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Figure 1: Given a collection of artworks organized by artist, we discover a set of color palettes and their associated probability
distributions (collectively referred to as probabilistic color palettes), to summarize how colors are used within the collection.
Each color palette is associated with three palette-specific distributions: color distribution, position distribution and size dis-
tribution. The color distribution is a categorical distribution, visualized as a pie chart where the arc length of each sector is
proportional to its color frequency. The position distribution is a 2D Gaussian distribution, visualized as an oriented ellipse
over a square area (normalized canvas space). It represents the spatial range that the palette is most likely applied to. The
size distribution is a 1D Gaussian distribution, whose mean and standard deviation are reflected by the radius of the color pie
chart and the size of the gray region outside the color pie chart. It represents the most likely sizes of regions using the palette.
Each artist is associated with an artist-specific palette distribution, describing which color palettes that the artist prefers to
use. The artist-specific palette distributions can capture both commonality and discrepancy among the artists. For example,
both artists B and C prefer to use P4, P5 and P7 (outlined in colors), while artists A and B have no high-probability palettes in
common. The artwork images for artist A, B and C are by Cindysuke, sakonma and Lyiet on DeviantArt, respectively.

ABSTRACT
Artists and designers often use examples to find inspirational ideas
for using colors. While growing public art repositories provide
more examples to choose from, understanding the color use in
such large artwork collections can be challenging. In this paper, we
present a novel technique for summarizing the color use in large
artwork collections. Our technique is based on a novel representa-
tion, probabilistic color palettes, which can intuitively summarize
the contextual and stylistic use of colors in a collection of artworks.
Unlike traditional color palettes that only encapsulate what colors
are used using a compact set of representative colors, probabilistic
color palettes encode the knowledge of how the colors are used in
terms of frequencies, positions, and sizes, using an intuitive set of
probability distributions. Given a collection of artworks organized
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by artist, we learn the probabilistic color palettes using a probabilis-
tic colorization model, which describes the colorization process in
a probabilistic framework and considers the impact of both spatial
and semantic factors upon the colorization process. The learned
probabilistic color palettes allows users to quickly understand the
color use within the collection. We present results on a large collec-
tion of artworks by different artists, and evaluate the effectiveness
of our probabilistic color palettes in a user study.
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1 INTRODUCTION
Color is one of themost fundamental ingredients in art and graphics.
However, creating attractive colorings can be difficult for both
professional artists and amateurs. Artists often use color palette
books or online color palette galleries (e.g., Adobe Kuler [Kuler
2015]) to explore the large space of coloring before adding colors to
an artwork. However, color palettes do not encode the information
regarding how the colors are used in situ (e.g., how frequently and
where the colors are used). Hence, artists and designers often work
with existing reference examples that show how the colors and
contents are combined, to find coloring inspiration [Busche 2015;
Meier et al. 2004].

On-line communities, e.g., DeviantArt [DeviantART 2015] and
Designflavr [Designflavr 2015], provide artists with a place to share
their artworks, resulting in large-scale public art galleries compris-
ingmillions of artworks.While the art galleries serve as an excellent
source for finding inspirational ideas of selecting and using col-
ors [Chapman 2009], exploring the color use in such large galleries
can be a non-trivial task. The art galleries are mostly organized by
some semantic labels, e.g., category and artist. While this can make
it easy to quickly find a corpus of artworks for a particular class,
there exists no support for users to systematically explore the use
of colors within the class. The users cannot easily understand what
and how colors are used without looking at all the artworks in a
class that may contain tens of thousands of examples.

In this work, we take a step towards this goal by proposing a
novel technique for summarizing the use of colors within a col-
lection of artworks. Our key idea is to formulate the colorization
of the artworks as a probabilistic process, where artists sample
a set of hidden color palettes to add colors to artworks. Given a
collection of artworks organized by artist, we propose to describe
the probabilistic colorization process of the artworks using a latent
topic model where the hidden color palettes are treated as latent
structure. As shown in 1, by learning the model from the artwork
collection, we can discover the hidden color palettes along with a
set of probability distributions (collectively termed as probabilistic
color palettes in our context), which characterize how artists use
colors within the collection in an intuitive and compact form. It
is worth noting that our probabilistic color palettes are meant to
summarize the color use within a collection of artworks, rather than
explaining the colors of each single artwork. Thus, our end goal is
different from those of the existing color theme extraction methods
that aim to extract a color palette for a single image.

