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A. Derivation of Switching HMM

The switching HMM is an HMM with an additional high-level state sequence that selects
the currently active transition matrix. Formally, at time t for the nth sequence, let zn,t =
{1, · · · ,K} be the hidden-state variable, sn,t = {1, · · · , S} be the high-level state variable,
and xn,t be the observation. The high-level state variable and hidden state variable are both
1st-order Markov chains. The transition matrix for the hidden state variable zn,t depends
on the current high-level state sn,t,

p(sn) = p(sn,1)

τn∏
t=2

p(sn,t|sn,t−1), (1)

p(zn|sn) = p(zn,1|sn,1)
τn∏
t=2

p(zn,t|zn,t−1, sn,t) (2)

where the individual probability distributions are

initial high-level state: p(sn,1 = j) = ρj (3)

high-level transition probability: p(sn,t = j′|sn,t−1 = j) = bj,j′ (4)

initial state: p(zn,1 = k|sn,1 = j) = π
(j)
k (5)

transition probability: p(zn,t = k′|zn,t−1 = k, sn,t = j) = a
(j)
k,k′ . (6)

Note that we will always use j for the high-level state (s), and k for the lower hidden state
(z). In some cases, we may want to set ρ1 = 1 and ρj = 0 for j 6= 1, which will force the
SHMM to always start in the same high-level state.

The emission densities are Gaussian, and only depend on the current lower hidden state
(i.e., are shared among high-level states),

observation likelihood: p(xn,t|zn,t = k) = N (xn,t|µk,Λ−1k ), (7)

where (µk,Λk) are the mean and precision matrix of a Gaussian.
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Finally, the joint probability model is

p(X,Z,S) =
D∏
n=1

[
p(sn,1)p(zn,1|sn,1)p(xn,1|zn,1)

τn∏
t=2

p(sn,t|sn,t−1)p(zn,t|zn,t−1, sn,t)p(xn,t|zn,t).

]
(8)

A.1 Equivalence to standard HMM

The switching HMM can be turned into a standard HMM by combining the high-level state
variable and hidden state variable into a single hidden state variable. This can be seen by
looking at their joint distribution,

p(zn, sn) = p(zn|sn)p(sn) (9)

= p(zn,1|sn,1)p(sn,1)
τn∏
t=2

p(zn,t|zn,t−1, sn,t)p(sn,t|sn,t−1) (10)

= p(sn,1, zn,1)

τn∏
t=2

p(sn,t, zn,t|sn,t−1, zn,t−1), (11)

where

initial state: p(sn,1 = j, zn,1 = k) = ρjπ
(j)
k , (12)

transition probability: p(sn,t = j′, zn,t = k′|sn,t−1 = j, zn,t−1 = k) = bj,j′a
(j′)
k,k′ . (13)

Hence, an equivalent HMM can be formed by defining an augmented set of hidden states
z̃n,t that takes a state value pair (j, k), where j is the high-level state and k is the low-level
hidden state. The transition matrix and initial state probability take a special form,

p(z̃n,t = (j′, k′)|z̃n,t−1 = (j, k)) = ã(j,k),(j′,k′) = bj,j′a
(j′)
k,k′ , (14)

p(z̃n,1 = (j, k)) = π̃(j,k) = ρjπ
(j)
k . (15)

Note that this is equivalent to defining an HMM with SK hidden states, where the pair
(j, k) is mapped to a single index via k̃ = k + (j − 1)S. The transition matrix is a block
matrix

Ã =

b1,1A
(1) b1,2A

(2) · · ·
b2,1A

(1) b2,2A
(2) · · ·

...
...

. . .

 (16)

where A(j) = [a
(j)
k,k′ ]k,k′ is the transition matrix for high-level state j, and the initial state

probabilities are

π̃ =

ρ1π
(1)

ρ2π
(2)

...

 , (17)
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where π(j) = [π
(j)
1 , · · · , π(j)K ]T is the prior state probability vector for high-level state j.

Finally, the Gaussian emissions are shared among high-levle states, i.e., do not depend
on the high-level level state value j,

p(xn,t|z̃n,t = (j, k)) = N (xn,t|µk,Λ−1k ). (18)

A.2 Parameter estimation with EM

The SHMM parameters can be estimated by modifying the EM algorithm for HMMs. Here
we drop the tilde notation for z to reduce clutter. Define the indicator variables zn,t,(j,k)
which is 1 if and only if zn,t = (j, k).

A.2.1 Complete data likelihood and Q function

Using the indicator variable trick, the complete data log-likelihood is

log p(X,Z) = log p(Z) + log p(X|Z) (19)

=
N∑
n=1

[
log p(zn,1) +

τ∑
t=2

log p(zn,t|zn,t−1) +
τ∑
t=1

log p(xn,t|zn,t)

]
(20)

=

N∑
n=1

∑
(j,k)

zn,1,(j,k) log π̃(j,k) +

τ∑
t=2

∑
(j,k)

∑
(j′,k′)

zn,t,(j′,k′)zn,t−1,(j,k) log ã(j,k),(j′,k′)

+
τ∑
t=1

∑
(j,k)

zn,t,(j,k) log p(xn,t|zn,t = (j, k))


(21)

Taking the conditional expectation, we obtain the Q function for the EM algorithm,

