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1 Derivations

Here we provide the full derivations from the paper.

1.1 φi in probability distribution of Φ

The individual term φi is

φi =
1

2πβ
exp(−1

2
||qi − εi||2βI), (1)

which consists of a series of transformations of a multivariate Gaussian r.v.: squared L2 norm,
negative exponential, and scaling.

Mahalanobis distance: To derive φi, we first calculate the r.v. for the Mahalanobis distance mi:

mi = ||qi − εi||2β =
α

β
|| 1√

α
qi − η0||2 =

α

β
||ηri ||2, (2)

where we define ri = 1√
α

qi, and ηµ is a Gaussian with unit variance and mean µ. The term ||ηri ||2

is a non-central χ2 r.v. with non-centrality parameter λi = ||ri||2 and DoF k = 2 with pdf

χ̃2
λi

(x) =
1

2
exp(−x+ λi

2
)I0(

√
λix), (3)

where I0(x) is a modified beessel function of the 1st kind of order 0. When λi = 0, this simplifies to
a standard χ2 distribution with 2 DoF,

χ̃2
0(x) = χ2(x) =

1

2
e−x/2. (4)

Finally, using the scaling property of r.v. X , aX ∼ 1
ap(

x
a ), we obtain the pdf of mi,

mi ∼ p(mi) = δχ̃2
λi

(δmi), δ =
β

α
. (5)

Negative exponential: Next, we derive the pdf of the negative exponential transformation of mi.
Consider the transformation of a random variable: Y = g(X) = e−X/2. The inverse transformation
is: X = g−1(Y ) = −2 log Y with derivative dg−1

dy = −2
y . Then the pdf of Y is:

p(y) = px(g−1(y))|dg
−1

dy
| = 2

y
px(−2 log y). (6)
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Define the r.v. for the negative expo term ni = exp(− 1
2mi) and applying the above transformation

rule, then its pdf is:

ni ∼ p(ni) =
2δ

ni
χ̃2
λi

(−2δ log ni). (7)

Scaling: Finally, we have φi = hni, where h = (2πβ)−1 which is the maximum value of one density
kernel. Using the scaling property, we obtain the pdf of φi:

φi ∼ p(φi) =
1

h
ni(

1

h
φi) =

2δ

hφi
χ̃2
λi

(−2δ log
φi
h

). (8)

Substituting for the non-central χ2 we obtain the explicit form of the pdf:

φi ∼ p(φi) =
2δ

hφi

[
1

2
exp(−

−2δ log φi

h + λi

2
)I0(

√
λi(−2δ log

φi
h

))

]
(9)

=
δ

h
e−λi/2

(
φi
h

)δ−1
I0(

√
−2δλi log

φi
h

) (10)

When λi = 0 this simplifies to:

φi ∼ p(φi) =
δ

h

(
φi
h

)δ−1
. (11)

The log-pdf (negative loss) is then

log p(φi) = log
δ

h
− λi

2
+ (δ − 1) log

φi
h

+ log I0(

√
−2δλi log

φi
h

). (12)

And when λi = 0,

log p(φi) = log
δ

h
+ (δ − 1) log(

φi
h

). (13)

1.2 µ and σ2 for Gaussian approximation to Φ

The mean of Φ is calculated as

E[Φ] = E[
∑
i

φi] (14)

= E[
∑
i

N (qi|εi, βI)] (15)

=
∑
i

∫
N (qi|εi, βI)N (εi|0, αI)dεi (16)

=
∑
i

N (qi|0, (α+ β)I)︸ ︷︷ ︸
µi

, (17)

where the annotation noise is εi ∼ N (0, αI), and (17) follows from (53).

To calculate the variance of Φ, we first compute the second moment:

E[(
∑
i

φi)
2] =

∑
ij

E[φiφj ] =
∑
i

E[φ2i ] +
∑
i6=j

E[φiφj ]. (18)

There are two cases:

• When i 6= j, E[φiφj ] = E[φi]E[φj ] = µiµj , since εi is independent of εj .
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• When i = j,

E[φ2i ] = E[N (qi|εi, βI)2] (19)

= E[N (qi|qi, 2βI)N (εi|qi,
1

2
βI)] (20)

= N (0|0, 2βI)E[N (εi|qi,
1

2
βI)] (21)

= N (0|0, 2βI)

∫
N (εi|0, αI)N (εi|qi,

1

2
βI)dεi (22)

= N (0|0, 2βI)N (qi|0, (β/2 + α)I) (23)

=
1

4πβ
N (qi|0, (β/2 + α)I), (24)

where (20) uses (54), and (23) follows from (53).

