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Abstract

Human pose estimation is one of the most popular research topics in the past two decades, especially with the introduction of
human pose datasets for benchmark evaluation. These datasets usually capture simple daily life actions. Here, we introduce a new
dataset, the Martial Arts, Dancing and Sports (MADS), which consists of challenging martial arts actions (Tai-chi and Karate),
dancing actions (hip-hop and jazz), and sports actions (basketball, volleyball, football, rugby, tennis and badminton). Two martial
art masters, two dancers and an athlete performed these actions while being recorded with either multiple cameras or a stereo
depth camera. In the multi-view or single-view setting, we provide three color views for 2D image-based human pose estimation
algorithms. For depth-based human pose estimation, we provide stereo-based depth images from a single view. All videos have
corresponding synchronized and calibrated ground-truth poses, which were captured using a Motion Capture system. We provide
initial baseline results on our dataset using a variety of tracking frameworks, including a generative tracker based on the annealing
particle filter and robust likelihood function, a discriminative tracker using twin Gaussian processes [1], and hybrid trackers, such as
Personalized Depth Tracker [2]. The results of our evaluation suggest that discriminative approaches perform better than generative
approaches when there are enough representative training samples, and that the generative methods are more robust to diversity
of poses, but can fail to track when the motion is too quick for the effective search range of the particle filter. The data and the
accompanying code will be made available to the research community.
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1. Introduction

3D human pose estimation and tracking has been an ac-
tive topic of research for over the past 20 years. The ability
to recover the 3D articulated human pose from an image, or
human motion from a video, has broad applications to human-
computer interaction, surveillance, entertainment, and video un-
derstanding. Recently, with the development of more accurate
depth sensors, e.g. Kinect, ToF camera and stereo cameras, re-
covering the human pose from depth features has also attracted
much attention. Human pose estimation is challenging and suf-
fers from three confounding problems: 1) the pose space is
high-dimensional and hard to optimize over; 2) self occlusions
make it difficult to localize invisible body parts; 3) the search
space, even when initialized from the previous frame’s result, is
large due to the complexity of human motion. Existing methods
for human pose estimation can be classified into three method-
ologies: generative approaches, discriminative approaches, and
hybrid approaches. Generative methods track by matching the
observation (images or depth map) to a 3d body model. Such
methods do not require training data, and hence are suitable to
track any kind of pose. However, since generative methods use
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the tracking result from the previous frame to reduce the search
space of the pose in the current frame, they may have difficul-
ties when the motion is large between frames. Discriminative
methods directly learn a mapping from observations to the pose
parameters. Since the pose is obtained directly from the obser-
vations, these methods can deal with quick motions well, and
they are robust to the observation noise when both the training
and testing data have the same noise distribution. However, dis-
criminative methods require a large amount of training data, and
they obtain poor results when the testing data contains different
poses from the training data. To combine the advantages of both
generative and discriminative approaches, uses a discriminative
approach to predict pose candidates from the previous history
or current observation, and then uses a generative approaches
to refine the candidates to best fit the observation with the body
model. Hybrid methods thus can achieve the best performance,
working for quick motions and not severely losing track even
when the current pose is not in the training data. However, all
of these methods will fail when the observations are noisy and
suitable features cannot be extracted.

Prior to the release of the HumanEva dataset [3], there was
no widely accepted dataset for evaluating 3D human pose esti-
mation methods, since obtaining the ground truth poses is dif-
ficult and requires specialized motion capture equipment. Al-
though it only contains 5 simple actions with ground truth poses,
the introduction of the HumanEva dataset [3] provided an im-
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portant benchmark dataset for the community to evaluate the
various methodologies. At the time, they did not record depth
data since the depth sensor was not widely used then. In sub-
sequent years, [4] introduced the Multimodal Human Action
Database (MHAD) dataset with more subjects, more actions
and more data types. However, each sequence of MHAD is too
short to evaluate the robustness of tracking algorithms. Data-
driven methods such as random forests and deep neural net-
works require large amounts of training data. As a result, [5]
introduced the Human3.6M dataset, which contains 3.6 million
images and corresponding 3D human pose.

Datasets for depth-based human pose estimation include the
SMMC dataset [6], the EVAL dataset [7] and the PDT dataset
[2]. The SMMC dataset [6] was captured using a time-of-flight
(ToF) sensor, and the recorded actions are simple. Both the
EVAL dataset [7] and PDT dataset were recorded with the Kinect
sensor [8]. Correspondingly, most existing methods for depth-
based human pose estimation use depth images from ToF cam-
eras [6, 9] or the Kinect sensor [10, 11, 7, 2]. However, both
Kinect and ToF are active sensors, and hence are limited to
studio environments without infrared pollution and only work
within a limited range, with the subjects constrained to a small
area. In contrast, stereo-based depth maps have less limitations
of working environment (e.g., they can work outdoors), but the
depth maps are more noisy.1

In this paper, to further the research of 3D human pose es-
timation using image-based sensors and depth-based sensors,
we introduce the Martial Arts, Dancing and Sports (MADS),
consisting of both multi-view RGB videos and depth videos.
Our dataset consists of Tai-chi, Karate, Hip-hop dance, Jazz
dance and sports combo (basketball, volleyball, football, rugby,
tennis and badminton) actions that are complex and challeng-
ing. These actions are unique, and almost all of them have not
appeared in any other existing datasets. The multi-view color
videos are captured with three color cameras, and the depth
videos are captured with a stereo camera. The dataset also con-
tains the calibrated and synchronized ground-truth poses, which
were obtained using a motion capture system.

The contributions of our paper are summarized as follows.
Firstly, the poses we captured are very different than those in
existing datasets – they contains more self-occlusions, artic-
ulated motion of the limbs, motions with different speed and
more body spinning. Because of these factors, our dataset pro-
vides a significant challenge to existing algorithms, and can
help further the development of robust pose tracking algorithms.
Secondly, we are the first to collect these challenging actions on
both multi-view cameras and a single stereo-based depth cam-
era. By introducing a new dataset using stereo-based depth, we
hope to further the research on human pose tracking from noisy
stereo-based depth maps, which will help to improve the over-
all robustness of depth-based pose estimation algorithms with
potential outdoor applications. Thirdly, we conduct baseline
experiments on our MADS dataset using several generative and
discriminative algorithms. Our experiments show that current

1Nonetheless, our dataset must be recorded in a laboratory setting, since we
must capture the ground-truth pose with a MOCAP system.

tracking methods still have room to improve on our challenging
dataset (errors ranging from 100-200mm), as compared to other
well-studied datasets (e.g., ∼ 50 mm for HumanEva [3]; ∼ 30
mm for SMMC-10 [6]).

The remainder of this paper is organized as follows. In Sec-
tion 2, we present a literature review on existing human pose
estimation methods and related datasets. In Section 3, we de-
scribe our Martial Arts, Dancing and Sports Dataset. In Section
4, we present the algorithms we used for baseline comparisons.
Finally, in Section 5, we present experiment using the baseline
algorithms on our dataset.

2. Related work

In this section we review methods for human pose estima-
tion and human pose datasets.

2.1. Human pose estimation using multiple views
Human pose estimation has been researched by the com-

munity for over 20 years, and an overview can be found in
[12, 13]. Early generative trackers include CONDENSATION
[14], which proposed a Markov chain Monte Carlo (MCMC)
strategy to match the body template to the contour, and covari-
ance scaled sampling for motion prediction from the previous
frame [15]. For multi-view human pose tracking, common im-
age features include foreground silhouettes [16, 17, 18], and
color cues to better localize body parts [18, 19]. The Chamfer
distance transformation is widely used on both edge and silhou-
ette descriptors[16, 17, 18, 20, 21], which makes the matching
between a body model and the image features more robust. [22]
proposed a 3D pose recovery strategy that used multi-view sil-
houettes to construct 3D visual hulls, which are then used to
estimate the human skeleton. [23] used mean-shift to extract
key poses as model references during tracking to avoid the in-
fluence of observation noise, such as missing body parts in the
silhouettes. To extend the Gaussian diffusion model used by
most generative methods, [19] trained on previous tracking re-
sults to predict future samples. Finally, [24] estimated the 3D
human body shape from multi-view silhouettes. [25] proposed
a robust likelihood function for tracking human poses using a
Bayesian framework. The robust likelihood function combined
color, silhouette and edge features with Chamfer transformation
to make generative tracking more robust and accurate.

