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Clustering Dynamic Textures with the
Hierarchical EM Algorithm for Modeling Video

Adeel Mumtaz, Emanuele Coviello, Gert. R. G. Lanckriet, Antoni B. Chan

APPENDIX A
SENSITIVITY ANALYSIS OF THE KALMAN
SMOOTHING FILTER

In this section, we derive a novel efficient algorithm for performing
sensitivity analysis of the Kalman smoothing filter, which is used
to compute the E-step expectations. We begin with a summary
of the Kalman smoothing filter, followed by the derivation of
sensitivity analysis of the Kalman filter and Kalman smoothing filter.
Finally, we derive an efficient algorithm for computing the expected
log-likelihood using these results.

A.1 Kalman smoothing filter

The Kalman filter [36, 26] computes the mean and covariance of the
state x; of an LDS, conditioned on the partially observed sequence

Yi:t—1 = {yl7 ce. ,yt—1},

Tyjpo1 = Er\yl:t_1 [z:], ‘25\,571 = COValyyy 1 (z¢), (42)

while the Kalman smoothing filter estimates the state conditioned
on the fully observed sequence yi.r,

= Extlylzr [z¢],

‘25\7' = COVay|ys1.r (),

jt\f
(43)

Vi1 = COVay y ¢lyrir (T4, T1-1).

Both filters are summarized in Algorithm 2. The Kalman filter
consists of a set of forward recursive equations (Alg. 2, line 4),
while the Kalman smoothing filter contains an additional backward
recursion (Alg. 2, line 8).

For sensitivity analysis, it will be convenient to rewrite the state
estimators in (50) and (56) as functions only of Z;;_; and Z|,,

(44)
(45)

Zy—1 = Fi1Zy_1ji—2 + Gi—1(ye-1 — 9),
Zo_1)r = Hi—1Zgpe—1 + Jt—1%4)r,

where {Fi, Gy, Ji, Hi} are defined in (52), (53).

Finally, note that the conditional covariances, V> and Vi ; 1~
in (54) and (55), and matrices {Fi, G4, Ji, H:}, are not functions
of the observed sequence y1.-. Hence, we have

Vi =Eye, V] =V,

tT
) . (46)
Vig—1 = IEyIGb [‘/t(,t)fl\f] V :

t,t—1|7"
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Algorithm 2 Kalman filter and Kalman smoothing filter
1: Input: DT parameters © = {A,Q,C, R, , S, 7}, video y1.-.

2: Initialize: .’illo = W, Vll() =S.

3: fort={1,---,7} do

4: Kalman filter — forward recursion:

Vije—1 = AVyqpa AT +Q, @7
Kt =V 1CT(CVyCT + R)TE (48)
Vije = (I = KaC)Vypi, (49)
Tjp—1 = A%y 141, (50)
Ty = Type—1 + Ke(ye — CZye—1 — 9), (51)
G¢ = AKy, =A— AKC. (52)
5: end for _
6: Initialize: V. .1 = (I — K;C)AV, _q|;_1.
7: for t ={7,---,2} do
8: Kalman smoothing filter — backward recursion:
Jio1 =V 1t— 1ATY, t|t 1 Hiaa =A" N~ gy, (53)
Vicijr = Vicie—1 + Je—1 (Ve = Vije—1) I, (54)

Vt—l,t—Z\T = ‘7z—1\t—1JzT—2 + thl(f/t,t—l\f - AVt—l\z—l)JtT—z,
(55)

Ziqjr = Tp1jp-1 + Je—1(Tgr — AT_q)p-1)- (56)

9: end for
10: Output: Kalman filter matrices {Vt|t 1,\/,5‘7_,\/“ 1r> G, Ft, Hi},
and state estimators {zm 1,mm,zt‘.r

A.2 Sensitivity Analysis of the Kalman smoothing
filter

We consider the two LDS, ©, and ©,, and
associated Kalman filters {F(b) G(b) Ht(b) ﬁ’t) 175”15\})7}

{(F" G =D, 5@&72 17555‘2)} The goal is to compute the mean
and covariance of the Kalman smoothing filter for ©,, when the

source distribution is Oy,

their
and

&y = Ey\@b [ii\?} , Ry = COVyle, (ye, ilz) (57)

Xt = covyje, (Z E\T)) Xt,t—1 = COVylo, (T irﬁvxii)u-r)'

To achieve this, we first analyze the forward recursion, followed by
the backward recursion.