Next, we have

E[Φ]2 =
∑
ij

µiµj =
∑
i

µ2
i +

∑
i 6=j

µiµj . (25)

Finally, the variance is:

var(Φ) = σ2 = E[Φ2]− E[Φ]2 (26)

=
∑
i

1

4πβ
N (qi|0, (β/2 + α)I) +

∑
i6=j

µiµj −
∑
i

µ2
i −

∑
i 6=j

µiµj (27)

=
∑
i

1

4πβ
N (qi|0, (β/2 + α)I)−

∑
i

µ2
i . (28)

1.3 Covariance for joint likelihood of Ψ

For the covariance, we first compute the second moment.

E[Φ(η)Φ(ρ)] = E[(
∑
i

φ
(η)
i )(

∑
j

φ
(ρ)
j )] =

∑
ij

E[φ
(η)
i φ

(ρ)
j ] =

∑
i

E[φ
(η)
i φ

(ρ)
i ] +

∑
i 6=j

E[φ
(η)
i φ

(ρ)
j ].

(29)

There are two cases:

• When i 6= j, εi and εj are independent, thus E[φ
(η)
i φ

(ρ)
j ] = E[φ

(η)
i ]E[φ

(ρ)
j ] = µ

(η)
i µ

(ρ)
j

• When i = j,

ω
(η,ρ)
i = E[φ

(η)
i φ

(ρ)
i ] = E[N (q

(η)
i |εi, βI)N (q

(ρ)
i |εi, βI)] (30)

= E[N (q
(η)
i |q

(ρ)
i , 2βI)N (εi|

1

2
(q

(η)
i + q

(ρ)
i ),

β

2
I)] (31)

= N (q
(η)
i |q

(ρ)
i , 2βI)E[N (εi|

1

2
(q

(η)
i + q

(ρ)
i ),

β

2
I)] (32)

= N (q
(η)
i |q

(ρ)
i , 2βI)N (

1

2
(q

(η)
i + q

(ρ)
i )|0, (β/2 + α)I) (33)

= N (x(η)|x(ρ), 2βI)N (
1

2
(q

(η)
i + q

(ρ)
i )|0, (β/2 + α)I), (34)

where (31) follows from (57), (33) uses (53), and (34) uses

q
(η)
i − q

(ρ)
i = (x(η) − D̃i)− (x(ρ) − D̃i) = x(η) − x(ρ). (35)

Thus, the second moment is:

E[Φ(η)Φ(ρ)] =
∑
i

ω
(η,ρ)
i +

∑
i6=j

µ
(η)
i µ

(ρ)
j (36)
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Finally, the covariance is:

cov(Φ(η),Φ(ρ)) = E[Φ(η)Φ(ρ)]− E[Φ(η)]E[Φ(ρ)] (37)

=
∑
i

ω
(η,ρ)
i +

∑
i 6=j

µ
(η)
i µ

(ρ)
j − (

∑
i

µ
(η)
i )(

∑
j

µ
(ρ)
j ) (38)

=
∑
i

ω
(η,ρ)
i +

∑
i 6=j

µ
(η)
i µ

(ρ)
j −

∑
ij

µ
(η)
i µ

(ρ)
j (39)

=
∑
i

ω
(η,ρ)
i −

∑
i

µ
(η)
i µ

(ρ)
i . (40)

1.4 Low-rank approximation to covariance matrix

Assume there are P spatial locations, and µ,Σ is the mean and full covariance matrix of the Ψs. We
first make the following definitions:

• Let v be a P -dim vector of variances var(Φ(η)). This is the same as the variances when
assuming the Φs are independent, and V = diag(v).

• LetM = {m1, · · · ,mM} be the set of indices of spatial locations x(mi) that we want to
use for the approximation.