Discriminative methods learn a mapping from image de-
scriptors to the human poses. For example, [26] used rele-
vance vector machines to map from silhouettes to human poses,
while [27] used a linear kernel dependency estimation model.
[1] trained a twin Gaussian process (TGP) model to map from
HOG [28] features to pose vectors, and achieved state-of-the-art
performance on the HumanEva-I dataset [3]. [29] used binary
vectors of “posebits”, which describe the geometrical structure
of the human pose, as the image observations to predict human
poses. Recently, random decision forests were used to label
body parts in RGB images to help estimate the human pose
from single image [30]. Deep neural networks have also been
applied to estimate 2D human pose [31, 32] and 3D human pose
[33] from single images.
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Finally, hybrid approaches typically train a motion model to
predict pose candidates for the generative tracker. For example,
GPLVM [34], GPDM [35] and CRBM [36] used latent motion
models for prediction. Besides the commonly used kinematic
body model, [37] learned a graphical model using MOCAP
data to model the constraints of each joint. [38] extended the
2D pictorial model to 3D human pose estimation from multi-
view images by avoiding limbs intersections. Following [38],
[39] proposed a multi-human pose estimation method using 3D
pictorial structures. [40] measures interactions among multiple
people using 480 camera views, with the people’s skeletons es-
timated by merging human body part detection methods on each
view. [37, 38, 39, 40] used a discriminative body part detector
to find human body part candidates.

2.2. Human pose estimation from depth images
Human pose estimation from depth images can also be cate-

gorized into generative, discriminative, and hybrid approaches.
For generative approaches, the observed depth data is matched
to a human body model, typically using iterative closest points
(ICP). [41] estimated the human pose by using 2D image fea-
tures to segment depth points, and then applies 3D ICP. [42, 43]
proposed the Articulated ICP and its variant to estimate the hu-
man pose from a range sensor, but they didn’t consider chal-
lenging poses with self-occlusions and only estimate the upper
body pose. [7] used an extended ICP approach to optimize the
joint positions of the pose, and constrains the model from en-
tering the space between the camera and the observed depth
surface. [44] proposed a GMM for modeling the relationship
between pose parameters and the mesh body model, and used
the EM algorithm to optimize both the pose and shape param-
eters of the body model. Finally, [45] proposed a combination
of particle swarm optimization (PSO) and ICP for hand pose
estimation.

Discriminative methods typically train a classifier to de-
tect body parts from depth maps, e.g., [46]. [10] trained ran-
dom decision forests to segment each depth point into differ-
ent limbs, and the joint position of each limb is determined
using the mean-shift algorithm. [47] also trained a random for-
est, but estimated the correspondences between the depth image
and the model independently, and the parameters of the model
were optimized in one-shot. [48] learned a key-point detector
and optimized the skeleton by minimizing the error between
the reference key-point vector and a predicted key-point vec-
tor. [49] proposed a discriminative method for estimating 3D
human pose from stereo-based depth videos. It introduced a
grid-based shape descriptor and trained random forests to clas-
sify the observation points into each body part.

One type of hybrid approach is to use discriminative part de-
tectors in combination with model-based local search, e.g., [6]
used a body-part detector from [46], while [50] first detected
the head and hands, and then optimizes the whole pose with
ICP. Another type of hybrid approach is to build databases con-
taining a mapping from the point cloud features (e.g. geodesic
extrema) to poses [11, 9]. Given a new depth image, its point
cloud is used to retrieve a candidate pose from the database, and
then the pose is refined with a generative approach, such as ICP.

[51] used random forests to initialize the optimization of an ob-
jective function, which is based on projected 2D plane, instead
of 3D point clouds. [2] constructed a shape-invariant person-
alized tracker based on the database of a single actor from [9].
Finally, [52] used an inertial sensor to provide cues of the body
direction when optimizing the pose within a hybrid framework.

2.3. Human pose datasets
The current datasets for human pose estimation from multi-

view or depth data are summarized in Table 1. Multi-view hu-
man pose estimation is typically evaluated on the HumanEva
[3], MHAD [4] and Human3.6M [5] datasets. Before the Hu-
manEva dataset [3], there was no widely accepted dataset for
3D human pose estimation (see [3, Table 1] for a list of datasets
before HumanEva). HumanEva [3] used a motion capture (MO-
CAP) system in conjunction with a video capture system to
obtain multi-view videos with synchronized MOCAP ground
truth. The HumanEva dataset [3] contains 40,000 frames span-
ning 4 subjects and 6 actions. The dataset also provides an
easy-to-use MATLAB [53] interface with a baseline algorithm
based on the annealing particle filtering (APF) [16]. While Hu-
manEva [3] has been successful in furthering research on hu-
man pose estimation, the actions performed are fairly simple
and consist of walking, jogging, gesturing, boxing, or a com-
bination thereof. Compared to the sports actions of HumanEva
(jogging and boxing), our dataset provides more challenging
and complex actions, with more joints moving simultaneuosly,
and more poses consisting overlapping limbs.

Following the success of HumanEva [3], the Multimodal
Human Action Database (MHAD) dataset was introduced in
[4] and contains several types of data: multi-view color video,
Kinect depth data, stereo image data, audio data, accelerome-
ter data, and MOCAP ground-truth data. The dataset contains
12 subjects and 11 actions, but no sequence is longer than 15
seconds (∼330 frames), which makes it difficult to evaluate the
robustness of a method for long-term tracking. Finally, the Hu-
man3.6M dataset was recently introduced in [5], and contains
3.6 million images and corresponding 3D human poses. The
dataset contains 11 subjects and 15 actions recorded from 4
views. The dataset is of high quality with high resolution color
videos, accurate ground truth, and a diversity of actions. Al-
though depth data is captured by a ToF sensor, the depth map is
polluted by the infrared light of the MOCAP system reflecting
off the MOCAP body markers. In addition, no calibration data
for the ToF sensor is provided.

Besides the above datasets for human pose estimation and
tracking, there are several other datasets that captured similar
data but for human body modeling. These datasets are mainly
for synthesizing 3D body models from a large number of cam-
era views, but lack ground-truth joint locations and hence have
limited use for human pose estimation. Using 22 stereo cam-
eras and one high-resolution RGB camera, [54] captured 300
scans from 10 subjects in 30 different poses for 3D mesh model
registration. Its ground-truth is not the joint locations, but the
correspondences for non-rigid point registration. [55] captured
videos of 8 subjects for 12 motions and two person interac-
tions with a convergent eight camera setup. They represented
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Table 1: The comparison between recent datasets for 3D human pose estimation.
HumanEva[3] MHAD[4] Human3.6M[5] SMMC-10[6] EVAL[7] PDT[2] MADS

# of subjects 4 12 11 1 3 4 5
# of actions 6 11 15 28 8 4 30

# of video frames 40,000 - 900,000 >10,000 >10,000 >20,000 >53,000
# of camera views 3 or 4 4 4 1 1 1 3 or 1

# of images 122,500 - 3,600,000 >10,000 >10,000 >20,000 >100,000
resolution 640× 480 640× 480 1,000× 1,000 144× 176 640× 480 640× 480 1024× 768

average # frames per sequence 1500 200 2500 100 or 400 500 1500 800
average # seconds per sequence 25 10 50 4 or 16 16.5 50 60 or 80

frame rate per second 60 22 50 25 30 30 15 or 10 or 20
depth sensor No Kinect & Stereo ToF ToF Kinect Kinect Stereo

calibration available Yes Yes Yes, No for depth Yes Yes Yes Yes
body model Cylinder - - - - Scanned mesh Cylinder

motion complexity Simple Simple Simple to complex Simple Simple to complex Moderate to complex Moderate to complex
ground truth data Marker Marker Marker Marker Joint Marker and joint Marker

the human pose with a mesh model generation from 8 views,
but there is no motion capture data as the ground truth. [56]
proposed a topology dictionary to describe 3D video content,
and experiments used a Yoga pose dataset consisting of mul-
tiview videos. However, no motion capture ground-truth data
is provided. [57] proposed an articulated mesh modeling al-
gorithm from synchronized silhouettes. They captured 8-view
high-resolution videos, and scanned the subject to generate the
mesh template. The algorithm outputs 3D skeleton poses to-
gether with animated 3D mesh models, but the dataset also
lacks ground-truth data for the 3D joint locations.

For depth-based human pose estimation, there are the SMMC-
10 [6], EVAL [7], and PDT [2] datasets. The SMMC-10 dataset
[6] contains only one subject with 27 actions, but most of the ac-
tions are very simple. The EVAL datset [7] contains 3 subjects
and more complex movements (e.g., cart-wheels, hand stand-
ing, and sitting on the floor) than SMMC-10. Each of subjects
contains 8 sequences and each sequence has about 500 frames.
The PDT dataset [2] contains 4 subjects with 4 actions. The se-
quences in PDT contain challenging motions such as sitting on
the floor, spinning around, and fast kicking. In PDT, the Kinect
sensor failed to capture several frames in PDT when the subject
is out of the working range of Kinect.