A.2.1 Forward recursion

For the forward recursion, the Kalman filters for ©, and ©, are
recursively defined by (44),

~(b b 0 b b _

] [ ot
r T) ~(7 T b _ )
f\t 1 Ft Ty g+ G 1(yt )

where {y,b)} are the observations from source ©;. Substituting (2)
of the base model, i.e., yt( )1 =GCh x(b) + w(b> + ¥, and including
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Algorithm 3 Sensitivity Analysis of Kalman filter

Algorithm 4 Sensitivity Analysis of Kalman smoothing filter

1: Input: DT parameters ©; and ©,, Kalman filter matrices
(G F®, G By, length 7.
W . Sy, 0 0
2: Initialize: X1 = |up|, Vi=[0 0 O0].
o 0 0 O
3:fort=1{2,---, 7+ 1} do
4: Form block matrices:
Ay 0 0
b b
A1 = G§J1Cb Ft( )1 0,
anc, o ED
L& t—1 t—1 (59)
- 0 0
! (b)
B=|0|,Ci1= |G 1|, Dir = (0)
T
_0 GEZ)I thl
5: Update means and covariances:
Xt = A¢—1%e—1 + De—1(gp — r), (60)
Vi=A: 1Vi 1Al +BQ,BT + C;_1R,CL ;. (61)

6: end for R
7: Output: X¢, V.

(b %)

the recursion of the associated state-space x;_’; given in (1), we have

NOR BN VRSCRNNO
b) ~(b b b b
_ o >1x§ D ems + GO (Cor”y + ™)
) ~(r T b _ _
Tjt—1 Ft<—>1x§—)1|t o T GE 21(Ch CUE D)+ ’LU( L+ G — )

which can be rewritten succinctly as

At 1X¢— 1+B'U +Ct 1’111 +Dt l(yb_yr)

where x, = [(«{")7, (&), (&) )"]"
{A:-1,B,Ci_1,D¢_1} are defined in (59).

Finally, taking the expectation of (58), with respect to
{z1:r,y1:+} ~ O, yields the recursive equations for X: in
(60). Similarly, taking the covariance of (58) yields a recursive
equation for V. in (61), where we have used the fact that
@0} L (@, 50, and o L o). The
recurs1ve equations for the sensitivity analysis of the Kalman filter
are summarized in Algorithm 3.

A.2.2 Backward recursion
Taking the expectation of (45) yields a recursion for Z+,

(58)

, and the block matrices

Ty1 = Ey\@)b[ i >1\7—]
= Ht )lEy\@b[ tlt 1] +Jt( )1Ey\0b[ t|'r)]
— H(T) < + J(T) x“ (62)
with initial condition
2= Ey|(—)b [‘i‘(ﬂ-)r] - I]E'y‘ob[ T+1|T} A 1)} +1- (63)
Taking the covariance of (45), we obtain the recursion,
-1 = covyje, (&(7,,)
= covyle, (Hi—1Z¢jt—1 + Ji—1847)
(3,3 AT H(T) T
_[gm <7~>} v o | [(H D)
ey ] %57 5] [(J,SZDT -
where &; = covyje, (& E‘ t) 174’:5\7)) and the initial condition is
XT = COVy|@b (i’S—TT) - Covyleb (A wTJ’)'l‘T)
= A lcovyje, () AT = ATVES AT (65)

Substituting (45) into the definition of X :—1 yields

1: Input: DT parameters ©; and O, Kalman smoothing filter matrices
{G<b) F(b } and {G; (r) F(T) H(T) J } Kalman filter sensitivity
analysis {x,g7 Vt} length 7.

