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Abstract

In this paper, we derive a novel algorithm to cluster hidden Markov models
(HMMs) according to their probability distributions. We propose a variational
hierarchical EM algorithm that i) clusters a given collection of HMMs into groups
of HMMs that are similar, in terms of the distributions they represent, and ii) char-
acterizes each group by a “cluster center”, i.e., a novel HMM that is representative
for the group. We illustrate the benefits of the proposed algorithm on hierarchical
clustering of motion capture sequences as well as on automatic music tagging.

1 Introduction

The hidden Markov model (HMM) [1] is a probabilistic model that assumes a signal is generated
by a double embedded stochastic process. A discrete-time hidden state process, which evolves as a
Markov chain, encodes the dynamics of the signal, and an observation process, at each time condi-
tioned on the current state, encodes the appearance of the signal. HMMs have successfully served
a variety of applications, including speech recognition [1], music analysis [2] and identification [3],
and clustering of time series data [4, 5].

This paper is about clustering HMMs. More precisely, we are interested in an algorithm that, given
a collection of HMMs, partitions them into K clusters of “similar” HMMs, while also learning a
representative HMM “cluster center” that concisely and appropriately represents each cluster. This
is similar to standard k-means clustering, except that the data points are HMMs now instead of
vectors in Rd. Various applications motivate the design of HMM clustering algorithms, ranging from
hierarchical clustering of sequential data (e.g., speech or motion sequences modeled by HMMs [4]),
over hierarchical indexing for fast retrieval, to reducing the computational complexity of estimating
mixtures of HMMs from large datasets (e.g., semantic annotation models for music and video) —
by clustering HMMs, efficiently estimated from many small subsets of the data, into a more compact
mixture model of all data. However, there has been relatively little work on HMM clustering and,
therefore, its applications.

Existing approaches to clustering HMMs operate directly on the HMM parameter space, by group-
ing HMMs according to a suitable pairwise distance defined in terms of the HMM parameters.
However, as HMM parameters lie on a non-linear manifold, a simple application of the k-means al-
gorithm will not succeed in the task, since it assumes real vectors in a Euclidean space. In addition,
such an approach would have the additional complication that HMM parameters for a particular
generative model are not unique, i.e., a permutation of the states leads to the same generative model.
One solution, proposed in [4], first constructs an appropriate similarity matrix between all HMMs
that are to be clustered (e.g., based on the Bhattacharyya affinity, which depends non-linearly on the
HMM parameters [6]), and then applies spectral clustering. While this approach has proven success-
ful to group HMMs into similar clusters [4], it does not allow to generate novel HMMs as cluster
centers. Each cluster can still be represented by choosing one of the given HMMs, e.g., the HMM
which the spectral clustering procedure maps the closest to each spectral clustering center. However,
this may be suboptimal for various applications of HMM clustering, e.g., in hierarchical estimation
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of HMM mixtures. Spectral clustering can be based on other affinity scores between HMMs distri-
butions than Bhattacharyya affinity, such as KL divergence approximated with sampling [7].

Instead, in this paper we propose to cluster HMMs directly with respect to the probability distri-
butions they represent. We derive a hierarchical expectation maximization (HEM) algorithm that,
starting from a group of HMMs, estimates a smaller mixture model that concisely represents and
clusters the input HMMs (i.e., the input HMM distributions guide the estimation of the output mix-
ture distribution). Historically, the first HEM algorithm was designed to cluster Gaussian probability
distributions [8]. This algorithm starts from a Gaussian mixture model (GMM) and reduces it to an-
other GMM with fewer components, where each of the mixture components of the reduced GMM
represents, i.e., clusters, a group of the original Gaussian mixture components. More recently, Chan
et al. [9] derived an HEM algorithm to cluster dynamic texture (DT) models (i.e., linear dynamical
systems, LDSs) through their probability distributions. HEM has been applied successfully to many
machine learning tasks for images [10], video [9] and music [11, 12]. The HEM algorithm is simi-
lar in spirit to Bregman-clustering [13], which is based on assigning points to cluster centers using
KL-divergence.

