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Abstract

We consider recursive Bayesian filtering where the posterior is represented as a
Gaussian mixture model (GMM), and the likelihood function as a sum of scaled
Gaussians (SSG). In each iteration of filtering, the number of components increases.
We propose an algorithm for simplifying a GMM into a reduced mixture model
with fewer components, which is based on maximizing a variational lower bound
of the expected log-likelihood of a set of virtual samples. We also propose an
efficient algorithm for approximating an arbitrary likelihood function as an SSG.
Experiments on synthetic 2D GMMs, simulated belief propagation and visual
tracking show that our algorithm can be widely used for approximate inference.

1 Introduction
Recursive Bayesian filtering estimates the current state of a system using noisy measurements from
the past and present. Common applications in computer vision include object tracking [1–10] and
robot/vehicle localization [11–14]. A typical framework for a first-order Markov model is given by
the predict-update equations:

prediction: p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (1a)

update: p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (1b)

where xt is the state at time t (e.g., object location) and yt is the observation at time t (e.g., video
frame). The posterior distribution of the current state p(xt|y1:t), conditioned on the observations so
far y1:t = (y1, . . . , yt), is obtained by first predicting the current state xt using the previous posterior
distribution p(xt−1|y1:t−1) and the transition model p(xt|xt−1) (Eq. 1a), and then factoring in the
current observation yt using the observation model p(yt|xt) (Eq. 1b). Assuming the transition and
observation models to be Gaussians yields the Kalman filter, which is tractable to compute. However,
more complex models cannot be well represented with Gaussians, and non-conjugate likelihood
functions make inference intractable. One solution is to use a particle filter [1–8, 10, 15, 16], where
the posterior is approximated as a set of weighted particles. However, the limited set of samples may
not well characterize the true posterior especially when the distribution is heavy-tailed, and errors
may accumulate quickly during inference. Increasing the number of particles increases the accuracy
of the posterior, but also increases the variance [17] and the computational load.

Considering that Gaussian mixture models (GMMs) are universal approximators for any continuous
probability density [18–20], a generic approximate inference algorithm could represent the posterior
as a GMM, and the likelihood function as a sum of scaled Gaussians (SSG; not necessarily integrating
to 1). The prediction and update procedure shown in (1) would only involve the product of Gaussian
mixtures and the integral is also tractable. However, the problem would be the exponential increase
in the number of components in the posterior GMM.
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Figure 1: Framework for approximate recursive Bayesian filtering with Gaussian mixture model (GMM). The
posterior and prediction are represented as a GMM, and the likelihood is approximated as a sum of scaled
Gaussians (SSG). The new posterior is the product of the prediction and the likelihood, which results in an
increase in the number of components. A tractable simplified posterior is obtained by applying our proposed
GMM simplification algorithm, DPHEM. This example is from the visual tracking experiment (see Section 4.3).

In this paper, we propose a simplifying algorithm for GMMs to keep the number of components at a
tractable level, while also preserving density structure. To facilitate the use of this general recursive
Bayesian filtering framework for any likelihood function, we also propose an efficient algorithm for
approximating an arbitrary likelihood function as an SSG. The framework for approximate recursive
Bayesian filtering is shown in Figure 1.

2 Density-preserving hierarchical EM algorithm (DPHEM)

Suppose that the density of y ∼ Θ(b) is given by a mixture model p(y|Θ(b)) =
∑Kb
i=1 π

(b)
i p(y|θ(b)

i ).
Our goal is to simplify the base model Θ(b) to a “reduced” mixture Θ(r) with much fewer components
Kr � Kb, namely, p(y|Θ(r)) =

∑Kr
j=1 π

(r)
j p(y|θ(r)

j ). Note that we will always use i and j to index
the base and reduced mixture components, respectively.

We take our inspiration from HEM [21], which is a hierarchical EM algorithm for clustering mixture
components directly from the parameters of the base mixture components using a set of virtual
samples. However, [21] does not preserve the density structure of the base mixture.