These three current datasets are based on Kinect or ToF sen-
sors, which are active sensors that emit infrared rays and mea-
sure properties of the reflected rays to determine the depth of
each pixel. Although accurate, such active sensors typically
only operate within a limited range and over a limited area, and
often are influenced by external environmental factors, such as
background sunlight and interference from other active sensors.
Besides these two types of depth sensors, another method for
obtaining depth images is through stereo cameras. Typically,
a disparity map is calculated between matched features in the
left and right images [58]. Because the stereo matching proce-
dure is influenced by the textures (or lack thereof) in the image,
the depth maps from stereo cameras are typically more noisy
and blurred than ToF and Kinect cameras. Nonetheless, stereo
cameras are more robust in infrared-noisy and range varying
environments (e.g., outdoors) and are not affected by infrared
interference, and hence devising tracking algorithms to robustly
work with stereo images is a promising research area.

3. Martial Arts, Dancing and Sports dataset

The goal of collecting the Martial Arts, Dancing and Sports
dataset (MADS) is to provide challenging action sequences for
human pose estimation from multiview or depth data. The MADS
dataset contains 5 challenging actions types, which are Tai-chi,
Karate, Jazz, Hip-hop and sports. All actions are performed by
professional players, and we provide video data of real world
challenging poses, which have not been been collected by ex-
isting datasets. For depth videos, we choose the stereo camera
as the modality because there are no existing datasets that cap-
ture human actions with it – although noisier, stereo cameras do
not suffer from infrared interference and can work outdoors.

3.1. Motion description
Our dataset contains actions from martial arts, dancings and

sports, which are common, but non-daily life motions. Tai-chi
is a traditional Chinese martial art, containing smooth circular
actions. Karate is a Japanese martial art that contains many
striking actions, such as punching, kicking, knee strikes, elbow
strikes, and open hand techniques. The selected martial arts
actions are very different that those used in daily-life, and have
more requirements for power, speed and balance.

The jazz dance is developed from African American ver-
nacular dance, and consists of many body spinning actions and
arm actions with a large range of motions. The hip-hop dance
refers to the street dance with hip-hop music, and consists of
hip movements, as well as many shoulder and torso movements.
For the dance actions, there are more body spinning than other
types of motions, which makes kinematic-based tracking more
difficult.

The sports combo sequences includes badminton, basket-
ball, football, tennis and volleyball actions, which are common
sports played around the world. For convenience of data col-
lection, we let the actor perform actions without balls or rack-
ets. Actions for basketball, football, and volleyball include
shooting, passing, and defense. For badminton and tennis, the
recorded actions are serving and hitting. For rugby, the actions
include passing the ball and defence.

The actions in MADS are more complex and challenging
than normal actions. Firstly, they have a larger range of motion,
while some poses will not appear in normal actions. Secondly,
there are more self-occlusions and more interactions between
limbs. Thirdly, some actions are very quick, compared to the
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MOCAP

Manufacturer Motion Analysis
# of cameras 7
Camera resolution 1M pixel
Frame Rate 60 Hz

Video Capture

Manufacturer Point Grey
Camera model Bumblebee-II
# of cameras 3
Camera resolution 1024 × 768
Frame rate 10 or 20 Hz for stereo, 15 Hz for multi-view

Table 2: The hardware system for data collection.

frame rate used to capture the video (10 fps for Tai-chi and
Karate and 20 fps for jazz, hip-hop and sports), resulting in
motion blur.

A total of 5 actors were used for data collection, with each
actor performing one action category. We asked two martial
arts masters to perform pre-arranged series of moves, called
“forms” in Tai-chi or “katas” in Karate, two professional dancers
to perform dances for jazz and hip-hop, and an athlete to per-
form sports actions. The subjects signed an informed consent
form that allows the distribution of the data for academic use.
The subjects wore natural clothing. The multiview and stereo-
depth videos were captured separately. Since the stereo-depth
videos are recorded from only one viewpoint, the subjects were
instructed to modify their action sequences so that they face the
camera as much as possible. In particular, the subjects were
asked to avoid having their back to the camera when there are
body rotations in the movements. For example, if the movement
involved a 180 degree body rotation, which at the end leaves the
subject with the back to the camera, then we asked the subject
to perform a full 360 degree rotation. In another example, if
the subject has their right-side facing the camera and the move-
ment is a rotation to the left, leaving the back to the camera,
we asked the subject to rotate to the right to face the camera.
Hence, the action sequences in the multiview and stereo videos
are different for some actions.

3.2. Capture setup

The capture space is shown in Table 2 and Fig. 1. The
data was recorded in a studio environment with some back-
ground clutter. The video data was recorded with Point Grey
Bumblebee-II cameras. The multi-view data was collected with
3 cameras placed around the capture space, while the stereo im-
ages were collected from one viewpoint. The multi-view data
was captured at 15 fps, and the cameras were synchronized au-
tomatically when connected to the same hub. The depth data
(stereo image) was captured at 10 fps or 20 fps.2 The baseline
of the stereo camera is 12 cm. The resolution of the images are
1024 × 768. The ground-truth pose data was captured using a
MOCAP system by Motion Analysis. Seven MOCAP cameras
are placed on the walls around the capture space to record the
positions of markers on the human body. The MOCAP system
works at 60 fps.

2A IEEE1394 hub with higher bandwidth was used when capturing the
dancing and sports videos, resulting in a higher frame rate.

Capture
space

Control 
station

Control 
station

2m

2
m

Figure 1: The layout of capture space. The red cameras are the infrared cameras
of the MOCAP system, while the yellow cameras are RGB cameras used for
capturing depth and multi-view videos.

3.3. Calibration and synchronization
For the calibration process of both the camera intrinsic pa-

rameters (transforming camera coordinates into image coordi-
nates) and the extrinsic parameters (transforming MOCAP co-
ordinates into the camera coordinates), we use the same strategy
as HumanEva [3]. The intrinsic parameters (focal length, prin-
ciple point, and distortion) for each camera c of the video cap-
ture system was estimated using a standard chessboard with the
Calibration Toolbox for MATLAB [59]. To transform camera
coordinates into MOCAP coordinates, the extrinsic parameters,
which contain rotation Rc and translation Tc, are required. We
collected a large number of 3D locations {ΓMi }Ni=1 (N > 300)
for one MOCAP marker. Next, in each camera, the correspond-
ing points Γci (Γc is 2D for multi-view videos and 3D for depth
videos) were marked manually.

Our setup does not have hardware synchronization equip-
ment. We assume that the frame rate for both the video capture
and motion capture systems are fixed during data collection,
and then down-sample the rate of the motion capture data to
match the video data after data collection. We then estimated
the temporal offset α between the video capture and motion
capture systems during calibration. Finally, the rotation and
translation parameters and the temporal offset were estimated
by minimizing

min
Rc,Tc,α

N∑
i=1

‖Γci − f(ΓMi+α;Rc, Tc)‖2, (1)

where f(·) is the function for rotation and translation of 3D
points. The motion capture system was calibrated with protocol
from Motion Analysis.

3.4. Dataset
The MADS dataset contains 5 actions categories, totalling

about 53,000 frames. Each action category consists of 6 se-
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Table 3: Action sequences in MADS.
No. of No. of

Action category No. Action Sequence multi-view frames stereo frames

Tai-chi

1. “Commencing Form”, “Buddha’s Warrior Attendant Pounds Mortar (I)”
(“Qishi”,“Jin Gang Dao Dui (1)”)

800 550

2. “Single Whip”, “Lazy about Tying Coat” (“Dan bian Xia Shi”,“Lan Zha Yi”) 800 540
3. “White Crane Spreads its Wings”, “Buddha’s Warrior Attendant Pounds Mortar

(II)” (“Bai He Liang Chi”,“Jin Gang Dao Dui (2)”)
800 400

4. “Walk Obliquely”, “Twist Step (I)” (“Xie Xing Ao Bu (1)”) 800 540
5. “Walk Obliquely”, “Twist Step (II)” (“Xie Xing Ao Bu (2)”) 800 550
6. “Fist of Covering Hand and Arm”, “Crossing Hand” (“Yan Shou Gong

Quan”,“Shi Zi Shou”)
800 500

Total 4000 2680

Karate

1. “Second Basic Form” (“Fukyugata Ni”) 600 1320
2. “Third Basic Form” (“Fukyugata Sandan”) 600 1400
3. “Third Peace Form” (“Pinan Sandan”) 600 1450
4. “Fifth Peace Form” (“Pinan Godan”) 600 1400
5. “Straddle Stance” (“Naihanchi Nidan”) 600 1400
6. “Horse Riding Stance” (“Naihanchi Nidan Sandan”) 600 1400