To extend the HEM framework for GMMs to hidden Markov mixture models (H3Ms), additional
marginalization of the hidden-state processes is required, as for DTMs. However, while Gaussians
and DTs allow tractable inference in the E-step of HEM, this is no longer the case for HMMs.
Therefore, in this work, we derive a variational formulation of the HEM algorithm (VHEM), and
then leverage a variational approximation derived in [14] (which has not been used in a learning con-
text so far) to make the inference in the E-step tractable. The proposed VHEM algorithm for H3Ms
(VHEM-H3M) allows to cluster hidden Markov models, while also learning novel HMM centers that
are representative of each cluster, in a way that is consistent with the underlying generative model
of the input HMMs. The resulting VHEM algorithm can be generalized to handle other classes of
graphical models, for which exact computation of the E-step in standard HEM would be intractable,
by leveraging similar variational approximations. The efficacy of the VHEM-H3M algorithm is
demonstrated on hierarchical motion clustering and semantic music annotation and retrieval.

The remainder of the paper is organized as follows. We review the hidden Markov model (HMM)
and the hidden Markov mixture model (H3M) in Section 2. We present the derivation of the VHEM-
H3M algorithm in Section 3, discussion and an experimental evaluation in Section 4.

2 The hidden Markov (mixture) model

A hidden Markov model (HMM) M assumes a sequence of τ observations y1:τ is generated by
a double embedded stochastic process. The hidden state process x1:τ is a first order Markov
chain on S states, with transition matrix A whose entries are aβ,γ = P (xt+1 = γ|xt = β),
and initial state distribution π = [π1, . . . ,πS ], where πβ = P (x1 = β|M). Each state β gen-
erates observations according to an emission probability density function p(y|x = β,M) which
here we assume time-invariant and modeled as a Gaussian mixture with M components, i.e.,
p(y|x = β,M) =

�
M

m=1 cβ,mp(y|ζ = m,M), where ζ ∼ multinomial(cβ,1, . . . , cβ,M ) is the
hidden variable that selects the mixture component, cβ,m the mixture weight of the mth Gaussian
component, and p(y|ζ = m,M) = N (y;µβ,m,Σβ,m) is the probability density function of a mul-
tivariate Gaussian distribution with mean µβ,m and covariance matrix Σβ,m. The HMM is specified
by the parameters M = {π, A, {{cβ,m, µβ,m,Σβ,m}M

m=1}Sβ=1} which can be efficiently learned
from an observation sequence y1:τ with the Baum-Welch algorithm [1].
A hidden Markov mixture model (H3M) models a set of observation sequences as samples
from a group of K hidden Markov models, each associated to a specific sub-behavior [5].
For a given sequence, an assignment variable z ∼ multinomial(ω1, · · ·ωK) selects the pa-
rameters of one of the K HMMs. Each mixture component is parametrized by Mz =
{πz, Az, {{cz

β,m
, µz

β,m
,Σz

β,m
}M
m=1}Sβ=1} and the H3M is parametrized by M = {ωz,Mz}Kz=1.

The likelihood of a random sequence y1:τ ∼ M is

p(y1:τ |M) =
K�

i=1

ωip(y1:τ |z = i,M), (1)

where p(y1:τ |z = i,M) is the likelihood of y1:τ under the ith HMM component. To reduce clutter,
here we assume that all the HMMs have the same number S of hidden states and that all emission
probabilities have M mixture components, though our derivation could be easily extended to the
more general case, and in the remainder of the paper we use the notation in Table 1.
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Table 1: Notation. (b) base model, (r) reduced model.
variables (b) (r) probability distributions notation short-hand

index for HMM comp. i j HMM state seq. (b) p(x1:τ=β1:τ |z(b)=i,M(b)) π(b),i
β1:τ

HMM states β ρ HMM state seq. (r) p(x1:τ=ρ1:τ |z(r)=j,M(r)) π(r),j
ρ1:τ

HMM state sequence β1:τ ={β1· · ·βτ} ρ1:τ ={ρ1· · ·ρτ} HMM obs. likelihood (r) p(y1:τ |z(r) = j,M(r)) p(y1:τ |M(r)
j

)

index for comp. of GMM m � GMM emit likelihood (r) p(yt|xt = ρ,M(r)
j

) p(yt|M(r)
j,ρ

)

models Gaussian likelihood (r) p(yt|ζt = �, xt = ρ,M(r)
j
) p(yt|M(r)

j,ρ,�
)

H3M M(b) M(r) expectations
HMM component M(b)

i
M(r)

j
HMM obs. seq. Ey1:τ |z(b)=i,M(b) [·] EM(b)

i
[·]

GMM emission M(b)
i,β

M(r)
j,ρ

GMM emission E
yt|xt=β,M(b)

i
[·] EM(b)

i,β
[·]

component of GMM M(b)
i,β,m

M(r)
j,ρ,�

Gaussian component E
yt|ζt=m,xt=β,M(b)

i
[·] EM(b)

i,β,m
[·]