To evaluate the effectiveness of our technique, we show results
on a large collection of illustrations from a public art repository. We
conduct a perceptual study to demonstrate that our probabilistic
color palettes are significantly preferred by users against other base-
line representations in summarizing the color use of art galleries.

2 RELATEDWORKS
2.1 Color harmonization
Many theories and models have already been proposed in the psy-
chology and computer graphics communities to understand and
quantify the phenomenon of color harmony and preference [Cohen-
Or et al. 2006; O’Donovan et al. 2011; Palmer and Schloss 2010;

Whelan and Sutton 2004]. Unlike these works, our focus is to cap-
ture the color use in artwork collections, rather than modeling
color compatibility. Thus, our probabilistic color palettes do not
necessarily encompass harmonious colors, but rather encode the
stylistic color combinations that are commonly used by artists.

2.2 Color palettes
Prior research has explored how to extract a color palette from a
single image [Delon et al. 2007; Lin and Hanrahan 2013; Weeks and
Hague 1997]. In contrast to these works on creating a color palette
from a single image, we aim to discover a compact set of color
palettes that collectively represent a set of artworks. In addition,
our probabilistic color palettes contain not only a group of repre-
sentative colors, but also probability distributions that summarize
the contextual use of the palettes. Several works make use of color
palettes as intuitive interfaces for color editing. For example, given
a color palette, Wang et al. [2010] recolored a natural image, by
matching its colors to the given color palette while still maintaining
the realism of the image. Chang et al. [2015] developed an inter-
active tool to allow users to recolor an image by directly editing
the colors of a color palette. In contrast, we use color palettes as an
interface for summarizing and exploring the coloring of artwork
collections. The system by [Meier et al. 2004] displays an artwork
together with its color palette to provide information on how colors
are used in context. However, users still have to go through every
example to understand coloring patterns, which makes it practi-
cally infeasible for large artwork collections. In contrast, we only
require users to browse through a few compact and informative
representations, which makes the exploration far more efficient.

2.3 Analyzing big art data
The growing availability of large collections of digital artworks
has embarked recent trends in analyzing large dataset of artworks
for retrieval and classification tasks. Crowley et al. [2014] proposed
to search objects from a large collection of paintings by learning an
object classifier from natural images. Kim et al. [2014] performed
statistical analysis on a large dataset of paintings based on low-
level visual features to find artistic patterns in the paintings. Saleh
et al. [2016] explored various visual features and metric learning
methods for computing a similarity measure between paintings and
used it for large-scale classification of painting’s style and artist. Ja-
hanian et al. [2017] jointly modeled colors and words from a corpus
of designs using Latent Dirichlet Allocation (LDA) to discover the
correlation between colors and semantics. We also analyze large
collections of artworks but aim to learn the representation that
well explains the color use in the collections, which has not been
addressed by these prior works.

2.4 Exploration interfaces
As repositories of 2D images and 3D shapes continue to grow, there
is an emerging interest in developing techniques for exploring such
big visual data [Bao et al. 2013; Fish et al. 2014; Kim et al. 2013;
Ovsjanikov et al. 2011; Ritchie et al. 2011; Talton et al. 2009; Zhu
et al. 2014]. Our work is informed by a line of research on deriving
intuitive representations for exploring interesting modes in the
data. For example, Zhu et al. [2014] summarized big visual data
using weighted averages of an image collection, and interactively
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edited the average images to explore visually important modes in
the collection. Ovsjanikov et al. [2011] extracted a template de-
formable model from a collection of similar 3D shapes, which could
be manipulated to explore the continuous variability of 3D shapes.
We address the problem of exploring the color use in an artwork
collection, which has not been studied by any prior research.

3 PROBABILISTIC MODELING OF
COLORIZATION

Given an input collection of artworks organized by artist, our main
goal is to derive a representation to summarize the stylistic patterns
of using colors in the collection. We expect a desirable representa-
tion to satisfy two conditions. First, it should be compact, so that
users can quickly understand the information presented in it. Sec-
ond, it should be informative to encapsulate the information about
how the colors are used by different artists. Note that each of the
conditions alone is not sufficient for our purpose. For example,
while traditional color palettes are in a simple and compact form
that most artists and designers are familiar with, they do not en-
code the information about the contextual use of colors. On the
other hand, artwork examples provide specific information about
color use, but the overwhelming amount of information in a large
number of examples makes it infeasible to explore them directly.