• Let m be a P -dim vector mask corresponding toM.
• Let vM be the vector of variances for indices inM.
• Let M be the “permutation” matrix that selects items in v to construct vM. I.e., the i-th

column [M]i = emi
, where ei is the i-th canonical unit vector. Note that MTM = I, and

MMT = (mmT ) ◦ I is the masked identity matrix.
• The vectors/matrices corresponding to the selected locations are: vM = MTv, and VM =

diag(vM) = MTVM.
• The masked variances are m ◦ v = MvM, where ◦ is element-wise product
• The masked diagonal matrix is (mmT ) ◦V = MVMMT .
• Define the matrix A of off-diagonal covariances as:

[A]ij =

{
0, i = j

cov(Φ(ηi),Φ(ηj)), i 6= j

• Define the matrix AM that selects rows/columns of A according to M. Thus, AM =
MTAM and the masked A matrix is (mmT ) ◦A = MAMMT .

Using the matrices corresponding to the diagonal and off-diagonal elements, the covariance matrix is
Σ = V + A. We obtain an approximation by only using the off-diagonal elements corresponding to
M, giving

Σ̂ = V + MAMMT .

Using the matrix inversion lemma, we obtain the approximate precision matrix

Σ̂
−1

= V−1 −V−1M(A−1M + MTV−1M)−1MTV−1 (41)

= V−1 −V−1M(A−1M + V−1M )−1MTV−1 (42)

= V−1 −V−1MVM(VMA−1MVM + VM)−1VMMTV−1 (43)

= V−1 −M (VMA−1MVM + VM)−1︸ ︷︷ ︸
BM

MT = V−1 −MBMMT , (44)

where the last line follows from

V−1MVM = V−1MMTVM = M (45)

The final approximation of the inverse covariance is Σ̂
−1

= V−1 −MBMMT , where BM =
(VMA−1MVM + VM)−1.
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Let Ψ be the vectorized predicted density map, and the error vector is Ψ̄ = Ψ− µ, where µ is the
mean vector. The Mahalonobis distance term of the Gaussian is:

Ψ̄
T
Σ−1Ψ̄ ≈ Ψ̄

T
Σ̂−1Ψ̄ (46)

= Ψ̄
T
V−1Ψ̄− Ψ̄

T
MBMMT Ψ̄. (47)

The first term is the likelihood term when assuming independent Gaussians:

Ψ̄
T
V−1Ψ̄ =

∑
i

1

vi
Ψ̄2
i . (48)

The second term selects the portion of Ψ̄ belonging toM and computes a quadratic,

Ψ̄
T
MBMMT Ψ̄ = Ψ̄

T
MBMΨ̄M, (49)

where Ψ̄M selects indicesM from Ψ̄.

1.5 Useful properties

Here we list some useful properties regarding products of Gaussian distributions and their integrals:

1. Property 1:

N (x|a,A)N (x|b,B) = N (a|b,A + B)N (x|c,C), (50)

c = C(A−1a + B−1b), (51)

C = (A−1 + B−1)−1. (52)

2. Property 2: ∫
N (x|a,A)N (x|b,B)dx = N (a|b,A + B) (53)

3. Property 3:

N (x|a,A)2 = N (a|a, 2A)N (x|a, 1

2
A), (54)

C = (2A−1)−1 =
1

2
A, (55)

c =
1

2
A(2A−1a) = a. (56)

4. Property 4:

N (x|a1,A)N (x|a2,A) = N (a1|a2, 2A)N (x|1
2

(a1 + a2),
1

2
A), (57)

C = (2A−1)−1 =
1

2
A, (58)

c =
1

2
A(A−1a1 + A−1a2) =

1

2
(a1 + a2). (59)

2 Visualization of density maps

We compare density maps predicted from models trained with different loss functions and noise
levels in Fig. 1.
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Figure 1: Visualization of density maps predicted from models trained with different loss functions
and noise levels. (yellow arrow) the annotations are not at the center of heads and our method can
move those dots toward heads’ center, while BL cannot move them and L2 is less confident. (white
dash ellipse) other methods have more false positive than ours. (black solid ellipses) when there is
large annotation noise, the head region of our prediction is larger than the surrounding background,
while others are the opposite. (red rectangle) since the annotation is very noisy, other method are
confused about the foreground and background regions, while our prediction is roughly correct and
smoother than others.
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