3 Clustering hidden Markov models

We now derive the variational hierarchical EM algorithm for clustering HMMs (VHEM-H3M). Let
M(b) = {ω(b)

i
,M(b)

i
}K(b)

i=1 be a base hidden Markov mixture model (H3M) with K(b) components.
The goal of the VHEM-H3M algorithm is to find a reduced hidden Markov mixture model M(r) =

{ω(r)
j

,M(r)
j

}K(r)

j=1 with fewer components (i.e., K(r) < K(b)), that represents M(b) well. At a high
level, the VHEM-H3M algorithm estimates the reduced H3M model M(r) from virtual samples
distributed according to the base H3M model M(b). From this estimation procedure, the VHEM
algorithm provides: (i) a (soft) clustering of the original K(b) HMMs into K(r) groups, encoded
in assignment variables ẑi,j , and (ii) novel HMM cluster centers, i.e., the HMM components of
M(r), each of them representing a group of the original HMMs of M(b). Finally, because we take
the expectation over the virtual samples, the estimation is carried out in an efficient manner that
requires only knowledge of the parameters of the base model without the need of generating actual
virtual samples.

3.1 Parameter estimation

We consider a set Y of N virtual samples distributed accordingly to the base model M(b), such that
the Ni = Nω(b)

i
samples Yi = {y(i,m)

1:τ }Ni
m=1 are from the ith component (i.e., y(i,m)

1:τ ∼ M(b)
i

). We
denote the entire set of samples as Y = {Yi}K

(b)

i=1 , and, in order to obtain a consistent clustering of the
input HMMs M(b)

i
, we assume the entirety of samples Yi is assigned to the same component of the

reduced model [8]. Note that, in this formulation, we are not using virtual samples {x(i,m)
1:τ , y(i,m)

1:τ }
for each base component, according to its joint distribution p(x1:τ , y1:τ |M(b)

i
), but we treat Xi =

{x(i,m)
1:τ }Ni

m=1 as “missing” information, and estimate them in the E-step. The reason is that a basis
mismatch between components of M(b)

i
will cause problems when the parameters of M(r)

j
are

computed from virtual samples of the hidden states of {M(b)
i

}K(b)

i=1 .

The original formulation of HEM [8] maximizes log-likelihood of the virtual samples, i.e.,
log p(Y |M(r)) =

�
K

(b)

i=1 log p(Yi|M(r)), with respect to M(r), and uses the law of large num-
bers to turn the virtual samples into an expectation over the base model components M(b)

i
. In this

paper, we will start with a slightly different objective function to derive the VHEM algorithm. To
estimate M(r), we will maximize the expected log-likelihood of the virtual samples,

J (M(r)) = EM(b)

�
log p(Y |M(r))

�
=

K
(b)�

i=1

EM(b)
i

�
log p(Yi|M(r))

�
, (2)

where the expectation is over the base model components M(b)
i

.

A general framework for maximum likelihood estimation in the presence of hidden variables (which
is the case for H3Ms) is the EM algorithm [15]. In this work, we take a variational perspective [16,
17, 18], which views both E- and M-step as a maximization step. The variational E-step first obtains
a family of lower bounds to the log-likelihood (i.e., to equation 2), indexed by variational parameters,
and then optimizes over the variational parameters to find the tightest bound. The corresponding
M-step then maximizes the lower bound (with the variational parameters fixed) with respect to the
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model parameters. One advantage of the variational formulation is that it allows to replace a difficult
inference in the E-step with a variational approximation, by restricting the maximization to a smaller
domain for which the lower bound is tractable.

3.1.1 Lower bound to an expected log-likelihood

Before proceeding with the derivation of VHEM for H3Ms, we first need to derive a lower-bound to
an expected log-likelihood term (e.g., (2)). We will first consider the lower bound to a log-likelihood.
In all generality, let {O,H} be the observation and hidden variables of a probabilistic model, respec-
tively, where p(H) is the distribution of the hidden variables, p(O|H) is the conditional likelihood
of the observations, and p(O) =

�
H
p(O|H)p(H) is the observation likelihood. We can define a

variational lower bound to the observation log-likelihood [18, 19]:

log p(O) ≥ log p(O)−D(q(H)||p(H|O)) =
�

H

q(H) log
p(H)p(O|H)

q(H)
(3)

where p(H|O) is the posterior distribution of H given observation O, and q(H) is the variational
distribution (i.e.,