Total 3000 8370

Jazz

1. “Jazz action1” 753 1000
2. “Jazz action2” 776 981
3. “Jazz action3” 787 1000
4. “Jazz action4” 838 979
5. “Jazz action5” 738 961
6. “Jazz action6” 804 1000

Total 4696 5921

Hip-hop

1. “Hip-hop action1” 818 1330
2. “Hip-hop action2” 928 1000
3. “Hip-hop action3” 831 920
4. “Hip-hop action4” 1064 1000
5. “Hip-hop action5” 897 1000
6. “Hip-hop action6” 897 1000

Total 5435 6250

Sports

1. “Badminton” 779 970
2. “Basketball” 982 1000
3. “Football” 761 1000
4. “Rugby” 844 958
5. “Tennis” 704 957
6. “Volleyball” 990 970

Total 5060 5855

quences. Details on the number of frames in each action cat-
egory and for each sequence are shown in Table 3. All types
of actions contain many self-occlusions. Fig. 2 shows a few
sample images and ground-truth poses. For training and test-
ing of discriminative models, we suggest a leave-one-out pro-
tocol, where one action sequence is held out for testing, and
the remaining five actions of the same action category are used
for training. Note that the poses in the test sequence may not
always be present in the training sequences, as they are from
different parts of the action sequence (e.g., Karate kata). This
provides an important test for discriminative models on how
well such methods can extrapolate to unseen poses.

3.4.1. Multi-view data
Each multi-view frame consists of three RGB images around

the subject. To obtain the person’s silhouette, we used a Gaus-
sian mixture model (GMM) [60] and shadow detection [61] to
remove the background. We also extracted color cues in the
YUV domain inside the silhouette. Fig. 3 shows an example of
a multi-view frame and its extracted silhouette.

3.4.2. Stereo-depth data
The stereo camera provides 2 parallel RGB views of the

subject (see Fig. 4a). A depth image is calculated using the
following procedure. First, the stereo images were rectified to
remove distortions (Fig. 4b). Next, the disparity map (Fig. 4c)
is obtained using the stereo matching algorithm from the 3D-
Vision Toolbox in MATLAB [53]. These depth maps had a
z-axis resolution of 64. To obtain the observed point cloud,
the background is first removed using the background subtrac-
tion and shadow detection of [61] (Fig. 4d). Finally, the ob-
served point cloud is reconstructed from the disparity map and
the camera calibration parameters (Fig. 4e).

Note that the depth maps estimated from stereo images are
noisier than those from ToF or Kinect sensors. In particular,
using stereo images, the depth values are blurred at the body
contour, and the depth values inside the body may not be ac-
curate since there might be insufficient features to find stereo
correspondences. In addition, the depth values for the feet are
merged with those of the floor. Although stereo cameras pro-
duce noiser depth videos, they also work in less constrained
environments than ToF/Kinect sensors. By providing noisier
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Figure 2: Sample poses in MADS: (top-left) Tai-chi; (top-right) Karate; (bottom-left) Hip-Hop dance; (bottom-right) Sports

Camera1 Camera2 Camera3

(a)

(b)

(c)

Figure 3: Multi-view frame processing: (a) input images from multiple cameras; (b) the silhouettes for each view; (c) the color cues of silhouettes.
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depth data, we hope to provide an opportunity for the commu-
nity to develop robust algorithms for human pose estimation
that are not limited to only “clean” ToF/Kinect depth data.

3.4.3. MOCAP ground-truth data
The MOCAP system captures the positions of 35 markers

on the body surface. We selected 19 out of 35 markers as the
joints of the human body, similar to HumanEva [3]. The se-
lected joints are torso, pelvis, left hip, left knee, left ankle, left
toe, right hip, right knee, right ankle, right toe, left shoulder,
left elbow, left wrist, left hand, right shoulder, right elbow, right
wrist, right hand, and head (top-right forehead). The MOCAP
data was cleaned manually when markers could not be recov-
ered automatically by the system. In cases where the position of
a marker could not be corrected in a frame, we set a flag in the
ground-truth data and that frame is not used in the evaluation
process.

For the evaluation, we use the mean per joint position error
(MPJPE) [5] as the evaluation metric, which is also used for
HumanEva [3]. To reduce the influence of ground-truth bias
introduced from the MOCAP system, we use the displacement
strategy of the PDT dataset [2]. An average local offset for
each joint to its corresponding ground-truth is calculated, j̄i =
1
F

∑F
t=1(ĵ

(t)
i − j

(t)
i ), where ĵ(t)i and j(t)i are the predicted and

ground-truth positions of joint i in frame t, and F is the number
of frames. The corrected joints are obtained by subtracting the
local offset, j̃(t)i = ĵ

(t)
i − j̄i. Finally, the evaluation metric is

the MPJPE of the corrected joints,

Eavg =
1

J

J∑
i=1

1

F

F∑
t=1

‖j̃(t)i − j
(t)
i ‖, (2)

where J is the number of joints.

4. Baseline algorithms

In addition to the dataset, we also provide baseline results
using representative tracking algorithms. For multi-view track-
ing, we use a robust Bayesian tracker [25] and twin Gaussian
processes (TGP) [1] as the baselines for generative and discrim-
inative methods, respectively. We also asked the author of [39]
to evaluate our MADS multi-view videos using their code as
the baseline for hybrid methods. For the depth-based tracking,
in addition to the robust Bayesian tracking algorithm and TGP
algorithm, we also provide results for the PDT tracker [2] and
a Gaussian Mixture Model (GMM) pose estimation algorithm
[44]. In this section we present the various baseline methods.

4.1. Robust Bayesian tracking algorithm
In Bayesian tracking, the tracking is treated as a problem

of estimating the posterior p(θt|y1:t) probability distribution of
the pose parameters θt at time t conditioned on the image ob-
servations y1:t. With the assumption of a first-order Markov
chain, the posterior can be derived [62] as

p(θt|y1:t) ∝ p(yt|θt)p(θt|y1:t−1), (3)

where p(yt|θt) is the observation likelihood function, and p(θt|y1:t−1)
is the prediction of the current pose using the previous posterior,

p(θt|y1:t−1) =

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1. (4)

The prediction from the previous pose is based on the diffusion
model p(θt|θt−1). In (3), the current posterior is the prediction
weighted by the likelihood p(yt|θt).

The maximum of the posterior (Eq. 3) in each frame is
found using the annealing particle filtering (APF) [16]. The
APF is a layer-based particle filtering framework. Samples are
diffused layer by layer with a Gaussian diffusion model, with
the diffusion covariance gradually reduced from the top layer to
the bottom layer. At the bottom layer, the samples converge to
the local maximums of the likelihood function. The estimated
pose state is weighted mean of the samples, θ̂ =

∑S
i=1 ω

(t)
i θ

(t)
i ,

where the weight ω(t)
i is the normalized likelihood of sample

p(y(t)|θ(t)i ).
We used a body model consisting of 15 cylinder parts, im-

plemented by HumanEva [3]. Most joints are modeled as socket
joints with 3 DoFs, while knees, clavicles and elbows are al-
lowed 2 DoFs. The ankles and wrists are assumed to be only
1 DoF. With an additional 3 parameters representing the global
position of the pelvis, the whole human body is modeled by a
40-dimension parameter. We next describe the likelihood func-
tions used for multi-view tracking and depth tracking.

4.1.1. Robust likelihood on multi-view tracking
For multi-view tracking, we use the exponential Chamfer

part-based likelihood (ECPBL) function from [25]. Although
ECPBL can use silhouette, color, and edge descriptors, here
we only use the silhouette and color as image descriptors, as
the edge descriptors in MADS are much noisier and do not im-
prove the tracking performance. The silhouette is a widely used
cue for human pose tracking, since it represents the outline of a
human body and can be extracted easily using background sub-
traction. To better localized self-occluded limbs, ECPBL seg-
ments the silhouette into parts, which are then compared with
the projections of the corresponding parts in the body model.
The silhouette is segmented using a GMM color model, which
is learned using the initial pose and initial video frame. For the
projection of body model parts, the portions of the projection
that are occluded by other limbs are removed. The parts are
then compared using the part-based matching term

`pECD =
1∑
j |P θj |

∑
j

∑
{i|P θj (i)=1}

[1− f(Dj(i))], (5)

where P θj is the visible portion of the j-th projected body part
using pose parameters θ, and Dj is the Chamfer distance trans-
form of the silhouette segment for the jth part, Sj .

f(x) = exp(−(
‖x‖
α

β

)) (6)
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(a) (b) (c) (d) (e)

Figure 4: Stereo-based frame processing: (a) input stereo images captured with a stereo camera; (b) the rectified stereo images; (c) the depth map; (d) depth map
with background removed; (e) observed point cloud.