We define a set of i.i.d. virtual samples Y = {y1, y2, · · · , yN} with each yn ∼ Θ(b). The reduced
model Θ(r) is obtained by maximizing the expected log-likelihood of the reduced model Θ(r) with
respect to the virtual samples,

J (Θ(r)) = EY |Θ(b) [log p(Y |Θ(r))] =
∑
i

π
(b)
i E

Y |θ(b)i
[log p(Y |Θ(r))]. (2)

Since the maximization of the expected log-likelihood of a mixture model E
Y |θ(b)i

[log p(Y |Θ(r))] is
intractable. We use a variational perspective of the EM algorithm [22–24], which treats the E and
M-step both as maximization problems, and take the expectation of the variational log-likelihood to
obtain a variational lower bound of the expected log-likelihood (see Supplemental),

JDP (Θ(r)) = max
zij

∑
i

∑
j

π
(b)
i zij

{
log

π
(r)
j

zij
+NE

y|θ(b)i
[log p(y|θ(r)

j )]

}
≤ J (Θ(r)). (3)

The variational parameters zij can be interpreted as an assignment of virtual samples generated from
the ith base component to the jth reduced component. The variational lower bound (3) is maximized
by iterating between maximizing w.r.t. the assignments zij and the reduced mixture parameters Θ(r).

For GMMs, the variational parameter update is ẑij =
π
(r)
j exp(NE

y|θ(b)
i

[log p(y|θ(r)j )])∑Kr
j′=1

π
(r)

j′ exp(NE
y|θ(b)

i

[log p(y|θ(r)
j′ )])

, where the

expected log-Gaussian between θ(b)
i and θ(b)

j is E
y|θ(b)i

[log p(y|θ(r)
j )] = logN (µ

(b)
i |µ

(r)
j ,Σ

(r)
j ) −
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1
2 tr{(Σ(r)

j )−1Σ
(b)
i }. Given the variational parameters, the reduced model parameters Θ(r) =

{π(r)
j , µ

(r)
j ,Σ

(r)
j } are updated using the base model parameters: N̂j =

Kb∑
i=1

ẑijπ
(b)
i , π̂(r)

j =
Kb∑
i=1

π
(b)
i ẑij ,

µ̂
(r)
j = 1

N̂j

Kb∑
i=1

ẑijπ
(b)
i µ

(b)
i , Σ̂

(r)
j = 1

N̂j

Kb∑
i=1

ẑijπ
(b)
i [Σ

(b)
i + (µ

(b)
i − µ̂

(r)
j )(µ

(b)
i − µ̂

(r)
j )T ].

3 Likelihood approximation
In this section, we propose an algorithm that iteratively computes a lower bound of a likelihood
function, f(x) = p(y|x), using a set of state-likelihood pairs, D = {(xi, pi)}Ni=1, where pi =
p(yi|xi). In each iteration k, a scaled Gaussian f (k)(x) is found that lower bounds the residuals
between the current SSG and the points inD, denoted asD(k). Then f (k)(x) is added as a component
to the SSG, and the next iteration proceeds. The algorithm is initialized with D(1) = D.

More specifically, in the k-th iteration, first the highest point in D(k) is found, m = argmaxi log pi.
Next, the peak of a scaled Gaussian f (k) is anchored on the maximum point,

h(k)(x) = −(x− xm)TWk(x− xm) + `m, f (k)(x) = exp(h(k)(x)), (4)

where `m = log pm and Wk is the precision matrix of the Gaussian. The precision matrix Wk is
found by minimizing the square-error with D(k) in the log-likelihood space, with the constraint that
the log-Gaussian h(k)(x) is a lower bound of the points in D(k),

W ∗k = argmin
Wk

1

2

N∑
i=1

(`i − h(k)(xi))
2 s.t. `i − h(k)(xi) ≥ 0,∀i, (5)

where `i = log pi. When Wk = diag(wk) is a diagonal matrix, then (5) is a quadratic program
(see Supplemental). The constraints in (5) ensure that f (k) is a lower bound of D(k). Finally, the
residual points are calculated ri = pi − f (k)(xi),∀i and the next iteration is run on the residual data
D(k+1) = {(xi, ri)}Ni=1. After sufficient iterations to reduce all residuals to under a threshold, the
approximate likelihood is f(x) =

∑
k f

(k)(x). Because each iteration forms a lower bound to the
residuals, f(x) is a lower-bound of the original data D.

4 Experiments
To show the applicability of DPHEM and the Bayesian filtering framework, we present 3 experiments:
1) simplifying synthetic 2D GMMs; 2) synthetic experiments on belief propagation; 3) visual tracking
with Bayesian filtering and GMM posteriors. Comparisons are made with 3 other density simplifying
algorithms: 1) the original HEM [21]; 2) variational KL minimization (VKL) [14]; 3) L2-norm
upper-bound minimization (L2U) [25]. Experiments were implemented with Matlab on a desktop
PC.