�
H
q(H) = 1 and qi(H) ≥ 0) or approximate posterior distribution. D(p�q) =�

p(y) log p(y)
q(y)dy is the Kullback-Leibler (KL) divergence between two distributions, p and q. When

the variational distribution equals the true posterior, q(H) = P (H|O), then the KL divergence
is zero, and hence the lower-bound reaches log p(O). When the true posterior is not possible to
calculate, then typically q is restricted to some set of approximate posterior distributions that are
tractable, and the best lower-bound is obtained by maximizing over q,

log p(O) ≥ max
q∈Q

�

H

q(H) log
p(H)p(O|H)

q(H)
(4)

Using the lower bound in (4), we can now derive a lower bound to an expected log-likelihood
expression. Let Eb[·] be the expectation of O with respect to a distribution pb(O). Since pb(O) is
non-negative, taking the expectation on both sides of (4) yields,

Eb [log p(O)] ≥ Eb

�
max
q∈Q

�

H

q(H) log
p(H)p(O|H)

q(H)

�
≥ max

q∈Q

Eb

�
�

H

q(H) log
p(H)p(O|H)

q(H)

�
(5)

= max
q∈Q

�

H

q(H)

�
log

p(H)
q(H)

+ Eb [log p(O|H)]

�
, (6)

where (5) follows from Jensen’s inequality (i.e., f(E[x]) ≤ E[f(x)] when f is convex), and the
convexity of the max function.

3.1.2 Variational lower bound

We now derive the lower bound of the expected log-likelihood cost function in (2). The derivation
proceeds by successively applying the lower bound from (6) on each arising expected log-likelihood
term, which results in a set of nested lower bounds. We first define the following three lower bounds:

EM(b)
i
[log p(Yi|M(r))] ≥ Li

H3M , (7)

EM(b)
i
[log p(y1:τ |M(r)

j
)] ≥ Li,j

HMM
, (8)

EM(b)
i,βt

[log p(yt|M(r)
j,ρt

)] ≥ L(i,βt),(j,ρt)
GMM

. (9)

The first lower bound, Li

H3M , is on the expected log-likelihood between an HMM and an H3M.
The second lower bound, Li,j

HMM
, is on the expected log-likelihood of an HMM M(r)

j
, marginal-

ized over observation sequences from a different HMM M(b)
i

. Although the data log-likelihood
log p(y1:τ |M(r)

j
) can be computed exactly using the forward algorithm [1], calculating its expecta-

tion is not analytically tractable since y1:τ ∼ M(r)
j

is essentially an observation from a mixture with
O(Sτ ) components. The third lower bound is between GMM emission densities M(b)

i,βt
and M(r)

j,ρt
.
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H3M lower bound - Looking at an individual term in (2), p(Yi|M(r)) is a mixture of HMMs, and
thus the observation variable is Yi and the hidden variable is zi (the assignment of Yi to a component
M(r)

j
). Hence, introducing the variational distribution qi(zi) and applying (6), we have

EM(b)
i

�
log p(Yi|M(r))

�
≥ max

qi

�

j

qi(zi = j)

�
log

p(zi = j)
qi(zi = j)

+NiEM(b)
i

[log p(y1:τ |M(r)
j

)]

�

≥ max
qi

�

j

qi(zi = j)

�
log

p(zi = j)
qi(zi = j)

+NiLi,j

HMM

�
� Li

H3M . (10)

where we use the fact that Yi is a set of Ni i.i.d. samples, and we use the lower bound (8) for
the expectation of log p(y1:τ |M(r)

j
), which is the observation log-likelihood of an HMM and hence

its expectation cannot be calculated directly. To compute Li

H3M , we will restrict the variational
distributions to the form qi(zi = j) = zij for all i, where

�
K

(r)

j=1 zij = 1, and zij ≥ 0 ∀j.

HMM lower bound - For the HMM likelihood p(y1:τ |M(r)
j

), the observation variable is y1:τ and
the hidden variable is its state sequence ρ1:τ . Hence, for the lower bound Li,j

HMM
we get

EM(b)
i

[log p(y1:τ |M(r)
j

)] =
�

β1:τ

π(b),i
β1:τ

EM(b)
i |β1:τ

[log p(y1:τ |M(r)
j

)] (11)

≥
�

β1:τ

π(b),i
β1:τ

max
qi,j

�

ρ1:τ

qi,j(ρ1:τ |β1:τ )

�
log

p(ρ1:τ |M(r)
j

)

qi,j(ρ1:τ |β1:τ )
+

�

t

EM(b)
i,βt

[log p(yt|M(r)
j,ρt

)]