2: Initialize: 2 = A, Iz [73-19-1’ Xr = Ar 1V[3 d]A T , Ly = A;l,
M, =0.
3: fort = {r,---,1} do
4: Compute cross-covariance:
pt = (LtF;T)\A/LS’Z] + (LtG§T>Cb + MQVE’”) CZ;T + LtG§r>Rb.
(67)
S: if t > 1 then
6: Compute sensitivity:
=L, FOVES (6o, + MovIESL (68)
v =HO 4 0 g, (69)
[3 3] . (H(T) )T
o — g™ (r) w t—1
1= |H J} ’t - , (70
Xt—1 [ -1 ] |: o Xti| |:(J,5(_)1)T (70)
Xt,t—1 = v:lt(Ht(:)l)T + Xt(Jt(i)l)T~ 71)
7: Update matrices:
Lioy = H", + 37 LF", (72)
M1 = Jt(i)l (LtGET)Cb + Mt)Ab. (73)
8: end if
9: end for
10: Output: {£¢, X, X¢t,t—1, 5t = p7 }-
Xtt—1 = covyje, (Z E‘T’xET)llT)
r) ~(r) r T
= covyle, (T t\Tva 1% i\t L IE t|T>)
= (B + ()" (66)
Finally, the cross-covariances, w; = covyje,(Z E‘ t) i, xE‘TT)) and

&L = pr = covye, (@ ilT,yt) are calculated efficiently using the
recursion in (67) and (68), where { L, M} are recursively given by
(72) and (73). The derivation is quite involved and appears in the
Appendix B. The algorithm for sensitivity analysis of the Kalman
smoothing filter is summarized in Algorithm 4.

A.3 Expected Log-Likelihood

The expected log-likelihood [E, e, [log p(y|©:)] can be calculated
efficiently using the results from the sensitivity analysis for Kalman
filters. First, the observation log-likelihood of the DT is expressed
in “innovation” form

logp(y|©:) = Y log p(y:lyre—1,O:r)
t=1
= log N (e Crl[)_, + 5, ) (74)
t=1
= Z %tr [Egl(yt — Yr — Criirt)fﬂ(yt -4 —Cy ji\rt) 1)T]
t=1
— 1 log %] — % log(2), (75)

where ¥ = C, Vt(‘:) 1CT + R,. Taking the expectation of (75), and
noting that Vt(‘ t> , and X; are not a functions of the observations
Yi:t—1,

t=Eyo,[logp(y|©:)]

=3 S [SN (O - AT - CAT + CoACT)
=1

1
— 5 log 2] - 5 log(2n),

5 (76)
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where

A =By, &), (#] )]

tlt—1\"t|t—1

= COVyle, (jE\Tt)A) +Eye, [jirt)fl]]Ey‘eb [ji\rt)fl]T
=V &P (&P (77)
and
A =Eyjo, [(ye — 50)(3],_,)"]
= covyle, (Yt — ¥r, T ~§|Tt) )+ Ey\eb[yt - ﬂr]Ey\eb [iirttl]T
=,V 4 (&Y + g — g &PHT (78)
APPENDIX B

EFFICIENT CALCULATION OF THE CROSS-
COVARIANCE TERMS

In this section, we derive efficient expressions for calculating the
cross-covariance terms,

~ ~ ~ T ~
= covyle, (), B, 1), pu=ri = covyje, (T}, ).
First, we derive an expresslon of the Kalman smoothing filter xi‘TT)

as a function of only $t| t) , and observations y:.,. Filling in the

backward recursion of the Kalman smoothing filter in (45),
7 — g™z (r) 4(r)
Tyir Ht Tiya)e +J; Tiya)r

_ ()~ (r) (zy(r) ~(r) (r) ~(r)
= H, t+1\t + J (Ht+1xt+2|t+1 Jt+1mt+2\‘r)
— g0

() (gg(r) () (r)
t t+1\t + J (Htilxt:2|t+1 + Jtil(' o
HDLE L+ I )

+ J(’l (Ht(jo—)l ~§;»2|t+ ']t(jl—l( ..

+J(r) AL 13},321'7).”))