4.1 Synthetic 2D GMM simplification
In this experiment, a 2D base GMM with 2,500 components is randomly generated. For each target
Kr, we use the same randomly picked components as initialization to run all four simplification
methods. Ten random initializations are used, and the best reduced mixture model is selected using
each method’s corresponding objective criteria (i.e. variational expected log-likelihood for HEM and
DPHEM, variational KL for VKL, approximate L2 for L2U). The similarity between the base and
reduced mixtures is then evaluated using KL-divergence (KLD), which is calculated using Monte
Carlo approximation with 100,000 samples. The experiment was repeated using 100 base GMMs, and
the average KLD and processing time for Kr ∈ [1, 100] are shown in Figure 2. DPHEM preserves
the base model the best and has the lowest computing time.

4.2 Belief propagation
In this experiment, we run belief propagation (BP) on a 4-node undirected graph (Figure 3a), whose
self-potentials are a 1D Gaussian mixture with 2 components and edge-potentials are Gaussian.
During BP, the message is simplified using HEM, DPHEM, VKL, or L2U, when its number of
components exceeds Kr, We also compare with Gibbs sampling [26]. Exact message passing (i.e.,
no simplification) for the first 3 iterations is used as the ground-truth.
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Figure 2: (a) Average KLD between the original and reduced models for different number of reduced components
Kr . (b) Processing time vs. number of reduced components. (c) Precision plots for visual tracking. The number
in the legend is precision at error threshold 20.
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Figure 3: Belief propagation experiment: (a) the graph; (b-d) average KL divergence between different
approximate marginals and the exact product marginal at each iteration of belief propagation. 1024 samples are
used for Gibbs sampling for all iterations. Kr indicates the number of reduced components for other methods.

The average KLD between the marginals and ground-truth in each BP iteration are shown in Figure
3b-d. As BP iterates, DPHEM yields the best approximation that is most similar to the exact
marginals. Examples of marginal distributions at each node after the 3rd iteration can be found in the
supplemental.

4.3 Visual object tracking
We apply Bayesian filtering with GMM posteriors to visual object tracking, where the target object
location is xt and the video frame is yt. A simple Gaussian motion model is used. The observation
model is based on compressive tracking (CT) [27], and the SSG approximation of the likelihood
function is obtained by applying the lower-bound algorithm (Section 3) on densely sampled locations
(see Figure 1). DPHEM is used to reduce the GMM posterior to Kr = 50 components. Finally, the
tracked position is the location x̂t with largest posterior probability, and the corresponding image
patch is used to update the observation model for the next frame.

We test our tracking method on a commonly-used benchmark [28] which contains 50 video sequences.
Since the size of the bounding box in our method is fixed, the evaluation is based on the precision
plot of OPE (One Pass Evaluation) proposed in [28], which is the percentage of successfully tracked
frames whose centre location error is within a certain threshold. We compare our tracker with
three particle-filter tracking methods with the same observation model: Dense – dense sampling of
candidate locations xt, where the tracked location is the one with maximum score p(yt|xt) (also used
in [27]); OPF – original particle filter where resampling is used to propagate particles to the next
frame, and the tracked position is the particle with maximum weight; IPF – an improved particle
filter where only the particle with maximum weight is propagated to the next frame. For each tracker,
we test two versions with and without velocity in the motion model (+Motion, +NoMotion). Since
DPHEM+Motion outperforms all other trackers, we also test and show the results by replacing
DPHEM with other simplification methods, HEM, VKL and L2U.

Figure 2c presents the precision plots for the various tracking methods. DPHEM significantly out-
performs the original particle filter with resampling (OPF), which suggests that using GMMs to
represent posteriors has significant advantages over using weighted particles. Comparing simplifica-
tion methods within the GMM tracking framework, DPHEM also outperforms L2U, VKL, and HEM.
IPF has better precision than Dense, mainly because the Gaussian diffusion model prevents selecting
outlier points far from the predicted position as the tracked position. However, both method performs
slightly worse when using velocity in the motion model (+Motion).
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Supplemental

1 Variational approximation for DPHEM

The expected log-likelihood is

J (Θ(r)) = EY |Θ(b) [log p(Y |Θ(r))] =

∫
p(Y |Θ(b)) log p(Y |Θ(r))dY (6)

=
∑
i

π
(b)
i

∫
p(Y |θ(b)

i ) log p(Y |Θ(r))dY =
∑
i

π
(b)
i E

Y |θ(b)i
[log p(Y |Θ(r))]. (7)