(6) is an exponential transformation of the Chamfer distance
measurement, which makes it more robust to small deviations
in rotation and translation, and limits the penalty for large errors
due to outliers.

The likelihood term in (5) favors poses where all the body
parts are described by the silhouette. We also include a second
likelihood term to make sure that the whole silhouette is used
completely [63],

`b =
1

|S|
∑

{i|S(i)=1}

[1− P θ(i)], (7)

where S is the binary silhouette image, and P θ is the projection
of the body for the pose parameter θ.

Finally, the two terms are combined to form a bi-directional
silhouette matching term,

− log p(zt|θt) ∝ γ1`pECD + γ2`b, (8)

where {γ1, γ2} are weights for the likelihood items. The like-
lihood, Eq. 8, is calculated for each view and then summed to-
gether as the overall likelihood function. Compared to the stan-
dard silhouette matching between image observation and body
projection, the exponential Chamfer distance (ECD) transform
reduces the number of local maximums of the likelihood, re-
sulting in a posterior that is easier to optimize using APF.

4.1.2. Robust likelihood function on depth-based tracking
We also adapt the robust likelihood function from [25] for

tracking via depth images. Denote the observation point cloud
as PI = {xi}Ni=1, and the model point cloud as PM (θ) =
{vθm}Mm=1, for pose θ. The distance between each observation
point in PI to the nearest model point in PM (θ) is calculated
as dI→M(xi) = minvθm∈PM (θ) ‖xi − vθm‖2. Similarly, the dis-
tance between each model point and the nearest observation
point is calculated as dM→I(vθm) = minxi∈PI ‖xi − vθm‖2.

Finally a bi-directional likelihood function is formed by ap-
plying the exponential transformation f(x) to the distance mea-

surements,

− log p(PI |θ) =
1

N

N∑
i=1

[1− f(dI→M(xi))]

+
1

M

M∑
m=1

[
1− f(dM→I(vθm))

]
.

(9)

Similar to multi-view tracking, the upper bound on the penalty
removes the effect of outliers and avoids sharp modes in the
likelihood, while the exponential transformation make it less
sensitive to small errors in the hypothesis. This allows the APF
to focus on reducing larger errors.

4.2. Twin Gaussian processes

Gaussian process regression (GPR) is nonparametric regres-
sion method. For human pose estimation, the input is the fea-
ture vector extracted from the image, while the output is the
vector of joint locations (i.e., the pose). Let (ri, xi) denote the
i-th training instance, consisting of an input vector ri and an
output vector xi, and define the matrices of inputs and outputs
as R = [r1, · · · , rN ] and X = [x1, · · · , xN ]. Likewise, let
(r∗, x∗) be a test input vector and output vector. GPR assumes
the regression function f(r) is a zero-mean Gaussian process
with covariance function (kernel function) k(ri, rj), which en-
codes the relationships between input variables [1]. The kernel
function used is the radial basis function (RBF). For the d-th
output dimension, the joint distribution of the d-th dimension
of the training outputs X(d) (i.e., the d-th row of X) and the
d-th dimension of an unknown test output x(d)∗ , according to
GPR, is [

(X(d))T

x
(d)
∗

]
∼ NR

(
0,

[
K (k∗)

T

k∗ k∗∗

])
, (10)

where K is the N × N kernel matrix with entries [K]ij =
k(ri, rj), k∗ is a 1 × N row vector with [k∗]i = k(ri, r∗) and
k∗∗ = k(r∗, r∗).

The joint distribution of the output vector [X(d), x∗] is also
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given by

NX

(
0,

[
(X(d))TX(d) (X(d))Tx

(d)
∗

X(d)x
(d)
∗ x

(d)
∗ x

(d)
∗

])
(11)

Twin Gaussian processes (TGP) [1] estimates the output tar-
get as the one that minimizes the difference between the input
and output Gaussian distributions, NX and NR, as measured
by the Kullback-Leibler divergence,

x̂∗ = argmin
x∗

DKL(NX‖NR). (12)

To reduce the computational complexity, [1] predicts each
test output using a reduced training set consisting of theK near-
est neighbors to the test input (denoted as TGP-KNN). In [1],
the input image features are HMAX and HOG extracted from
the silhouette bounding box, while the output is a vector of pose
parameter. Here we only use HOG as the image features. For
multi-view pose estimation, we extract the HOG features from
each view and concatenate them. For depth-based estimation,
we extract HOG features directly from the depth map.

4.3. Personalized Depth Tracker

Helten, et al. [2] proposed a personalized depth tracker (PDT)
to jointly estimate the body shape parameters and pose param-
eters. Denote Pϕ,θ ∈ R3P as the point set of the mesh model,
where ϕ is the shape parameter vector and θ is the pose pa-
rameter vector, and P is the number of vertices of the mesh
model. They define an eigenvector matrix φ ∈ R3P×‖ϕ‖ to de-
scribe the statistical variations from the shape parameter ϕ to
the mesh modelM,

Pϕ,θ0 = P0,θ0 + φϕ̇. (13)

Using the twisted exponential transformation [64], Pϕ,θ has an
approximate linear relationship to the pose parameter θ.

Given the initial pose and shape, the mesh model is gen-
erated and compared to the observation point cloud PI using
distances to nearest points. To be more robust to noise, PDT
considers both point-to-point distances, dpoint(xi) = ‖xi −
v(xi)‖2, and point-to-plane distances, dnormal(xi) = 〈xi −
v(xi), N(i)〉, where v(xi) is the closest point in the mesh to
xi, and N(i) is the normal vector of the meshMϕ,θ(x). The
two distances are combined using a fixed threshold τ ,

dI→M(xi) :=

{
dpoint(xi), ‖xi − v(xi)‖2 > τ

dnormal(xi), otherwise.
(14)

Finally, the bi-directional matching is used to construct the
energy function,

E(ϕ, θ|PI) =

N∑
i=1

dI→M(xi) +

M∑
i=1

dM→I(vθi ). (15)

The energy function in (15) has analytical partial derivatives
with respect to the shape parameter ϕ and the pose parameter

θ. Hence, a gradient descent solver is used to update param-
eters after each iteration until convergence. Finally, the initial
pose for PDT is the pose corresponding to the closest depth-
map retrieved from the database in [9]. Hence, PDT is a hybrid
approach that combines discriminative prediction with genera-
tive optimization.

4.4. A GMM-based pose and shape estimation algorithm

Ye and Yang [44] proposed a GMM-based joint pose and
shape estimation algorithm. Instead of searching for explicit
point correspondences, they used a GMM to model the rela-
tionship between body-model mesh points and the observation
point clouds. The algorithm assumes that the distribution of the
observation point cloud PI follows a GMM whose centroids
are form the generated mesh model PθM . The likelihood of each
observation point is

p(xn) = (1− u)

M∑
m=1

p(vθm)p(xn|vθm) + u
1

N
, (16)

where

p(xn|vθm) =
1

(2πσ2)d/2
exp

(
−1

2σ2
‖xn − vθm‖2

)
(17)

is a d-dimensional isotropic Gaussian and d is the dimension-
ality of a point, and u is the weight of uniform distribution for
modeling outliers. The prior is assumed to be uniform p(vθm) =
1/M . The negative-log likelihood function is

E(θ, σ2) = −
N∑
n=1

log

(
M∑
m=1

1− u
M

p(xn|vθm) +
u

N

)
. (18)

The expectation-maximization (EM) algorithm [65] is used to
estimate the parameters θ and σ. During the E-step, the assign-
ment probability of point n to centroid m, pmn = p(vθm|xn), is
calculated using parameters estimated in previous iteration,

p̂mn =
exp(

−‖xn−vθm‖
2

2σ2 )∑M
m=1 exp(

−‖xn−vθm‖2
2σ2 ) + uc

, (19)

where uc = (2πσ2)d/2uM
(1−u)N . For the M-step, parameters are esti-

mated by minimizing the negative-log likelihood function,

Q(θ, σ) = −
∑
m,n

p̂mn

(
log

(
M∑
m=1

1− u
M

p(xn|vθm)

)
+ log

u

N

)
.

(20)

To make optimization analytically solvable, the body point cloud
PθM is generated by the skinning mesh model weights α and the
pose parameter θ using the twisted exponential transformation
on the pose parameters. For more derivation details about mesh
model representation and EM algorithm, please check [44].