Our observation is that, to colorize an artwork, an artist often
selects one or several color palettes, each containing a set of distinc-
tive colors, and then assign the colors in the palettes to different
regions of the artwork. In this process, the decisions that the artist
makes, such as which color palettes should be selected, which col-
ors from the selected palettes should be used more frequently, and
where the colors should be used, essentially reflect how the artist
uses colors. Unfortunately, those color palettes and their use are
hidden in artists’ expertise domain and cannot be directly observed
from the completed artworks. Hence, our goal is to recover the hid-
den color palettes and their use from the input artwork collection.
Our key idea is to assume artwork colorization as a probabilistic
process, where we explicitly model the hidden color palettes and
their use in a probabilistic form. Based on this assumption, we
propose a probabilistic colorization model, which can be learned
from the artwork collection, to produce a set of probabilistic color
palettes that characterize the color use within the collection.

3.1 Colorization as a Probabilistic Process
We assume that each artwork is composed of disjoint color regions,
each of which is assigned one of K colors. Therefore, we quantize
each artwork in terms of both spatial and color space. For spatial
quantization, we perform a color-based segmentation to segment
an artwork into a set of regions based on color similarity. For color
quantization, we represent each segmented region using its median
color, and quantize the region colors of all the artworks intoK = 300
clusters, forming a visual dictionary of K representative colors.
Finally, each region is assigned its closest representative color. Refer
to Section 1 of the supplemental for more details.

After segmenting an artwork into color regions, we aim to assign
each region a semantic label to represent its semantic meaning (e.g.,
face and hair). Such semantic information will be used to guide our
method to discover more meaningful color palettes as discussed
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Figure 2: Illustrative example of probabilistic colorization.

later. However, semantic annotation of regions in artworks can be
quite challenging, mainly because the regions of the same seman-
tic class often undergo great variations in appearance, shape and
perspective across different artworks. To workaround this problem,
we make use of a deep convolution neural network (CNN) in [Saito
and Matsui 2015] to extract a high-level semantic feature vector
from each region. The regions are then clustered into L semantic
classes, and the cluster labels are used as the semantic labels. Since
the exact meanings of the clusters are unknown a priori, we refer
to the labels as latent semantic labels, which provides information
about which regions belong to the same (but unknown) semantic
class. After the semantic labeling, each color region is labeled as one
of L latent semantic classes. Refer to Section 2 of the supplemental
for more details.

After color quantization, each artwork can be described as a
union of color regions, each taking one of K possible colors. In this
way, colorizing an artwork can be cast as choosing a color among
K possible colors for each region. Suppose that there exists a set of
hidden color palettes P = {P1, . . . , PT } that artists could select. We
formulate the colorization of an artwork as a probabilistic process
based on P as follows. For each region in an artwork, we first choose
a color palette Pi from P based on a palette selection probability
distribution. We then choose a color from Pi based on a color selec-
tion probability distribution, and assign the selected color to the
region. This process is illustrated in Figure 2. Note that our formula-
tion assume a single artwork can be associated with multiple color
palettes. This differs from the traditional assumption that there is
only one palette per artwork. The reason behind this design choice
is that our goal is not to explain the coloring of a single artwork, but
rather summarize the color use in an artwork collection. As com-
pared with using one palette per artwork, this assumption enables
us to capture more fine-grained, spatially-varying coloring patterns
across the entire artwork collection. For example, for a collection of
artworks composed of sky and ground, our representation can learn
two separate palettes, one for sky and one for ground, while using
a single palette would mix the sky and ground colors, resulting in
a coarse and uninformative representation.
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Figure 3: Graphicalmodel representation of our colorization
model.

3.2 Probabilistic Colorization Model
Based on the probabilistic colorization process in Section 3.1, we
aim to develop a probabilistic colorization model that may charac-
terize the generative process of coloring. The model will allow us
to infer the hidden probabilistic color palettes (i.e., both the hidden
color palettes and their associated probability distributions) from
a collection of artworks, to capture the coloring patterns in the
collection. Given the probabilistic colorization process, we notice
that each artwork is, in essence, a mixture of hidden color palettes,
and each of the palettes is a distribution of a fixed set of discrete col-
ors. This motivates us to build our model upon the topic modeling
framework. Here, we first briefly summarize the topical modeling
algorithm, and then present our model in detail.