�
(12)

≥
�

β1:τ

π(b),i
β1:τ

max
qi,j

�

ρ1:τ

qi,j(ρ1:τ |β1:τ )

�
log

p(ρ1:τ |M(r)
j

)

qi,j(ρ1:τ |β1:τ )
+

�

t

L(i,βt),(j,ρt)
GMM

�
� Li,j

HMM
(13)

where in (11) we first rewrite the expectation EM(b)
i

to explicitly marginalize over the HMM state

sequence β1:τ from M(b)
i

, in (12) we introduce a variational distribution qi,j
β1:τ

(ρ1:τ ) on the state
sequence ρ1:τ , which depends on the particular sequence β1:τ , and apply (6) , and in the last line we
use the lower bound, defined in (9), on each expectation.

To compute Li,j

HMM
we will restrict the variational distributions to the form of a Markov chain [14],

qi,j(ρ1:τ |β1:τ ) = φi,j(ρ1:τ |β1:τ ) = φi,j(ρ1|β1)
τ�

t=2

φi,j

βt
(ρt|ρt−1), (14)

where
�

S

ρ1=1 φ
i,j

β1
(ρ1) = 1 for each value of β1, and

�
S

ρt=1 φ
i,j

βt
(ρt|ρt−1) = 1 for each value

of βt and ρt−1. The variational distribution qi,j
β1:τ

(ρ1:τ ) assigns state sequences β1:τ ∼ M(b)
i

to
state sequences ρ1:τ ∼ M(r)

j
, based on how well (in expectation) the state sequence ρ1:τ ∼ M(r)

j

can explain an observation sequence generated by HMM M(b)
i

evolving through state sequence
β1:τ ∼ M(b)

i
, i.e., by p(y1:τ |M(b)

i
,β1:τ ).

GMM lower bound - In [20] we derive the lower bound (9), by marginalizing EM(b)
i,βt

over GMM

assignment m, introducing the variational distributions qi,j
β,ρ

(ζ = l|m), and applying (6). We will
restrict the variational distributions to qi,j

β,ρ
(ζ = l|m) = η(i,β),(j,ρ)

�|m , where
�

M

�=1 η
(i,βt),(j,ρt)
�|m =1 ∀m,

and η(i,βt),(j,ρt)
�|m ≥0 ∀�,m. Intuitively, η(i,βt),(j,ρt) is the responsibility matrix between Gaussian ob-

servation components for state βt in M(b)
i

and state ρt in M(r)
j

, where η(i,βt),(j,ρt)
�|m is the probability

that an observation from component m of M(b)
i,βt

corresponds to component � of M(r)
j,ρt

.

3.2 Variational HEM algorithm

Finally, the variational lower bound of the expected log-likelihood of the virtual samples in (2) is

J (M(r)) = EM(b)

�
log p(Y |M(r))

�
≥

K
(b)�

i=1

Li

H3M , (15)
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which is composed of three nested lower bounds, corresponding to different model elements (the
H3M, the component HMMs, and the emission GMMs). The VHEM algorithm for HMMs consists
in coordinate ascent on the right hand side of (15).
E-step - The variational E-step (see [20] for details) calculates the variational parameters zij ,
φi,j(ρ1:τ |β1:τ ) = φi,j

β1
(ρ1)

�
τ

t=2 φ
i,j

βt
(ρt|ρt−1), and η(i,β),(j,ρ) for the lower bounds in (9) (13)

(10). In particular, given the nesting of the lower bounds, we proceed by first maximizing the
GMM lower bound L(i,βt),(j,ρt)

GMM
for each (i, j,βt, ρt). Next, the HMM lower bound Li,j

HMM
is

maximized for each (i, j), which is followed by maximizing Li

H3M for each i. The latter gives
ẑij ∝ w(r)

j
exp(NiLi,j

HMM
), which is similar to the formula derived in [8, 9], but the expecta-

tion is now replaced with its lower bound. We then collect the summary statistics: νi,j1 (ρ1,β1) =

π(b),i
ρ1 φ̂i,j

1 (ρ1|β1), ξi,j
t
(ρt−1, ρt,βt) =

��
S

βt−1=1ν
i,j

t−1(ρt−1,βt−1)a
(b),i
βt−1,γt−1

�
φ̂i,j

t
(ρt|ρt−1,βt),

and νi,j
t

(ρt,βt) =
�

S

ρt−1=1 ξ
i,j

t
(ρt−1, ρt,βt), the last two for t = 2, . . . , τ , and their aggregates

which are necessary for the M-step:

