ρ̂t = covy|Θb(x̃
(r)
t|τ , yt)

We now derive an expression for ρ̂t,

ρ̂t = covy|Θb(x̃
(r)

t|τ , yt) = covy|Θb(α̂t + β̂t, yt). (97)

Looking at the covariance with β̂t,

covy|Θb(β̂t, yt)

= covy|Θb(

τ∑
j=t+1

τ+1∑
s=j+1

Jt,s−2Ĥs−1Fs−1,j+1G
(r)
j yj , yt)

=

τ∑
j=t+1

τ+1∑
s=j+1

Jt,s−2Ĥs−1Fs−1,j+1G
(r)
j covy|Θb(yj , yt)

=

τ∑
j=t+1

τ+1∑
s=j+1

Jt,s−2Ĥs−1Fs−1,j+1G
(r)
j CbA

j−t
b V̂

[1,1]
t CTb

= MtV̂
[1,1]
t CTb . (98)

Finally, using (90), the cross-covariance is

ρ̂t = covy|Θb(x̃
(r)

t|τ , yt)

= covy|Θb(Lt(F
(r)
t x̃

(r)

t|t−1 +G
(r)
t yt) + β̂t, yt)

= LtF
(r)
t covy|Θb(x̃

(r)

t|t−1, yt) + LtG
(r)
t covy|Θb(yt)

+ covy|Θb(β̂t, yt)

= LtF
(r)
t V̂

[3,2]
t CTb + LtG

(r)
t (CbV̂

[1,1]
t CTb +Rb)

+MtV̂
[1,1]
t CTb (99)

=
(
LtF

(r)
t V̂

[3,2]
t + (LtG

(r)
t Cb +Mt)V̂

[1,1]
t

)
CTb

+ LtG
(r)
t Rb, (100)

where (99) follows by using (107), (98), and covy|Θb(yt) =
Cbcovx|Θb(xt)C

T
b +Rb.

B.3 Useful properties
In this section, we derive some properties used in the previous
section. Note that in the sequel we remove the mean terms, ȳb and
ȳr , which do not affect the covariance operator. First, we derive the
covariance between two observations, for k > 0,

covy|Θb(y
(b)
t+k, y

(b)
t)

= cov(Cbx
(b)
t+k + w

(b)
t+k, Cbx

(b)
t + w

(b)
t)

= Cbcov(x
(b)
t+k, x

(b)
t)CTb + covΘb(w

(b)
t+k, w

(b)
t) (101)

= Cbcov(Akbx
(b)
t +

k∑
l=1

Ak−lb v
(b)
t+l, x

(b)
t)CTb (102)

= CbA
k
b cov(x

(b)
t)CTb = CbA

k
b V̂

[1,1]
t CTb , (103)

where in (102) we have rewritten x
(b)
t+k as a function of x

(b)
t ,

i.e., x(b)
t+k = Akbx

(b)
t +

∑k
l=1 A

k−l
b v

(b)
t+l, in (101) we have used

x
(b)
t ⊥⊥ w

(b)
t+k and x(b)

t+k ⊥⊥ w
(b)
t for k > 0, and in (103), x(b)

t ⊥⊥ v
(b)
t+l

for l ≥ 1. Next, we derive the covariance between the one-step
ahead state estimator and an observation, for k ≥ 0,

covy|Θb(y
(b)
t+k, x̃

(r)

t|t−1) = cov(Cbx
(b)
t+k + w

(b)
t+k, x̃

(r)

t|t−1)

= cov(Cb(A
k
bx

(b)
t +

k∑
l=1

Ak−lb v
(b)
t+l) + w

(b)
t+k, x̃

(r)

t|t−1) (104)

= covxt,y1:t−1|Θb(CbA
k
bx

(b)
t , x̃

(r)

t|t−1) (105)

= CbA
k
b covy1:t−1|Θb(Ext|y1:t−1

[x
(b)
t], x̃

(r)

t|t−1) (106)

= CbA
k
b covy|Θb(x̃

(b)

t|t−1, x̃
(r)

t|t−1) = CbA
k
b V̂

[2,3]
t , (107)

where in (105) we use v(b)
t+l ⊥⊥ x̂

(r)

t|t−1 for l ≥ 1 and w(b)
t+k ⊥⊥ x̃

(r)

t|t−1

for k ≥ 0, and in (106), covx,y(x, y) = covy(Ex|y[x], y).