+J0,H

(r) z(r)
= H, Teia)t

_|_J(7‘) (H(T) ~(r)

TlT‘

_ gz - () ) 70
=H"& ), + D HJ VHAZ
s=t+2 i=t
T—1
QL
i=t
T+1
= > JieaH a2,

s=t+1
H"
A71

I ,t> s .
r) +(r) ) . Next, we rewrite the
Jp g ds it <s

filter terms :c(‘s) 1> where s > ¢, as a function of “’Ert) , and
{y¢,+ -+ ,ys—1}. Note that we drop the constant ¥, term since it
will not affect the covariance operator later. Substituting the forward

recursions in (44), we have

(79

it <T

where we define ﬁt =
At =T

, and J¢s =

Kalman

5 ()

Tif1e = Ft(r)i‘t\t—l + Giwyt, (80)
~i:-)2\r+1 = t(JTr)15Ct+1|t + Gi:,)lyt_i,-l
Ft(-‘r—)1 (F(r)fit\t 1+ G(T)yt) + Gg:_)lyt+1, (81)
i?‘s\t+2 = t(+)2xt+2|t+1 + Gt+2yt+2
= F(FD (F T + G -

+Ghyi) + Gy,

or in general, for s > ¢,

chgz_l = Fs—1,t+1(Ft<T)53t|t71 + Gﬁr)yt)
= | (83)
+ Y oGy = s+ B,
J=t+1
Bs
I s<t
h define F's ; = ’ , and th titi
where we define F ¢ FoFe i Fy s>t and the quantities

«as and (35 as above. Note that 5,41 = 0.
We now substitute 5”3271 = as + Bs into (79). First, substituting
the as terms into (79),

T+1
- Z Jt,s—QHs—las
s=t+1
T+1
= Z Ji,s—2Hs—1Fs—1,t+l(Ft(r)iﬂt—l +G§T)yt)7 (84)
s=t+1
Ly
where L; can be computed recursively,
T4+1
= Z Jis—oHs 1Fo_1 441
s=t+1
T4+1
=Ji i1 HiFe 41 + Z JtsoHs 1Fs 1441 (85)
s=t+2
T4+1
=H;+ Z JisoHs 1Fo 1441
s=t+2
T+1
= H 4+ J" < Z Jt+1,52Hlesl,t+2> ) (836)
s=t+2
=H" + J L F) 87
¢ Ty t+148 41 (87)

where in (85) we have separated the first term of the summation
(s=t+1), and in (86) we have used J; . 2 = J{Ji1,4 2 and
Fo 1441 = Fs_1,42F), when s > . The initial condition for
the L; backward recursion is

L. = JT,T—lﬁTFT,T+1 = E[T = A:l (88)
Next, we substitute the 8, terms into (79),
T+1
6t = Z Jt,sf2Hsflﬂs
s=t+1
T+1
- Z Jts 2Hs 1 Z Fs 1]+1G Yj
s=t+1 Jj=t+1
T+1 s—1
= Z Z Jt,572H571F571,j+1GS'T)yj
s=t+2 j=t+1
T T+1
= Z Z Jt,s—ZHsles—l,jJrlG;r)yj7 (89)

j=t+1s=j+1

where in (89) we have collected the G;T)yj terms by switching the
double summation. Finally, using {&:, 8¢}, we rewrite the Kalman
smoothing filter of (79) as a function of 57z|rt—1 and Y¢+1:7,

T+1
NE‘TT)— Z Jts 2Hs l(as+ﬂs)—at+ﬂt
s=t+1

_Lt(F(T) (|Tt) ) -‘rG(T) )+Bt (90)
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Note that f3; is a function of {y¢ 41, -~ ,yr}.

B.1 Calculating w; = covy‘@b(;ig"j, oEEl"t)_l)

Next, we will derive an expression for @;

(1) ~(r)

W = covyje, (Z tlrr Teje— 1) = covyle, (du + fBi’ t|t D O

Looking at the covariance with the Bt term,

COVy\Qb(BtvjE\Tz)ﬂ)
T T+1
= covy|e, ( Z Z Jts2H, 1Fo_ 1J+1G yg7~§\T1s) )
Jj=t+1s=75+1
T T+1
= Z Z Jt7572H5—lstl,j+lG§'T)Covy\@b(yj7j1(§rt)71)
j=t+1s=j+1
T T4+1 )
= Z Z Jt,s—QHs—lFs—l,]’-’-lG;T)CbAi_tV7[5273]7
j=t+1s=j+1

92)

M,

where in the last line we have used (107). M; can be computed
with a backward recursion,