The variational lower bound of the log-likelihood of a mixture model is [29, 30]

log p(Y |Θ(r)) ≥ max
zij

∑
j

zij log
π

(r)
j p(Y |θ(r)

j )

zij
, (8)

where zij are the variational parameters, with
∑K
j=1 zij = 1. Taking the expectation of (8) and

applying Jensen’s inequality, we have

E
Y |θ(b)i

[log p(Y |Θ(r))] ≥ max
zij

∑
j

zij

{
log

π
(r)
j

zij
+ E

Y |θ(b)i
[log p(Y |θ(r)

j )]

}
. (9)

The inner-expectation in (9) is obtained by noting that Y is a set of i.i.d. samples,

E
Y |θ(b)i

[log p(Y |θ(r)
j )] = E

Y |θ(b)i

[
N∑
m=1

log p(ym|θ(r)
j )

]
=

N∑
m=1

E
Y |θ(b)i

[log p(ym|θ(r)
j )] = NE

y|θ(b)i
[log p(y|θ(r)

j )].

(10)

Finally, substituting (10) and (9) into (7), we obtain the variational lower bound of the expected
log-likelihood,

JDP (Θ(r)) = max
zij

∑
i

∑
j

π
(b)
i zij

{
log

π
(r)
j

zij
+NE

y|θ(b)i
[log p(y|θ(r)

j )]

}
≤ EY |Θ(b) [log p(Y |Θ(r))].

(11)
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2 Fitting a quadratic lower-bound for likelihood approximation (diagonal
case)

Here we show that when the precision matrix is diagonal, then the likelihood lower-bound approxi-
mation in (5) is a quadratic program (QP). Assume that W = diag(w) is a diagonal precision matrix
of a multivariate Gaussian distribution x ∼ N (x|µ,W−1), where x, µ,w ∈ Rd and w is a vector of
non-negative values. Then the log-Gaussian is

h(x) = −
∑
d

wd(xd − µd)2 + `, (12)

where the summation is over the dimensions of the vectors. The precision W can be found by
maximizing the square-error with a set of state-likelihood pairs D = {(xi, pi)|pi = p(yi|xi)}Ni=1 in
the log-likelihood space with the constraint that h(x) is a lower bound of the points.

W ∗ = argmin
W

1

2

N∑
i=1

(`i − h(xi))
2 s.t. `i − h(xi) ≥ 0, ∀i, (13)

Defining x̃ = (x−µ)2 as the vector of element-wise square differences, and ˜̀
i = `i− `, the problem

in (13) becomes

w∗ = argmin
w

1

2

N∑
i=1

(˜̀
i + wT x̃i)

2 s.t. ˜̀
i + wT x̃i ≥ 0, ∀i, w ≥ 0. (14)

Expanding the square term and re-arranging,

w∗ = argmin
w

1

2

N∑
i=1

(˜̀2
i + 2wT x̃i ˜̀i + wT x̃ix̃

T
i w) s.t. − x̃Ti w ≤ ˜̀

i,∀i, w ≥ 0. (15)

Hence, we have the standard QP form,

w∗ = argmin
w

1

2
wTHw + wT f s.t. Aw ≤ b, w ≥ 0. (16)

where

H =

N∑
i=1

x̃ix̃
T
i , f =

N∑
i=1

˜̀
ix̃i, A = − [x̃1, · · · , x̃N ]

T
, b =

[
˜̀
1, · · · , ˜̀

N

]T
. (17)

Figure 4: A 1D example of likelihood approximation using sum of scaled Gaussians. ∆ indicates calculation of
the residuals: ri = p(yi|xi)− f (k)(xi).

3 Experiment results

We show example figures from the experiments in this section. Figure 5 shows an example of 2D
reduced GMMs from Section 4.1. Figure 6 shows two examples of computed marginals after 3
iterations of BP from Section 4.2.
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(a1) Base Mixture (a2) HEM (a3) DPHEM
(KL=0.091) (KL=0.035)

(b1) Base Mixture (b2) VKL (b3) DPHEM
(KL=0.064) (KL=0.030)

(c1) Base Mixture (c2) L2U (c3) DPHEM
(KL=0.142) (KL=0.096)

Figure 5: Example of reduced mixture models using different approaches. Each row compares DPHEM with a
baseline method, and shows a typical difference. The base mixture model contains Kb = 2500 components.
The KL divergence is shown between the base mixture and the reduced mixture.
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Figure 6: Two examples of the marginal distributions (belief) at each node after the 3rd iteration of belief
propagation. The number of components in the exact marginal density at each node is shown in the legend. 1024
samples for Gibbs and Kr = 64 for other methods.
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