Topic modeling algorithms were originally developed to find
patterns in large collections of documents [Blei 2012]. The topic
models assume that a document is a random mixture over a set
of hidden topics and that each topic is a distribution over a set of
co-occurring words. The most basic topic model is Latent Dirichlet
Allocation (LDA). LDA defines a generative process that a collection
of documents arise from. More specifically, to generate a word in
each document, we choose a topic according to a topic distribution,
and then choose a word according to a word distribution for the
chosen topic. In this way, LDA induces correlation between differ-
ent words. For example, observing the word “rendering" implies a
higher probability of the topic “computer graphics" and it is there-
fore more probable to see the word “geometry". Our modeling task
can naturally fit into the topic modeling framework. In our con-
text, each artwork (document) is a mixture of hidden color palettes
(topics), each of which is a cluster of co-occurring colors (words)
that are used together. In particular, our model is built upon an
author-topic model [Steyvers et al. 2004], which assumes that each
document contains one or more authors (i.e., artists in our context).

Figure 3 shows a graphical representation of our model with all
the variables and their dependencies. Our model assumes that there
are T color palettes {λt }Tt=1, where λt ∈ R

K is a distribution over
a fixed set of K possible colors. All the color palettes are shared by
R different artists, to generate the coloring of N different artworks.
The n-th artwork contains Mn color regions and is created by an
artist rn ∈ {1, . . . ,R}. To assign a color cm,n ∈ {1, . . . ,K} to region
m ∈ {1, . . . ,Mn } in artwork n, artist rn first selects a color palette
tm,n based on his/her own preference. This color palette preference

of artist rn is modeled as an artist-specific distribution Φrn ∈ RT

over the T color palettes. Color cm,n is then drawn from color
palette tm,n based on color distribution λtm,n .

Since the human perception of colors is contingent upon not only
the color frequency, but also the spatial attributes (e.g., position
and size) of color regions [Meier et al. 2004], we introduce a feature
vector fm,n = (x ,y, s)T to describe the spatial features of region
m in artwork n, where x and y are the spatial coordinate of the
region’s centroid and s is the area of the region, both normalized
w.r.t. the whole artwork. We model fm,n as being drawn from a
Gaussian distribution parameterized by Πtm,n = {µtm,n

,Σtm,n },
where µtm,n

and Σtm,n are the mean and variance. It should be
noted that such spatial feature vector would result in a distribution
of spatial attributes of color regions for each color palette. Hence, for
each color palette t , our model will capture not only the frequencies
of colors being used via λt , but also the spatial statistics of the color
regions where the palette is applied via µtm,n

and Σtm,n .
What colors can appear in a region is also closely related to the

semantic meaning of the region. For example, skin colors have a
higher probability of occurrence on a face region than on a sky
region. To account for the semantics in our model, we introduce a
semantic label variable lm,n ∈ {1, . . . ,L} for regionm in artwork
n, which is assumed to be drawn from a semantic distribution
θ tm,n . lm,n can take on L possible values corresponding to L latent
semantic classes obtained in Section 3.1. Similar to fm,n , lm,n can
induce a distribution of semantic labels of color regions for each
color palette. fm,n and lm,n would encourage our model to find
the palettes where colors frequently co-occur in both spatially and
semantically consistent regions. In our model, colors c = {cm,n },
spatial attributes f = { fm,n } and semantic labels l = {lm,n } of all
regions are observed random variables, while palette assignments
t = {tm,n } of all regions are latent random variables.

Given our model, our probabilistic color palettes can be parame-
terized as follows. A color palette t has three palette-specific distri-
butions, including color, position and size distributions. The color
distribution for palette t is a categorical distribution parameterized
by λt . It represents how frequently colors are used in the palette.
The position distribution for palette t is a bivariate Gaussian distri-
bution N(µ

p
t ,Σ

p
t ), describing the spatial range where the palette

is likely used. µpt ,Σ
p
t are taken from the entries for x and y of

µt , Σt . The size distribution for palette t is a Gaussian distribution
N(µst ,σ

s
t ), which specifies the likelihood of using the palette for

regions in certain sizes. µst ,σ
s
t are taken from the entries for s of

µt , Σt . In addition, the artist-specific palette distribution of an artist
r is a categorical distribution parameterized by Φr , which describes
the tendency of the artist using all the palettes. Note that, since the
exact meanings of latent semantic classes are unkown, the semantic
distribution for palette t , parameterized by θ t , is not explicitly used
in our representation. However, it is useful to guide the learning of
our model towards discovering a semantics-aware representation.