T T+1

= Z Z Jt,s—QI:Is—lFs—l,j+1G§T)CbAi7t

j=t4+1s=j+1

T T+1
_ Lz S i ol
i—t4+1s=j+1

-stl,j+1G§-T)CbAi_t_1} Ap

T+1
= Jt(T) <[ Z Jt+1,s—2Hs—1Fs—1,t+2G£jr)lcb

s=t+2

(93)

T T+1

YRS JM,”mlFs1,j+1ay>chg—<t+l>> A
J=t+2 s=j+1

= I (L1 G Cy + Misr) Ay, (94)

where in (93) we have separated the first term of the summation
(j =t+1), and in (94) we have used the definition of L:+; and
M;41. The initial condition is M, = 0. Finally using (90), the
cross-covariance is

Wy = covyle, (T (|T)753z(|rt) 0

:COVy‘@b(Lt(F "z ,Elt 1+G(T)yt)+ﬁt7 t|t 1)
:LtFt(T)COVy‘eb(wﬂtfl)+LtG COVyIGb(yt> t\t 1)

+ covyje, (B, firg— 1)

= LV 4 LG oy VY - MV (95)
— LtFt(T)V,[?’J (L G(T)Cb + M, )V[Q 23] (96)
where in (95) we have used (107) and (92).
B.2 Calculating p; = covye, (iirj,yt)
We now derive an expression for p;,
pr = COVy\(—)b(iim y) = covyle, (Gt + Br, yi).- o7

Looking at the covariance with B,

covyle, (B, yt)
T T+1
=covye,( D, > JisoHo aFo1 ;101G y5 )
J=t41s=j+1
T T+1
Z Z Jt,s—2Hs—1Fs—1,j+1G§~T)COVy|6b(yj,yt)
j=t+1s=j+1
T T4+1 ]
Z Z Jt,sf2Hsf1F571,j+1GY)C}»A?,%V,[}’”CbT

J=t+1s=j+1
71,1 ~T
= MtV,[t ]Cb .

(98)

Finally, using (90), the cross-covariance is

pr = COVyIG)b(jE\TT)’yf)
= covyle, (Le(FVE) + Gy) + B ye)
= Ltthcovm@b(;rEu)_l, ye) + LG covyle, (Yt)
+ covyle, (Be, yt)
= LFOVEACE + LG (G, VICT + Ry)
VA SR
- (L,/thv,[f’z] + (LG Oy + Mf,)Vil’”) cy

99)

+ LG Ry, (100)

where (99) follows by using (107), (98), and covyje, (y¢)
CbCOVz|@b($t)Cg+Rb.
B.3 Useful properties

In this section, we derive some properties used in the previous
section. Note that in the sequel we remove the mean terms, g, and
yr, which do not affect the covariance operator. First, we derive the
covariance between two observations, for k£ > 0,

b
Covy|®(7 (yt(+)k7 yt( ))

= cov(C’be_k + wgi)k, Cozl” + w)
(b)

:C’bcov(mgk,mt )Cb +covob(w£+)k,wt ) (101)

= Cycov Algmib) + Z Ak lvt(z_)l, (b))Cb (102)

= Cy Al cov(z? )Cb =cyArvitio! (103)

where in (102) we have rewritten :cgz_)k as a function of iﬂ(b),
Le., mii_) = Afz” + S AR lvg_)l, in (101) we have used
1L wii)k and xfﬂk 1w for k > 0, and in (103), zt” 1L %,

for [ > 1. Next, we derlve the covariance between the one-step
ahead state estimator and an observation, for k£ > 0,

(6)  ~(r) _ (&) ~(r)
COVy|®b(yt+k7It\t )= COV(Cbxt+k+wt+k7xt|f 1)

= cov(Cy(AF 2" + ZAk W) w3 ) 04

= COVay,y1.0—110y (CbAb‘T(b)? igrt) ) (105)
b ~(r

= CbAbCOVylzt—lleb (Elt\yl it— 1[3:§ )} x£|t> v (106)

= CyAbcovyje, (@), 3\)_,) = CLAF VY, (107)

where in (105) we use le AL AE‘TB , for 1 >1 and wt(+)k A ﬁilrt)_l

for k > 0, and in (106), cove,y(z,y) = covy(E,,[z], v).