10



4.5. 3D pictorial structures model
Belagiannis et al. [39] introduces a 3D pictorial structures

(3DPS) model to estimate multiple human skeletons from 3D
human body part hypotheses. The 3DPS model utilizes a con-
ditional random field (CRF) with multiple potential functions.
The unary potentials functions contain the 2D body part de-
tection confidences (φconf ), the reprojection error (φrepr) of
a body part from different views, the body part visibility from
multiple views (φvis), and the body part length constraint (φlen).
The pairwise potential functions are built by imposing the kine-
matic constraints on body part translation (φtran) and rotation
(φrot) with a collision potential function to constrain body parts
to not collide with each other (φcol). To find out a body con-
figuration y with multiple body part hypotheses x, a posterior
probability is calculated.

p(y|x) = 1

Z(x)

[∏
i

φconf
i (yi, x)φ

repr
i (yi, x)φ

vis
i (yi, x)φ

len
i (yi, x)

]

·

 ∏
(i,j)∈Ekin

φtran
i,j (yi, yj)φ

rot
i,j (yi, yj)φ

col
i,j (yi, yj)

 .
To infer the 3D human body skeletons, belief propagation

is used to estimate the marginal distributions of the body parts,
while the number of individuals is found with an object detec-
tor. The body parts for each individual are sampled from the
marginal distribution and projected to each view. Then, all 3D
poses are parsed based on the body part detection results. The
inference process for a single person is the same as the multi-
person case.

5. Experiments

In this section, we present experiments testing the baseline
algorithms on the proposed MADS. Videos of the results can
be found in the supplemental and online.3 We test state-of-the-
art methods on our MADS dataset. For multi-view videos, we
test a generative ECPBL [25] tracker and a discriminative TGP
[1] tracker as the baseline algorithm. Also, we test the 3DPS
method [39] as the baseline for hybrid methods. For depth
videos, we asked the authors of the PDT tracker [2] and the
GMM-based tracker [44] to run our Tai-Chi videos using their
methods. We also implement baselines by extending the APF
and TGP to run on depth videos.

5.1. Experiments setup for multi-view videos

In our multi-view experiments, we down-sampled all im-
ages to 512×384, and used the three color views for track-
ing. We tested generative Bayesian tracking with ECPBL [25].
We set the exponential transformation parameters to α = 6,
β = 2, and the likelihood weights are [0.4, 0.6]. The APF used
200 particles and 5 layers. We used the constraint set by Hu-
manEva [3], and also add limb intersection and angle range con-
straints. To show the influence of each element of the ECPBL

3http://visal.cs.cityu.edu.hk/static/images/MAPD/

algorithm, we also tested basic likelihood functions, including
the bi-directional silhouette (BiS) [3], as well as BiS using ex-
ponential Chamfer distance (BiS+EC) or the part-based model
(BiS+PB).

We also test the discriminative method TGP [1]. We use the
TGP-KNN variant, which performs best in [1], and the parame-
ters are set the same as in [1]. We extract HoG features from the
gray-level image inside the bounding box of the silhouette. For
each view, we extract a 324-dimensional HoG vector, yielding
a 972-dimensional feature vector for the frame. TGP is trained
using a leave-one-action out protocol within each action cat-
egory. Since the TGP outputs are relative joint positions (all
joints position minus the root position), we do not apply the
joint offset displacement step (see in Section 3.4.3) on the TGP
result. We used the TGP code provided by the authors.

3DPS [39] was evaluated using the authors’ code and their
own pre-trained body part detector. Their model only contains
15 joints, so we evaluate the mean error of pose estimation with
the corresponding 15 joints in our dataset.

5.2. Results on multi-view videos
The average tracking errors on multi-view sequences are

shown in Table 4, while the tracking error curves over time are
shown in Fig. 5. Comparing the generative tracking methods
on the 5 action categories, the Tai-chi and sports sequences are
the easiest to track (overall average error∼140 mm), compared
to the Karate and hip-hop sequences, which are the hardest to
track (∼200 mm error). The Tai-chi and sports actions do not
contain many torso rotations and are performed slowly, while
the Karate and dances (hip-hop and jazz) are very quick and
consist of many body spinning actions. For generative trackers,
the quick motions cannot be covered by the simple Gaussian
diffusion model used with APF. In addition, generative trackers
with the Gaussian diffusion model have difficulty recovering
from tracking failures, even though the current frame may be
easy to track. For the body spinning actions, where the torso
rotates together with the movements of the limbs, APF has dif-
ficulty because it has a limited number of particles to simul-
taneously optimize both the torso orientation, which is a root
parameter of the body kinematic-chain, and the limb parame-
ters.

For generative tracking, ECPBL [25] outperforms other gen-
erative likelihood functions on both simple actions (Tai-chi and
sports) and challenging actions (Karate, hip-hop, jazz). In ad-
dition, each component of ECPBL (EC and PB) improves the
performance of the basic BiS likelihood, with EC improving
about 3% and PB improving 12.5%. Using both EC and PB
(i.e., ECPBL) yields an improvement of 20% over BiS.

Table 4 also shows the results of the baseline discrimina-
tive algorithm, TGP [1]. TGP performs similarly to ECPBL
on Tai-chi, Karate and sports actions (within 10% error differ-
ence), while performing significantly better than ECPBL on the
two dancing actions (38% better on jazz, 48% better on hip-
hop). The performance of TGP depends mainly on whether
the test poses are similar to those in the training frames, and
not necessarily on the complexity of the actions. For example,
TGP performs best on the jazz and hip-hop sequences, which
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Table 4: Average tracking error (mm) on multi-view sequences in MADS. The standard deviation of the tracking error is in parenthesis.
Tai-chi multi-view

Action1 Action2 Action3 Action4 Action5 Action6 Overall
BiS [3] 99.2(34.3) 123.3(27.9) 124.2(33.7) 226.8(79.0) 291.6(113.6) 147.6(46.7) 168.8(55.9)

BiS + EC 103.6(27.4) 97.7(25.5) 112.1(30.6) 160.5(42.5) 296.2(107.8) 159.6(43.9) 155.0(46.3)
BiS + PB 60.7(13.9) 83.9(21.0) 117.9(31.7) 178.6(45.7) 305.8(122.5) 144.7(52.7) 148.6(47.9)

ECPBL [25] 64.2(16.1) 96.8(30.3) 106.6(33.6) 145.6(52.4) 244.4(85.6) 145.1(56.2) 133.8(32.9)
TGP-KNN [1] 146.0(55.6) 99.0(29.3) 131.1(56.2) 82.0(25.3) 87.6(37.7) 183.8(134.7) 121.6(56.5)

3DPS [39] 179.7(73.7) 200.3(72.0) 257.5(88.6) 263.0(114.8) 293.4(155.5) 294.6(162.2) 248.1(111.1)

Karate multi-view
Action1 Action2 Action3 Action4 Action5 Action6 Overall

BiS [3] 290.0(99.6) 161.4(29.9) 199.4(70.1) 343.5(85.6) 350.2(88.5) 170.7(37.6) 252.5(68.6)
BiS + EC 330.8(94.4) 161.2(39.5) 279.4(83.7) 335.1(106.3) 255.8(86.6) 140.2(47.7) 250.4(76.4)
BiS + PB 289.8(124.2) 156.6(34.2) 167.9(66.6) 319.9(125.4) 250.8(91.1) 134.8(50.8) 220.0(82.0)

ECPBL [25] 260.8(108.5) 158.8(35.2) 183.8(76.6) 326.6(120.2) 252.0(78.3) 125.3(30.4) 217.9(74.8)
TGP-KNN [1] 269.2(128.4) 187.5(101.8) 183.8(96.7) 226.7(95.7) 250.8(121.2) 196.4(82.1) 219.1(104.3)

3DPS [39] 330.5(146.0) 260.9(111.9) 230.3(92.0)) 289.2(143.3) 314.5(131.9) 197.6(124.1) 270.5(124.9)

Jazz multi-view
Action1 Action2 Action3 Action4 Action5 Action6 Overall

BiS [3] 270.3(66.3) 249.8(102.2) 217.2(78.2) 169.2(38.0) 184.1(66.8) 223.7(57.5) 219.1(68.2)
BiS + EC 219.9(73.6) 199.7(57.7) 248.4(57.7) 259.1(55.9) 156.7(32.0) 234.8(66.9) 219.8(57.3)
BiS + PB 209.4(62.5) 180.2(41.5) 165.3(49.3) 153.7(37.3) 182.2(80.8) 220.6(63.6) 185.2(55.8)