3.3 Discovering the Probabilistic Color Palettes
The probabilistic color palettes are discovered by learning our
model from the input artwork collection. In particular, we estimate
the color probabilities {λt }Tt=1, the palette probabilities {Φr }

R
r=1,

the parameters of spatial feature distributions {µt ,Σt }
T
t=1, and
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the semantic probabilities {θ t }Tt=1, from the training data D =

{rn , {cm,n , fm,n , lm,n }
Mn
m=1}

N
n=1, where N is the number of art-

works andMn is the number of color regions in the n-th artwork.
To learn ourmodel, we adopt a sampling-basedmethod as in [Grif-

fiths and Steyvers 2004]. In particular, we adopt Gibbs sampling to
draw samples from posterior distribution p(t|D). After sufficient
number of iterations (over all the variables in t), we take the most
recent samples t∗ and use them to estimate the parameters. Refer
to Section 3 of the supplemental for details.

3.4 Visualizing the Probabilistic Color Palettes
To help users intuitively understand the color use within the in-
put artwork collection, we visualize the learned probabilistic color
palettes as follows. For each color palette, we visualize its proba-
bility distributions in an unified form, as shown in Figure 4(b). In
particular, we visualize the color distribution as a pie chart, where
each sector is a color and its arc length represents its relative fre-
quency. For visual clarity, we only display the 10 most frequently
used colors. The position distribution is visualized as a 2D oriented
ellipse on a square canvas located at the center of the color pie chart.
The center of the ellipse is the mean of the distribution, and the ma-
jor and minor axes are the scaled eigenvectors of covariance matrix
of the distribution. For the size distribution, we use the radius r of
the color pie chart to represent the mean of the distribution, i.e.,
r = rmin+ρ ∗ µ

s , where rmin is the minimum radius of the pie chart,
µs is the normalized mean of the distribution and ρ is a constant
coefficient. We use a gray margin region outside the color pie chart
to reflect the variance of the distribution. The size of the margin
region is proportional to the standard deviation of the distribution.
Moreover, for each artist, we visualize its artist-specific palette dis-
tribution as a bar chart, where the height of a bar represents the
probability of the corresponding color palette being used by the
artist. Figure 4 shows a visualization example of the art gallery of
an artist. From the two examples and the color palettes A and B,
we can observe that this artist tends to use the colors in palette A
for moderately sized regions around the center of the artworks (i.e.,
foreground), while the white and gray colors (most frequently used
colors in palette B) are more likely used for the larger regions near
the top part of the artworks (i.e., background). In addition, from the
artist-specific palette distribution (Figure 4(c)), we can observe that
this artist uses palette A more often than palette B.

4 RESULTS AND EVALUATION
We have tested our method on a PC with a 3GHz i7 CPU and 12
GB RAM. Our critical parameters are set as follows. We set hyper-
parameters α = 0.005, β = 0.005 and γ = 0.005 to encourage the
sparsity of color distributions and palette distributions, to avoid get-
ting uninformative uniform distributions. To determine the number
of colors in visual vocabulary K and the number of color palettesT ,
we define a range of possible values and perform cross-validation
to choose the optimal values that maximize the marginal likelihood
of the model, resulting in K = 300 and T = 200. When training
our model, we run the Gibbs sampler for 500 iterations. We have
found that more iterations do not give a significant difference in
the estimated parameters.

(a) (b)
A B
(c)

BA

Figure 4: Visualization of probabilistic color palettes. (a) Art-
work examples from the gallery of an artist (by celiere on
DeviantArt). (b) High-probability color palettes with palette-
specific distributions. (c) Artist-specific palette distribution.
The rectangles on the examples in (a) indicate the regions
where the color palettes in (b) aremost likely used. The color
of a rectangle indicates the correspondence between the re-
gion and its palette.

To evaluate our method, we use a test dataset containing 8,000
artworks from 30 different artists, which are crawled from an online
public art gallery, DeviantArt. In particular, we randomly identify
30 artists, and for each artist, we download the artworks that are
uploaded during the most recent 3 years from their gallery, in
order to ensure that the coloring style of each artist is moderately
consistent across all their artworks. The gallery of each artist in
our dataset contains from 30 to 400 artworks.