ν̂i,j

1 (σ) =
S�

β=1

νi,j

1 (σ,β), ν̂i,j(σ,β) =
τ�

t=1

νi,j

t
(σ,β), ξ̂i,j(ρ, ρ�) =

τ�

t=2

S�

β=1

ξi,j
t

(ρ, ρ�,β). (16)

The statistic ν̂i,j1 (ρ) is the expected number of times that the HMM M(r)
j

starts from state ρ, when
modeling sequences generated by M(b)

i
. The quantity ν̂i,j(ρ,β) is the expected number of times that

the HMM M(r)
j

is in state ρ when the HMM M(b)
i

is in state β, when both are modeling sequences
generated by M(b)

i
. Similarly, the quantity ξ̂i,j(ρ, ρ�) is the expected number of transitions from

state ρ to state ρ� of M(r)
j

, when modeling sequences generated by M(b)
i

.

M-step - The lower bound (15) is maximized with respect to the parameters M(r). Defined a
weighted sum operator Ωj,ρ,�(x(i,β,m)) =

�
K

(b)

i=1 ẑi,jω
(b)
i

�
S

β=1 ν̂
i,j(ρ,β)

�
M

m=1 c
(b),i
β,m

x(i,β,m), the
parameters M(r) are updated according to (derivation in [20]):

ω
(r)
j

∗
=

�K(b)

i=1 ẑi,j

K(b)
, π

(r),j
ρ

∗
=

�K(b)

i=1 ẑi,jω
(b)
i ν̂

i,j
1 (ρ)

�S
ρ�=1

�K(b)

i=1 ẑi,jω
(b)
i ν̂

i,j
1 (ρ�))

, a
(r),j

ρ,ρ�
∗
=

�K(b)

i=1 ẑi,jω
(b)
i ξ̂

i,j(ρ, ρ�)
�S

σ=1

�K(b)

i=1 ẑi,jω
(b)
i ξ̂i,j(ρ,σ)

,

c
(r),j
ρ,�

∗
=

Ωj,ρ,�

�
η̂
(i,β),(j,ρ)
�|m

�

�M
��=1

Ωj,ρ,��
�
η̂
(i,β),(j,ρ)

��|m

� , µ
(r),j
ρ,�

∗
=

Ωj,ρ,�

�
η
(i,β),(j,ρ)
�|m µ

(b),i
β,m

�

Ωj,ρ,�

�
η̂
(i,β),(j,ρ)
�|m

� , (17)

Σ(r),j
ρ,�

∗
= Ωj,ρ,�

�
η̂
(i,β),(j,ρ)
�|m

�
Σ(b),i

β,m + (µ(b),i
β,m − µ

(r),j
ρ,� ) (µ(b),i

β,m − µ
(r),j
ρ,� )t

��
/Ωj,ρ,�

�
η̂
(i,β),(j,ρ)
�|m

�
. (18)

Equations (17) and (18) are all weighted averages over all base models, model states, and Gaussian
components. The covariance matrices of the reduced models (18) are never smaller in magnitude
than the covariance matrices of the base models, due to the outer-product term. This regularization
effect derives from the E-step, which averages all possible observations from the base model.

4 Discussion, Experiments and Conclusions

Jebara et al. [4] cluster a collection of HMMs by applying spectral clustering to a probability product
kernel (PPK) matrix between HMMs. While this has been proven successful in grouping HMMs
into similar clusters, it cannot learn novel HMM cluster centers and therefore is suboptimal for
hierarchical estimation of mixture models (see Section 4.2). A second limitation is that the cost of
building the PPK matrix is quadratic in the number K(b) of input HMMs. Note that we extended the
algorithm in [4] to support GMM observations instead of only Gaussians.

The VHEM-H3M algorithm clusters a collection of HMMs directly through the distributions they
represent, by estimating a smaller mixture of novel HMMs that concisely models the distribution
represented by the input HMMs. This is achieved by maximizing the log-likelihood of “virtual”
samples generated from the input HMMs. As a result, the VHEM cluster centers are consistent
with the underlying generative probabilistic framework. As a first advantage, since VHEM-H3M
estimates novel HMM cluster centers, we expect the learned cluster centers to retain more informa-
tion on the clusters’ structure and VHEM-H3M to produce better hierarchical clusterings than [4],
which suffers out-of-sample limitations. A second advantage is that VHEM does not build a kernel
embedding as in [4], an is therefore expected to be more efficient, especially for large K(b).

