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Abstract. Musical genre classification is a promising yet difficult task
in the field of musical information retrieval. As a widely used feature
in genre classification systems, MFCC is typically believed to encode
timbral information, since it represents short-duration musical textures.
In this paper, we investigate the invariance of MFCC to musical key
and tempo, and show that MFCCs in fact encode both timbral and
key information. We also show that musical genres, which should be
independent of key, are in fact influenced by the fundamental keys of the
instruments involved. As a result, genre classifiers based on the MFCC
features will be influenced by the dominant keys of the genre, resulting in
poor performance on songs in less common keys. We propose an approach
to address this problem, which consists of augmenting classifier training
and prediction with various key and tempo transformations of the songs.
The resulting genre classifier is invariant to key, and thus more timbre-
oriented, resulting in improved classification accuracy in our experiments.

1 Introduction

Musical information retrieval is a field that is growing vigorously in recent years
thanks to the thriving digital music industry. As a promising yet challenging task
in the field, musical genre classification has a wide-range of applications: from
automatically generating playlists on an MP3 player to organizing the enormous
billion-song database for major online digital music retailers. In many genre
classification systems, the Mel-frequency cepstral coefficients (MFCCs) [3] have
been used as a timbral descriptor [15, 12, 10, 7]. While it is common to think of
MFCCs as timbre-related features, due to the short-duration frame on which
they are extracted (e.g., 20 milliseconds), it is still uncertain how the key and
tempo of a song affects the MFCC features, and hence the subsequent genre
classification system.

In this paper, we attempt to address the following question: are MFCCs
invariant to key and tempo? In other words, is MFCC a purely timbral feature
set? If the MFCCs are purely timbral features, then they should be invariant
to the changes in musical keys and tempo. Otherwise, changes in the musical
key and tempo of a song will affect the MFCCs, which may adversely affect
the training of genre classifiers. The contributions of this paper are three-fold.
First, we show that musical genres, which should be independent of key, are in
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Fig. 1. Key histograms of the GTZAN dataset on the circle of fifths scale. The vertical
axis is the number of songs with a certain key.

fact influenced by the fundamental keys of the instruments involved. Second,
we show that MFCCs indeed encode both timbral and key information, i.e.,
they are not invariant to shifts in musical key. As a result, genre classifiers
based on the MFCC features will be influenced by the dominant keys of the
genre, resulting in poor performance on songs in less common keys. Third, we
propose an approach to build key-independent genre classifiers, which consists
of augmenting the classifier training and prediction phases with various key and
tempo transformations of the songs. The resulting genre classifier is invariant to
key, and thus more timbre-oriented, resulting in improved classification accuracy
in our experiments.

The rest of this paper is organized as follows. In Section 2, we explore the
distribution of musical key for different genres. In Section 3, we study the in-
variance of MFCC to musical key and tempo shifts. In Section 4, we propose a
data-augmented genre classification scheme, based on key and tempo transfor-
mations, while in Section 5 we present experiments on genre classification using
our data-augmented system.

2 Key Histograms of the GTZAN dataset

In this section, we explore the relationship between musical genres and musical
keys. We manually annotate each song in the GTZAN dataset [15] with their
musical “keys”. In this section, we define the concept of “key” as the pitch of the
“Do” sound of the song in the solfège scale (Do-Re-Mi scale). Such definition
is different from the more common definition — the tonic sound of the scale
(e.g., in minor scales the tonic sound is the La sound rather than the Do sound).
Because a major scale and its relative minor scale share the identical composition
of pitches, it is simpler to annotate both scales with the same label to show that
they actually have the same pitch ingredients in the songs (e.g., songs in C major



and A minor are both labeled with “C”). In cases where the scale is unapparent,
we annotate the key based on the most repeated pitch.

Figure 1 shows the key histograms for different genres in the GTZAN dataset,
using our annotation criteria, with keys ordered by the circle of fifths (C is in
the center). We observe that genre is indeed key-related with the distribution
centered around particular keys based on the instrumentation.