4.1 Results
Figure 5 shows some examples of learned probabilistic color palettes
organized by artist. By viewing the most frequently used color
palettes and a few artwork examples, we can quickly understand
how colors are used by an artist. For example, by observing all the
color palettes in the first row of Figure 5, we find that this artist
prefers to use gray, white and black colors in his artworks. In addi-
tion, by inspecting the color palettes along with just a few artwork
examples, we find more interesting coloring patterns. In particular,
this artist’s artworks mostly depict one or several subjects captured
in long or medium shots. Looking at the color palettes whose spatial
distributions are around the centers of the square canvas, such as
P67, P43, we find that gray and black colors are mainly used for
body regions (almost around the center of an artwork). Meanwhile,
this artist prefers to use some blue and pink colors to decorate
some small regions, as reflected in P86. Furthermore, the size of
the color pie chart in P44 is rather large, suggesting that the artist
tends to paint large background regions using the colors in P44 (i.e.,
mainly black and white). Finally, by observing the color palettes
whose spatial distributions are around the upper parts of the square
canvas (i.e., P160), we know what colors are often used for face or
hair regions.

Our probabilistic color palettes can also automatically capture
composition patterns present in a gallery of artworks by an artist.
In particular, if a spatial arrangement of several semantic regions
with similar coloring frequently re-occurs across the artworks of an
artist, we can find it easily, by observing the position distributions
of the color palettes. For example, in the second row of Figure 5,
we can find an apparent top-middle-bottom composition style, by
looking at P54 (top), P186, P95, P100 (middle), and P146 (bottom). A
few artwork examples by the artist show that this artist often paints
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Figure 5: Learned probabilistic color palettes. Each row shows some examples from the gallery of an artist and the 6 most
frequently used color palettes. The artwork images at the first and second rows are by PhantomRin andRHADS onDeviantArt,
respectively.

outdoor scenes with three important semantic regions including sky
(top), people (middle) and ground (bottom). Hence, we can easily
figure out what colors are usually used for the three regions from
the respective color palettes. Note that some color palettes may
have similar position distributions around the center of an artwork,
but have different color distributions (e.g., P186, P95, P100 in the
second row of Figure 5). Since artists tend to place objects of interest
around the center of the artwork, these color palettes encode rich
coloring variations around the positions where objects are located.
Refer to Section 4 of the supplemental for more examples.

The artist-specific palette distributions can be used to understand
artists’ coloring styles. In particular, we encode each artist-specific
palette distribution as aT -dimensional feature vector, and use MDS
to embed them into a 2D space, where the distance between two
artists reflects their coloring style similarity. By visualizing the
embedding space as shown in Figure 6, we can easily understand
how artists are related to each other in coloring styles. From Figure 6,
we can see that artists B and C have similar coloring styles, while

artists E, F and G have similar coloring styles. Artists A and D are
far away from other artists, implying that their coloring styles are
more distinctive from the other artists.

4.2 Evaluation of the Probabilistic Color
Palettes

We have conducted a user study to evaluate the effectiveness of
our probabilistic color palettes in summarizing the color use within
artwork collections, as compared to two baseline representations:
1) global color histogram and 2) spatial-binning color histogram.
The study was performed on 5 test galleries from 5 different artists
that were randomly chosen from our test dataset. For each gallery,
we generated three types of representations and visualized them
in the same way. All the representations were based on the color-
based segmentation and quantization in Section 3.1, and the 300
representative colors computed from our entire test dataset. For our
representation (Ours), we visualized the top 6 probabilistic color
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Figure 6: 2D projection of the artist-specific palette distributions. Each point represents an artist, and the distance between two
points indicates the coloring style similarity between the corresponding artists. Some artworks from several artists are shown
nearby the corresponding points highlighted by red circles. The artwork images for A, B, C, D, E, F, G are by PhantomRin,
snatti89, TacoSauceNinja, rianbowart, Cindysuke, GrumpyBuneary, SambaNeko on DeviantArt, respectively.

palettes of each test gallery based on the palette distribution of the
gallery. For the global histogram (Global), we constructed a single
color histogram from all the artworks of each gallery. It was then
visualized as a single probabilistic color palette, where the position
and size distributions were obtained from the spatial properties of
the regions of all the artworks in the gallery. For the spatial-binning
histogram (Spatial), we partitioned each artwork space into K×K
sub-regions of equal size, and built a single color histogram for each
sub-region in the same way as the global histogram representation.
The spatial histogram representation was finally visualized as K2

probabilistic color palettes, each corresponding to a sub-region. We
experimented with two different spatial-binnings, K = 2 (Spatial
2×2) and K = 3 (Spatial 3×3).