6



In addition, VHEM-H3M allows for efficient estimation of HMM mixtures from large datasets using
a hierarchical estimation procedure. In particular, in a first stage intermediate HMM mixtures are
estimated in parallel by running standard EM on small independent portions of the dataset, and the
final model is estimated from the intermediate models using the VHEM algorithm. Relative to direct
EM estimation on the entire data, VHEM-H3M is more time- and memory-efficient. First, it does
not need to evaluate the likelihood of all the samples at each iteration, and converges to effective
estimates in shorter times. Second, it no longer requires storing in memory the entire data set during
parameter estimation. Another advantage is that the intermediate models implicitly provide more
“samples” (virtual variations of each time-series) to the final VHEM stage. This acts as a form of
regularization that prevents over-fitting and improves robustness of the learned models. Therefore,
we expect models learned using the hierarchical estimation procedure to perform better than those
learned with EM directly on the entire data. Note that in the second stage we could use the spectral
clustering algorithm in [4] instead of VHEM — run spectral clustering over intermediate models
pooled together, and form the final H3M with the HMMs mapped the closest to the K cluster centers.
VHEM, however, is expected to do better since it learns novel cluster centers. As an alternative to
VHEM, we tested a version of HEM that, instead of marginalizing over virtual samples, uses actual
sampling and the EM algorithm [5] to learn the reduced H3M. Despite its simplicity, the algorithm
requires a large number of samples for learning accurate models, and has longer learning times
(since it evaluates the likelihood of all samples at each iteration).

4.1 Experiment on hierarchical motion clustering

Table 2: Hierarchical clustering on Motion Capture data,
using various algorithms. The Rand-index is the probabil-
ity that any pair of motion sequences are correctly clustered
with respect to each other. Results are averages of 10 trials.

Rand-index log-likelihood (×106) time (s)
Level (#samples) 2 3 4 2 3 4
VHEM-H3M 0.937 0.811 0.518 -5.361 -5.682 -5.866 30.97
PPK-SC 0.956 0.740 0.393 -5.399 -5.845 -6.068 37.69
SHEM-H3M (560) 0.714 0.359 0.234 -13.632 -69.746 -275.650 843.89
SHEM-H3M (2800) 0.782 0.685 0.480 -14.645 -30.086 -52.227 3849.72
EM-H3M 0.831 0.430 0.340 -5.713 -202.55 -168.90 667.97
HEM-DTM 0.897 0.661 0.412 -7.125 -8.163 -8.532 121.32

Table 3: Annotation and retrieval on CAL500, for VHEM-
H3M, PPK-SC, EM-H3M, HEM-DTM and HEM-GMM,
averaged over the 97 tags with at least 30 examples in
CAL500, and result of 5 fold-cross validation.

annotation retrieval

P R F MAP P@10 time (h)
VHEM-H3M 0.446 0.211 0.260 0.440 0.451 678

EM-H3M 0.415 0.214 0.248 0.423 0.422 1860
PPK-SC 0.299 0.159 0.151 0.347 0.340 1033

HEM-DTM 0.430 0.202 0.252 0.439 0.453 426
HEM-GMM 0.374 0.205 0.213 0.417 0.425 5
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Figure 1: Hierarchical clus-
tering of Motion Capture data
(qualitative). Best in color.

We tested the VHEM algorithm on hierarchical motion clustering, where each of the input HMMs
to be clustered is estimated on a sequence of motion capture data from the Motion Capture dataset
(http://mocap.cs.cmu.edu/ ). In particular, we start from K1 = 56 motion examples from 8 different
classes (“jump”, “run”, ‘jog‘”, “walk 1” and “walk 2” which are from two different subjects, “bas-
ket”, “soccer”, “sit”), and learn a HMM for each of them, forming the first level of the hierarchy.
A tree-structure is formed by successively clustering HMMs with the VHEM algorithm, and using
the learned cluster centers as the representative HMMs at the new level. Level 2, 3, and 4 of the
hierarchy correspond to K2 = 8, K3 = 4 and K4 = 2 clusters.