– Blues: peaks at B♭ and G. B♭ is the fundamental pitch of many horn instru-
ments. G corresponds to the Do sound for the blues scale in E, which is the
fundamental key for guitar.

– Classical: distribution around F, which is in between the horn instrument
fundamental B♭ and the piano fundamental C.

– Country: broad distribution around D, with keys that are easy to play on
guitars (e.g. G, D, A, E, C).

– Disco: peaks at E♭ and C. Disco frequently employs Blues scale. For C Blues,
the Do sound is E♭.

– Hip Hop: distribution is not obvious. This genre typically does not have a
key, as the main instruments are human voice and drums.

– Jazz: distribution is skewed towards flat keys (Db, Ab, Eb, Bb), which are
the fundamental horn pitches. The peak at F is similar to that of Classical.

– Metal: peaks at C, G, E and F♯. The G key correspond to E Blues. E is
the pitch of the lowest string on guitar. In Metal, the lowest string is used
extensively to create a massive feeling. The peak at F♯, corresponding to E♭
Blues, can be explained by the common practice of Metal artists to lower
the tuning by one semi-tone, creating an even stronger metal feeling.

– Pop: distribution is not obvious. The peak at E♭ is the Blues-scale of the C
key. The distributions of Pop and Disco are similar, due to similar instru-
mentation.

– Reggae: peaks at C (keyboard), D (guitar), B♭ (horns) and C♯ (B♭ Blues).
– Rock: significant distribution around C. The distribution is be related to

the dominance of guitar and piano in this genre. Rock is arguably the most
key-related genre in the GTZAN dataset.

In summary, there is a strong correlation between genre and key, with each
genre having a unique key distribution. Such correlation most likely stems from
the fundamental keys associated with the instruments used in each genre. For
instance, the most common kind of clarinet is in the key of B♭, while the alto
saxophone is in E♭. The four strings of a violin are tuned by standard to G, D,
A and E. The piano has all its white keys in C major. Although it is entirely
possible to play a song in any key, some keys are arguably easier to play than
others, depending on the instruments used. Hence, the key characteristics of
instruments could unexpectedly associate musical keys to specific genres.

3 Are MFCCs Invariant to Key and Tempo?

In this section we study the invariance of MFCCs to shifts in musical key and
tempo.



3.1 Mel-frequency Cepstral Coefficients

The mel-frequency cepstral coefficients (MFCC) [3] are a widely adopted audio
feature set for various audio processing tasks such as speech recognition [13],
environmental sound recognition [9], and music genre classification [15, 2, 7, 11].
[11] investigated the MFCC features on various time scales and with different
modeling techniques, such as autoregressive models. [15, 8] compared the MFCCs
to the short-time Fourier transform (STFT), beat histogram and pitch histogram
feature sets, concluding that MFCCs give best performance as an independent
feature set.

Given a frame of audio, the computation of MFCC involve the following
steps that mimic the low-level processing in the human auditory system [3]: 1)
transformation of the audio frame to the frequency domain using the STFT; 2)
mapping the frequency bins to the mel-scale, using triangular overlapping win-
dows; 3) taking the logs of the mel-band responses; 4) applying a discrete cosine
transform (DCT) to the mel-bands. In this paper, the MFCCs are extracted
with the CATBox toolbox [4], using 40 mel-bands and 13 DCT coefficients. The
frame size is 18 milliseconds, taken every 9 milliseconds.

3.2 Key and Tempo Transformations

To examine the changes of MFCC values to shifts in keys and tempos, we apply
key shifting and tempo shifting musical transforms to each song in the GTZAN
dataset. These transformations consist of sharpening/flattening the song up to 6
semitones, and changing the tempo 5% and 10% faster/slower. The transforma-
tions are performed with the WSOLA algorithm [16], which is implemented in
the open-source audio editor Audacity [1]. The musical transforms are analogous
to affine transforms of images, which deform an image without changing the gen-
eral shape (e.g. rotating and skewing the number 1). Augmenting the dataset
with affine transforms is a common technique in digit recognition tasks [14],
where the enlarged training set improves classification accuracy by encouraging
invariance to these deformations.