Q =

N∑
n=1

∑
(j,k)

rn,1,(j,k) log π̃(j,k) +

N∑
n=1

τ∑
t=2

∑
(j,k)

∑
(j′,k′)

γn,t,(j,k),(j′,k′) log ã(j,k),(j′,k′)

+

N∑
n=1

τ∑
t=1

∑
(j,k)

rn,t,(j,k) log p(xn,t|zn,t = (j, k)),

(22)

where rn,t,(j,k) is the responsibility of observing the Gaussian for state (j, k), and γn,t,(j,k),(j′,k′)
is the transition responsibility between (j, k) to (j′, k′),

rn,t,(j,k) = Ezn,t|X[zn,t,(j,k)] = p(zn,t = (j, k)|X) (23)

γn,t,(j,k),(j′,k′) = Ezn,t,zn,t−1|X[zn,t−1,(j,k)zn,t,(j′,k′)] = p(zn,t−1 = (j, k), zn,t = (j′, k′)|X).

(24)

A.2.2 E-Step

In the E-step, the responsibilities in (23) and (24) are calculated using the standard forward-
backward algorithm for HMMs with the augmented transition matrix, initial state vector,
and emission densities given in (16), (17), and (18).
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A.2.3 M-Step

The M-step is similar to standard HMMs, except now we need to consider that the param-
eters have a particular form to make it equivalent to an SHMM.

Looking at the prior term in the Q function,

Q =

N∑
n=1

∑
(j,k)

rn,1,(j,k) log π̃(j,k) =

N∑
n=1

∑
(j,k)

rn,1,(j,k) log ρjπ
(j)
k (25)

=

N∑
n=1

∑
(j,k)

rn,1,(j,k) log ρj +

N∑
n=1

∑
(j,k)

rn,1,(j,k) log π
(j)
k (26)

=
∑
j

(
N∑
n=1

∑
k

rn,1,(j,k)

)
log ρj +

∑
j

∑
k

(
N∑
n=1

rn,1,(j,k)

)
log π

(j)
k . (27)

Define the summed responsibilities,

N1,(j,k) =

N∑
n=1

rn,1,(j,k), (28)

L1,j =

N∑
n=1

K∑
k=1

rn,1,(j,k) =

K∑
k=1

N1,(j,k). (29)

Maximizing with respect to ρj and π
(j)
k , and noting that they must sum to 1 (over j and k

respectively), yields the parameter updates,

ρj =
L1,j∑S
j′=1 L1,j′

, (30)

π
(j)
k =

N1,(j,k)∑K
k′=1N1,(j,k′)

=
N1,(j,k)

L1,j
. (31)

Looking at the transition matrix in the Q function,

Q =

N∑
n=1

τ∑
t=2

∑
(j,k)

∑
(j′,k′)

γn,t,(j,k),(j′,k′) log ã(j,k),(j′,k′) (32)

=

N∑
n=1

τ∑
t=2

∑
(j,k)

∑
(j′,k′)

γn,t,(j,k),(j′,k′) log bj,j′a
(j′)
k,k′ (33)

=

N∑
n=1

τ∑
t=2

∑
(j,k)

∑
(j′,k′)

γn,t,(j,k),(j′,k′) log bj,j′ +

N∑
n=1

τ∑
t=2

∑
(j,k)

∑
(j′,k′)

γn,t,(j,k),(j′,k′) log a
(j′)
k,k′ (34)

=
∑
j

∑
j′

(
N∑
n=1

τ∑
t=2

∑
k

∑
k′

γn,t,(j,k),(j′,k′)

)
log bj,j′ +

∑
j′

∑
k

∑
k′

 N∑
n=1

τ∑
t=2

∑
j

γn,t,(j,k),(j′,k′)

 log a
(j′)
k,k′

(35)
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Define the summed responsibilities,

Oj,j′ =

N∑
n=1

τ∑
t=2

K∑
k=1

K∑
k′=1

γn,t,(j,k),(j′,k′), (36)

Mk,(j′,k′) =

N∑
n=1

τ∑
t=2

S∑
j=1

γn,t,(j,k),(j′,k′). (37)

Maximizing the Q function w.r.t. the parameters gives

bj,j′ =
Oj,j′∑S
l=1Oj,l

, (38)

a
(j′)
k,k′ =

Mk,(j′,k′)∑K
l=1Mk,(j′,l)

. (39)

Looking at the Gaussian term in the Q function,

Q =
N∑
n=1

τ∑
t=1

∑
(j,k)

rn,t,(j,k) log p(xn,t|zn,t = (j, k)) (40)

=
N∑
n=1

τ∑
t=1

∑
(j,k)

rn,t,(j,k)N (xn,t|µk,Λ−1k ) (41)

=
∑
k

N∑
n=1

τ∑
t=1

∑
j

rn,t,(j,k)

N (xn,t|µk,Λ−1k ), (42)

which is the same form as standard HMM but with the responsibilities summed over j first.
Defining

r̂n,t,k =

S∑
j=1

rn,t,(j,k), (43)

Nk =
N∑
n=1

τ∑
t=1

r̂n,t,k, (44)

the parameter updates are

µk =
1

Nk

N∑
n=1

τ∑
t=1

r̂n,t,kxn,t, (45)

Λ−1k =
1

Nk

N∑
n=1

τ∑
t=1

r̂n,t,k(xn,t − µk)(xn,t − µk)
T . (46)
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