ECPBL [25] 208.4(77.2) 177.3(42.1) 158.6(36.7) 161.6(48.4) 147.9(34.5) 182.9(49.5) 172.8(48.1)
TGP-KNN [1] 118.2(51.8) 125.1(53.7) 101.0(57.3) 92.7(45.9) 89.3(35.8) 118.5(61.6) 107.4(51.0)

3DPS [39] 245.0(151.3) 273.3(140.8) 235.3164.2) 219.1(137.1) 218.8(155.0) 255.5(142.3) 241.2(148.4)

Hip-hop multi-view
Action1 Action2 Action3 Action4 Action5 Action6 Overall

BiS [3] 253.9(55.6) 248.5(58.2) 256.1(53.1) 199.4(75.8) 149.7(48.8) 202.2(55.3) 218.3(57.8)
BiS + EC 216.0(77.2) 162.0(49.2) 240.9(48.3) 232.3(63.4) 173.9(93.0) 194.0(80.8) 203.2(68.6)
BiS + PB 248.6(60.4) 165.2(53.5) 245.6(45.4) 155.4(78.4) 170.1(78.4) 199.1(88.9) 197.3(62.8)

ECPBL [25] 210.8(74.2) 159.9(48.6) 234.4(40.3) 157.9(48.3) 161.6(80.1) 233.0(97.3) 192.9(64.8)
TGP-KNN [1] 114.1(49.8) 103.6(45.3) 95.5(67.3) 87.4(32.1) 90.7(56.7) 112.1(73.5) 100.6(54.1)

3DPS [39] 188.8(85.3) 210.5(94.2) 182.3(80.9) 179.2(69.4) 180.9(75.9) 199.7(79.8) 190.2(80.9)

Sports multi-view
Action1 Action2 Action3 Action4 Action5 Action6 Overall

BiS [3] 150.6(46.3) 160.1(35.4) 158.8(51.0) 136.7(34.2) 183.6(43.3) 222.1(56.6) 168.7(44.5)
BiS + EC 152.6(39.7) 171.1(51.1) 195.5(91.4) 141.1(32.7) 156.0(34.3) 188.6(52.8) 167.5(50.3)
BiS + PB 125.0(26.7) 149.6(33.8) 159.4(42.5) 129.8(26.5) 157.4(37.9) 168.2(47.9) 148.2(35.9)

ECPBL [25] 124.4(25.6) 135.0(30.9) 142.3(37.1) 122.5(27.8) 140.9(33.8) 157.6(47.1) 137.1(33.7)
TGP-KNN [1] 121.0(74.8) 131.3(64.7) 185.4(68.9) 123.2(62.2) 125.2(66.2) 148.8(109.7) 139.1(74.4)

3DPS [39] 200.8(149.9) 180.3(112.4) 235.9(132.5) 221.7(178.1) 243.3(151.0) 243.8(160.3) 221.0(143.4)
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Figure 5: Tracking error (mm) over time on multi-view sequences in MADS. Sequences for each action category are concatenated into a single plot. Gaps in the
error plots are due to frames with invalid ground-truth.
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contain similar spinning and rotation movements among differ-
ent sequences. On the other hand, TGP performs worse on the
Karate sequences because the action sequences are chosen from
different Karate forms. On the sports sequences, TGP error is
similar to that of ECPBL, but with higher standard deviation in
the error (see Table 4). This is because TGP performs well on
similar poses that are common between the different sports, re-
sulting in low errors on some frames, but loses track on unseen
poses yielding higher errors on other frames (see Fig. 5).

The 3D pictorial structures model [39] performs worst among
baselines. The main reason for poor performance could be that
the human body part detector is not that accurate, since the au-
thor use their own body part detector trained from the MPII
dataset [66]. Sometimes the left body parts may be recognized
as right body parts, which introduced very large error. Hence,
the standard deviation of 3DPS method is pretty large and the
error curve changes rapidly.

5.3. Experiments setup for depth videos

For human pose tracking using depth images, we test the
robust likelihood function described in Section 4.1.2 (APF),
which compares the depth image and the model via their point
clouds. The APF tracker used the same setting as the experi-
ments on multi-view videos. We also consider two other likeli-
hood functions: uni-directional matching with exponential trans-
formation (Uni+Exp); bi-directional matching with linear dis-
tance measure (Bi+Lin).

For discriminative methods, we test TGP [1] where the in-
puts are HoG features extracted from the depth image inside the
bounding box of the silhouette. We also tested the PDT [2] and
the GMM-based pose algorithm [44], which are recent state-of-
the-art hybrid methods that are based on point clouds.

5.4. Results on depth videos

The average error on each stereo action sequence is shown
in Table 5, and the tracking error curves over time are shown in
Fig. 6. Comparing the action categories, the Tai-chi sequences
have the lowest overall error for all the baseline methods. This
is because Tai-chi motion is slow and the master is usually fac-
ing to the camera, which makes tracking easier. On the other
hand, for Tai-chi Action 3, most of the methods perform poorly
because the actions are performed with the right side to the cam-
era, making the left limbs invisible. Similar to the multi-view
case, Karate and dancing actions (jazz and hip-hop) are very
challenging because of their quick motions and body spinning
actions. When there is single depth view, the body spinning
actions cause more totally occluded limbs, which cannot be lo-
calized by the tracker.

Comparing the generative tracking methods, Bi+Exp usu-
ally performs better overall than Uni+Exp and Bi+Lin, except
on Sports. Bi+Exp has lower error than Uni+Exp (about 12%)
because the bi-directional matching of Bi+Exp encourages the
model to cover the observations, but also constrains the model
to not be too far away from the observations. Compared to us-
ing a linear penalty (Bi+Lin), the exponential transformation
(Bi+Exp) smoothens the objective function, resulting in better

localization of the limbs (about 7% lower error over all action
categories). Note that Bi+Lin performs better than Bi+Exp on
Sports and a few other actions (e.g. Karate Action 5, Hip-hop
Action 5). The linear penalty performs better when the torso is
rotating because the exponential transformation blurs the sides
of the torso, making it appear to be at a different orientation.

The TGP algorithm [1] does not perform as well on the
depth videos as on the multi-view videos. TGP still has lower
error rate on Karate and Hip-hop actions compared to the gen-
erative methods, because these action categories have similar
poses between the action sequences. For jazz and sports ac-
tions, TGP performs poorly, possibly because the HOG feature
on depth map is not robust enough for human pose estimation,
compared to HOG on multi-view RGB.

Finally, we also compare PDT [2] and the GMM-based al-
gorithm [44] on the Tai-chi depth sequences. Overall PDT
performs worse than the GMM-based algorithm and Bi+Exp.
The discriminative stage of the PDT algorithm predicts can-
didate poses from their collected database, which sometimes
does not contain poses similar to the Tai-chi sequences (espe-
cially for Action 3). This results in poor initialization for the
subsequent generative tracking stage. Overall, the GMM-based
algorithm also tends to perform worse than Bi+Exp. Failures of
the GMM-based method are typically due to noise in the stereo
depth image; the body shape could not be estimated correctly
resulting in poor estimation of the pose.

5.5. Tracking error analysis

In this section we analyze the errors made by the generative
APF-tracker and the discriminative Twin GP tracker.

5.5.1. Generative tracker analysis
To further study the failures of the generative APF-based

tracker on our MADS dataset, we run another trial of experi-
ments. We divide the each sequence into several sub-sequences,
and re-initialize the tracker using the ground-truth pose on the
first frame of each sub-sequence. The sequences are divided
by the action type, e.g. spinning and arm waving for dancing
sequences. The sports sequences are divided by the particular
sport actions, e.g. serving, shooting and dribbling. We run the
ECPBL tracker on the multi-view sequences, and run the Bi-
exp tracker on depth sequences. Several tracking curves and
tracking examples are shown in Fig. 7 and Fig. 8.