There are doubts that transforming a song to approximate the key-shifted
and tempo-shifted version of the songs might not be appropriate, since such
transforms might also contaminate the timbral characteristics of the songs. We
argue that such an effect is minor for the following three reasons: 1) qualitatively
speaking, the transformed songs sound perceptually very similar to the original
song recorded in different key and tempo, with critical information for genre
classification, such as instruments, musical patterns and rhythm characteristics,
still preserved; 2) considering that musical instruments have different timbre in
different registers, we limit the key shifts to the range of half an octave (from
♭6 to ♯6); 3) we compared the MFCC values extracted from MIDI songs and
their perfect key-transposed versions, and observed that the MFCC values vary
in similar ways as in the key-transformed songs.
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Fig. 2. MFCC KL-divergence: the horizontal axis represents the key and tempo trans-
forms, from left to right, original, 5% slower, 10% slower, 5% faster, 10% faster, key
transform ♭1 to ♭6 and ♯1 to ♯6. The color represents the average KL divergence between
corresponding frames in the original and transformed songs.

3.3 Comparison of MFCCs under Key and Tempo Transforms

For genre classification, MFCCs are often aggregated over a long-duration win-
dow using statistical methods [15, 2]. Motivated by this fact, we compare the
original songs and their transformed versions by computing the Kullback-Leibler
(KL) divergence [5] between corresponding windowed excerpts (3.5 seconds). As-
suming that the MFCCs in a window follow a Gaussian distribution (e.g., as in
[15]), the calculation of KL divergence between two windows is given by:

DKL (N0 ‖ N1) =
1

2

(

log
|Σ1|

|Σ0|
+ tr

(

Σ−1

1 Σ0

)

+ (µ1 − µ0)
⊤ Σ−1

1 (µ1 − µ0)− d

)

(1)

where (µ0, Σ0) and (µ1, Σ1) are the mean and covariance for the two Gaussian
distributions, and d is the dimension.

Figure 2 shows the KL divergence between different musical transforms of the
same songs, averaged over each genre. From the figure, we see that key transforms
affect the MFCC distribution, with larger key shifts affecting the distribution
more. Interestingly, MFCCs for some genres are more sensitive to the changes
in key, such as blues, jazz and metal. This can be explained by the fact that
these genres have instruments with richer harmonic structure, and therefore the
MFCCs change more since they model timbre. On the other hand, tempo trans-
forms do not have a great effect on the distribution of MFCC values. This is
because transforming a song in time does not change the frequency characteris-
tics, but only the number of MFCC frames. Compressing a song subsamples the
MFCC frame set, while stretching it adds new MFCC frames by interpolation.
In both cases, the distribution of the MFCCs over the window remains about
the same.
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Fig. 3. System architecture.

In the previous, we showed that genres have dominant keys, due to the instru-
mentation of the genre. On the other hand, in this section, we have shown that
MFCCs, which are common features for genre classification, are not invariant to
key transformations. This brings forward an interesting dilemma. Because genre
is key dependent and MFCCs are not key invariant, then a classifier based on
MFCCs may overfit to the dominant keys of the genre. The resulting classifier
will then have poor accuracy on songs in the less common keys. In the next
section, we look at learning a key-invariant genre classifier, by augmenting the
classifier with different musical transforms.

4 Genre Classification with Musical Transforms

In this paper, we adopt the genre classification system of [15, 2, 11]. Figure 3
shows the architecture of the system, which contains four steps. First, the input
song is split into non-overlapping windows of equal length (as in [2], we use win-
dow length of 3.5 seconds). These windows then go through a feature extraction
process, producing feature vectors which are compact representations of those
windows. In particular, MFCCs are first extracted from the audio signal, and the
mean and standard deviation of the MFCCs over the window are calculated as
the feature vector. In the third step, the feature vector is fed to a Gaussian mix-
ture model (GMM) classifier. The parameters of the GMM classifier are learned
from the training set using the EM algorithm [6], which iteratively estimates
the parameters by maximizing the likelihood of the training set. One GMM is
learned for each genre. Given a feature vector extracted from a window, the
GMM with the largest likelihood is selected as the genre label for the window.
The labels for all the windows in a song are then aggregated with a majority
voting process to produce a genre label for the song.