The hierarchical clustering obtained with VHEM is illustrated in Figure 1 (top). In the first level,
each vertical bar represents a motion sequence, and different colors indicate different ground-truth
classes. At Level 2, the 8 HMM clusters are shown with vertical bars, with the colors indicating the
proportions of the motion classes in the cluster. At Level 2, VHEM produces clusters with examples
from a single motion class (e.g., “run”, “jog”, “jump”), but mixes some “soccer” examples with
“basket”, possibly because both actions consists in a sequence of movement-shot-pause. Moving up
the hierarchy, VHEM clusters similar motions classes together (as indicated by the arrows), and at
Level 4 it creates a dichotomy between “sit” and the other (more dynamic) motion classes. On the
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bottom, in Figure 1, the same experiment is repeated using spectral clustering in tandem with PPK
similarity (PPK-SC). PPK-SC clusters motion sequences properly, however, at Level 2 it incorrectly
aggregates “sit” and “soccer” that have quite different dynamics, and Level 4 is not as interpretable
as the one by VHEM. Table 2 provides a quantitative comparison. While VHEM has lower Rand-
index than PPK-SC at Level 2 (0.937 vs. 0.956), it has higher Rand-index at Level 3 (0.811 vs.
0.740) and Level 4 (0.518 vs. 0.393). In addition, VHEM-H3M has higher data log-likelihood
than PPK-SC at each level, and is more efficient. This suggests that the novel HMM cluster centers
learned by VHEM-H3M retain more information on the clusters’ structure than the spectral cluster
centers, which is increasingly visible moving up the hierarchy. Finally, VHEM-H3M performs better
and is more efficient than the HEM version based on actual sampling (SHEM-H3M), the EM applied
directly on the motion sequences, and the HEM-DTM algorithm [9].
4.2 Experiment on automatic music tagging

We evaluated VHEM-H3M on content-based music auto-tagging on the CAL500 [11], a collection
of 502 songs annotated with respect to a vocabulary V of 149 tags. For each song, we extract a
time series Y = {y1, . . . , yT } of 13 Mel frequency cepstral coefficients (MFCC) [1] over half-
overlapping windows of 46ms, with first and second instantaneous derivatives. We formulate music
auto-tagging as supervised multi-class labeling [10], where each class is a tag from V and is modeled
as a H3M probability distribution estimated from audio-sequences (of T = 125 audio features, i.e.,
approximately 3s of audio) extracted from the relevant songs in the database, using the VHEM-
H3M algorithm. First, for each song the EM algorithm is used to learn a H3Ms with K(s) = 6
components (as many as the structural parts of most pop songs). Then, for each tag, the relevant
song-level H3Ms are pooled together and the VHEM-H3M algorithm is used to learn the final H3M
tag model with K = 3 components.

We compare the proposed VHEM-H3M algorithm to PPK-SC,1 direct EM-estimation (EM-H3M)
[5] from the relevant songs’ audio sequences, HEM-DTM [12] and HEM-GMM [11]. The last two
use an efficient HEM algorithm for learning, and are state-of-the-art baselines for music tagging.
We were not able to successfully estimate tag-H3Ms with the sampling version of HEM-H3M.
Annotation (precision P, recall R, and f-score F) and retrieval (mean average precision MAP, and
top-10 precision P@10) are reported in Table 3. VHEM-H3M is the most efficient algorithm for
learning H3Ms as it requires only 36% of the time of EM-H3M, and 65% of the time of PPK-
SC. VHEM-H3M capitalizes on the song-level H3Ms learned in the first stage (about one third of
the total time), by efficiently using them to learn the final tag models. The gain in computational
efficiency does not negatively affect the quality of the resulting models. On the contrary, VHEM-
H3M achieves better performance than EM-H3M (differences are statistically significant based on
a paired t-test with 95% confidence), since it has the benefit of regularization, and outperforms
PPK-SC. Designed for clustering HMMs, PPK-SC does not produce accurate annotation models,
since it discards information on the clusters’ structure by approximating it with one of the original
HMMs. Instead, VHEM-H3M generates novel HMM cluster centers that effectively summarizes
each cluster. VHEM-H3M outperforms HEM-GMM, which does not model temporal information
in the audio signal. Finally, HEM-DTM, based on LDSs (a continuous-state model), can model only
stationary time-series in a linear subspace. In contrast, VHEM-H3M uses HMMs with discrete states
and GMM emissions, and can also adapt to non-stationary time-series on a non-linear manifold.
Hence, VHEM-H3M outperforms HEM-DTM on the human MoCap data (see Table (2)), which has
non-linear dynamics, while the two perform similarly on the music data (difference were statistically
significant only on annotation P), where the audio features are stationary over short time frames.

4.3 Conclusion

We presented a variational HEM algorithm for clustering HMMs through their distributions and gen-
erates novel HMM cluster centers. The efficacy of the algorithm was demonstrated on hierarchical
motion clustering and automatic music tagging, with improvement over current methods.
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