Fig. 7 shows that, in the dancing sequences, the spinning
action always has large accumulated errors. This is because the
root angle and position parameters need to change quickly in
a spinning action, which makes the APF optimization process
more difficult, since the search space is larger. Another rea-
son is that the orientation of the body is estimated mainly by
the torso size of the subject and the model, whereas the expo-
nential transformed cost function of (6) blurs the size of ob-
servation, which confounds the estimation of the body orienta-
tion. For depth sequences, the task is also difficult due to many
self-occlusions in monocular depth images, e.g., see the track-
ing examples of Jazz Action2 depth spinning actions in Fig. 8.
For both depth videos or RGB videos, the low frame rate and
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Table 5: Average tracking error (mm) on depth sequences in MADS. The standard deviation of the tracking error is in parenthesis.
Tai-chi depth

Action1 Action2 Action3 Action4 Action5 Action6 Overall
Uni+Exp 59.9(11.7) 70.6(16.6) 102.0(20.4) 70.4(14.5) 68.1(14.1) 100.8(30.3) 78.6(17.9)
Bi+Lin 61.4(10.8) 69.5(15.0) 111.0(27.5) 102.7(26.9) 70.3(11.9) 126.6(48.90) 80.0(23.5)
Bi+Exp 61.2(11.8) 66.0(13.1) 96.0(27.2) 69.5(15.6) 68.6(13.5) 86.6(23.3) 74.6(17.4)

TGP-KNN [1] 119.4(49.6) 114.2(78.7) 214.5(119.5) 113.2(36.8) 98.4(28.9) 133.7(46.6) 132.2(60.0)
PDT [2] 79.8(30.1) 79.7(25.0) 229.0(48.0) 105.6(31.6) 108.8(39.4) 140.0(54.7) 123.8(38.1)

GMM-based [44] 88.0(29.7) 66.1(20.9) 127.7(36.9) 80.2(19.0) 113.7(29.1) 114.0(30.1) 98.4(27.6)

Karate depth
Action1 Action2 Action3 Action4 Action5 Action6 Overall

Uni+Exp 344.5(113.9) 249.7(71.4) 328.2(88.1) 178.7(30.0) 148.0(52.6) 351.7(67.4) 266.8(70.6)
Bi+Lin 327.8(70.5) 271.3(103.4) 286.0(101.9) 194.2(31.0) 117.5(35.8) 306.5(49.9) 250.5(65.4)
Bi+Exp 202.3(60.3) 230.6(78.8) 217.9(62.0) 156.8(34.9) 235.1(49.6) 237.7(49.8) 213.4(55.9)

TGP-KNN [1] 214.4(116.8) 167.4(61.6) 246.7(71.5) 149.3(55.9) 119.5(41.7) 197.2(63.2) 182.4(68.5)

Jazz depth
Action1 Action2 Action3 Action4 Action5 Action6 Overall

Uni+Exp 282.6(100.4) 262.3(69.3) 297.5(76.6) 195.0(69.5) 236.3(118.7) 233.6(67.8) 251.2(83.7)
Bi+Lin 225.7(60.3) 241.0(76.6) 202.1(91.2) 151.6(39.4) 259.3(98.0) 183.2(56.7) 210.5(70.4)
Bi+Exp 237.3(74.0) 237.1(74.5) 191.1(80.8) 160.5(34.2) 201.9(98.4) 194.7(98.4) 203.8(69.8)

TGP-KNN [1] 184.1(80.5) 244.3(89.9) 172.4(77.6) 226.8(108.8) 249.8(110.9) 199.2(90.8) 216.5(99.6)

Hip-hop depth
Action1 Action2 Action3 Action4 Action5 Action6 Overall

Uni+Exp 257.9(67.4) 232.4(93.9) 288.7(80.8) 141.3(34.6) 209.3(80.4) 141.5(41.2) 211.8(66.4)
Bi+Lin 254.7(58.4) 240.1(78.2) 254.8(54.5) 214.3(67.7) 152.0(63.0) 227.6(69.1) 223.9(65.1)
Bi+Exp 181.2(68.2) 221.4(87.4) 251.7(51.9) 211.1(75.1) 190.4(77.7) 132.2(40.8) 198.0(66.8)

TGP-KNN [1] 144.6(58.8) 170.6(72.8) 218.7(76.4) 140.9(61.5) 184.2(109.1) 141.0(76.9) 166.2(75.9)

Sports depth
Action1 Action2 Action3 Action4 Action5 Action6 Overall

Uni+Exp 123.2(27.1) 131.5(35.5) 300.7(82.5) 145.3(40.4) 242.2(87.1) 167.0(52.2) 184.7(54.1)
Bi+Lin 122.5(31.0) 124.9(36.2) 264.7(76.5) 155.1(38.2) 165.8(44.9) 150.6(51.3) 163.9(46.3)
Bi+Exp 156.7(51.6) 130.3(36.9) 276.9(68.8) 134.6(32.8) 146.8(37.8) 166.0(44.2) 168.5(45.4)

TGP-KNN [1] 254.2(83.1) 215.4(81.4) 248.1(89.4) 212.6(96.9) 236.9(88.2) 239.1(99.0) 234.4(89.7)
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Figure 6: Tracking error (mm) over time on depth sequences in MADS. Sequences for each action category are concatenated into a single plot. Gaps in the error
plots are due to frames with invalid ground-truth.
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the black dashed line). At the beginning of each sub-sequence, the APF-based tracker is re-initialized with the ground-truth pose.
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Figure 8: Examples of poor tracking results by APF-based tracker on MADS due to self-occlusion, quick steps, and spinning.
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(a)

(b)

Figure 9: (a) Examples of TGP tracking results on Jazz multi-view sequences of spinning actions. (b) Examples of failure TGP tracking results.

quick motions produced large amounts of motion blur, which
also makes localization of limbs harder.

Another cause of tracking errors is quick actions, e.g. quick
arm waving or jumping in dancing sequences (see Fig. 7). The
initialization of APF for the current frame is the tracked pose in
the previous frame. When there is a large change between two
frames, then the initialization will be far away from observa-
tion, and the Gaussian diffusion model of APF will not be able
to cover such a large search space. An example of quick step in
the Hip-hop Action2 depth sequence is shown in Fig. 8.

In our MADS dataset, there are many self-occlusions, which
are also a typical problem for human pose tracking and estima-
tion. In the martial arts videos, there are many arm and leg
movements to defend and attack, while in the dance videos,
arms are waved frequently in front of the torso. In the basket-
ball and football videos, the dribble actions usually have self-
occlusions, since the subject needs to protect the ball from be-
ing stolen by others. All these action categories introduce many
self-occlusions that are different than other daily-life motions,
e.g. walking. Examples of highly-occluded poses are shown in
Fig. 8.

5.5.2. Discriminative tracker analysis
Compared to the generative trackers, the discriminative track-

ers does not need an initial pose and human 3D model. On the
other hand, discriminative trackers require training data and a
training process. The performance of discriminative trackers
depends on the similarity between the training data and testing
data. On our MADS dataset, TGP [1] outperforms generative

APF-based trackers on the dancing sequences, since the spin-
ning action appears in other sequences (Fig. 9 (a)) and thus can
be learned by the TGP model. Some failure tracking results are
shown in Fig. 9 (b).

To study when can the TGP tracker performs well, we com-
pute the 3D mean joint error between the ground truth test poses
and the nearest pose in the training set, and compare this to the
TGP tracking error in Fig. 10. From the figure, we can find that
the tracking error is rarely smaller than the error to the nearest
pose, which indicates that the TGP tracker highly depends on
the training set. When there is not a very similar pose in the
training set, e.g. the peaks of the blue curve, the tracking error
of TGP will have larger errors, which means the TGP fails to
localize the body limbs correctly.

Fig. 11 shows a scatter plot of the error of the nearest train-
ing pose and the tracking error for TGP. Below 120mm, the
TGP tracking error and the nearest pose error varies linearly,
which demonstrates that TGP can predict the nearest pose in
the training set or variations thereof. On the other hand, when
the nearest pose has error larger than 120 mm, the TGP track-
ing result has much larger errors than 120 mm. This suggests
that, for the TGP tracker to work well, the test poses should be
similar to the training poses within 120mm, above which TGP
will incur more significant errors.

6. Conclusions

In this paper, we have introduced the Martial Arts, Dancing
and Sports dataset (MADS). The MADS dataset contains five
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Figure 10: Error curve for the multi-view Jazz action category, with its action sequences concatenated into a single plot. The red curve is the tracking error of TGP
tracker, while the blue curve is 3D joint mean error to its nearest pose in the training set.

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

E
rr

or
 (

m
m

) 
of

 tr
ac

ki
ng

Error (mm) to the nearest pose in training set
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categories of challenging actions (Tai-chi, Karate, jazz, hip-
hop and a sports combo), which are not widely used by the
computer vision community. These actions contain more com-
plex poses that do not appear in typically designed repeatable
actions (e.g. walking, gesture and boxing). The dataset con-
sists of color multi-view sequences and color stereo sequences,
with corresponding MOCAP data as ground truth. The stereo

depth data contains more noise than Kinect/ToF active sensors,
but provides an important opportunity to improve the robust-
ness human pose estimation in unconstrained environments us-
ing stereo sensors. For benchmarking purposes, we evaluate
several baseline algorithms on our MADS dataset, including
an APF-based Bayesian tracker, twin Gaussian processes, PDT,
and a GMM-based tracker. All data and associated code will be
made freely available for academic use.
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