Our user study involves 30 participants; 15 of them have more
than 2 years of experience in drawing color illustrations or choosing
colors for various graphic designs (expert user), while the others
have less or no practice in drawing or coloring (average user). For
each of our test galleries, the participants were asked to browse the
entire gallery, as well as the 4 representations which were displayed
in random order. They were then asked to rate the 4 representations,
with respect to how well each representation could summarize the
use of colors in the shown art gallery, on a scale of 1 to 5, with
1 being the worst and 5 being the best. The same rating could be
given to different representations if they were regarded as similar.
We ended up with 150 comparisons (30 participants × 5 test gallar-
ies per participant). Figure 7 shows the average ratings of the four
representations. Our representation is rated significantly higher
than the others. In addition, the average rating from the expert
users on our representation (3.93 ± 0.88) is slightly higher than
that from the average users (3.71± 0.6). However, the difference
between the groups of participants is not statistically significant
(independent t-test, p = 0.2). This suggests that our representation
is preferred by both professional artists and non-experts consis-
tently. In Figure 8, we show the fraction that our representation is
rated higher than each of the other representations, and the fraction
that each representation is rated as the best or the worst in all the
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Figure 7: Average ratings of 4 different representations.
These ratings have statistically significant differences (one-
way repeatedmeasures ANOVA test, p < 0.001). Ours is rated
higher than others (paired t-test, p < 0.001).

0% 50% 100%

Ours vs. Global

Ours vs. Spa�al 2x2

Ours vs. Spa�al 3x3
0%

50%

100%

Ours Global Spa�al 2x2 Spa�al 3x3

Best Worst

Figure 8: Left: fraction of our representation being rated
higher (blue) or lower (red) than each of the other represen-
tations. Right: fraction of each representation being rated as
the best (blue) and the worst (red).

comparisons. Both plots further confirm the significant advantage
of our representation over other alternatives.

Figure 9 shows an example comparison used in our study. The
global histogram can only summarize the color use coarsely, and
is not able to capture the important coloring modes that vary spa-
tially. For example, the artist uses a set of colors for the ground
regions while another set of colors for the sky regions. The spatial-
binning histogram can take spatial information into account. How-
ever, oblivious to composition patterns in the artworks, it may break
some regions that have consistent color combination across the
artworks due to image space partitioning. Hence, when building
the histogram for a sub-region, it may group the color regions with
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Figure 9: Comparison of 4 different representations for sum-
marizing the color use in an artwork gallery. Some examples
from the gallery (byRHADSonDeviantArt) are shown in (a).

inhomogeneous color combinations together, resulting in rather
uniform color distributions as shown in Figure 9. In addition, it
produces the color distributions that are dominated by unimportant
but frequently occurring colors (e.g., black and white), failing to
capture any interesting coloring modes. In contrast, our model can
discover the color combinations that frequently co-occur in similar
spatial configurations (i.e., sizes and positions), enabling our rep-
resentation to capture some important spatially-varying coloring
modes with more informative distributions. Refer to Section 5 of
the supplemental for more comparisons.

5 CONCLUSION
In this paper, we take a step towards summarizing, visualizing and
exploring the color use within large repositories of artworks. We
formalize colorization as a probabilistic process. This allows us to
discover probabilistic color palettes that can intuitively summarize
coloring within an artwork collection. We hope that our initial
solution would inspire others to further explore this exciting topic.

Our approach has several limitations. First, our approach as-
sumes that the coloring style is consistent across the artworks
within an artist’s gallery. Hence, for an art gallery with mixed col-
oring styles or from an artist without any coloring preference, our
probabilistic color palettes might not capture any meaningful and
interpretable coloring patterns. Second, we assume that the color-
ing style of an artist does not change significantly over time, which
results in a static representation. While this is often the case over a
short term, it is not unusual to find that some artists evolve their
coloring styles over a long period of time. One solution is to exploit
dynamic topic modeling [Blei and Lafferty 2006] to model how the
probabilistic color palettes evolve over time. Third, while our model
has considered region-level semantics, the context of the whole art-
work (e.g., happy and sad) could also affect color use [Cousins 2014],
but are not handled by this work. Thus, it would be interesting to
incorporate such context information into our model.
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