We can modify the genre classification system in two ways to make it invariant
to musical transforms. First, in the training phase, we can expand the training
set by adding transformed versions of the training songs, hence generating more
examples for learning the genre classifier. Second, in the prediction phase, we
can augment the classifier by processing the test song along with its transformed
versions. The final label for the test song is the majority vote over all windows



of all versions of the songs. The data augmentation step can be seen as adding
a sample diffusion layer before either the training or the predicting phase of the
system.

5 Experiments

In this section we present our experimental results on genre classification in the
context of key and tempo augmentation.

5.1 Dataset and Experimental Setup

In our experiments, we use the GTZAN dataset [15], which contains 1000 song
clips of 30 seconds each, with a sampling rate of 22050 Hz at 16 bits. There are
10 musical genres, each with 100 songs: Blues, Classical, Country, Disco, Hip
hop, Jazz, Metal, Pop, Reggae, and Rock. We augment the original GTZAN
dataset (denoted as the “Orig” dataset) using different combinations of musical
transforms. The “Tempo” dataset contains the Orig dataset and its tempo vari-
ants, 5% and 10% faster/slower. The “Key” dataset contains the Orig dataset
and its key variants from ♭6 to ♯6. The “Tempokey” dataset is the union of the
Tempo and Key datasets. We also augment our dataset with key transforms that
are based on the circle of fifths. The “Fifth1” dataset contains the Orig dataset
and its key variants with one step on the circle of fifths, i.e. ♭5 and ♯5, while the
“Fifth2” dataset contains variants with one more step, i.e. ♭2 and ♯2. The circle
of fifths augmented datasets are strict subsets of the Key dataset.

We carried out three different sets of experiments in combination with the
6 augmentations listed above. In the first experiment, denoted as AugTrain,
the classifiers are trained using the augmented dataset, while genre prediction
is performed using only the original songs. In the second experiment, denoted
as AugPredict, the classifiers are trained only on the original dataset, while
prediction is performed by pooling over the augmented song data. In the final
experiment, denoted as AugBoth, both the classifier training and prediction use
the augmented song data. Genre classification is evaluated using five random
splits of the dataset, with 80% of the songs (and its variants) used for training,
and the remaining 20% used for testing. The experiments are carried out on a
range of parameters. We use MFCC lengths from 1 to 13 (i.e., the number of
DCT coefficients), and vary the number of components in the GMM (K) from
1 to 20. We also assume diagonal covariance matrices in the GMM.

5.2 Experimental Results

We first examine the effects of the system parameters, such as the size of the
GMM and the length of the MFCCs. Figure 4a shows the classification accu-
racy, averaged over all the data augmentations and MFCC lengths, while varying
the number of components in the GMM. In general, the classification accuracy
increases with K, and there does not seem to be an over-fitting problem for
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Fig. 4. (a) Averaged accuracy for all datasets and MFCC lengths, while varying the
number of GMM components (K); (b) Averaged accuracy for all datasets and GMM
components, while varying the MFCC length.

large K, such as 20. Figure 4b shows the accuracy, averaged over all data aug-
mentations and GMMs, while varying the length of the MFCCs. Similarly, the
accuracy improves as more MFCCs are added. In fact, despite their sensitivity to
noise, these high-order coefficients provide useful details for genre classification.
As a comparison, [15] limited their system to the first 5 MFCC coefficients and
GMMs with K=5, and achieved 61% classification accuracy when using MFCCs
with three other types of features. In contrast, our system scores 66.3% on the
Orig dataset when using 13 MFCC features.

Next, we look at the effect of signal degradation when using the music trans-
formation. In particular, we add noise to the Orig training set by applying a
“double-shift” to each training song. This consists of first shifting the key of the
song, and then shifting it back to the original scale. The result is a training song
with noise added due to the musical transformation. The double-shifted training
set is used to train the genre classifier, which then predicts genres on the Orig
test data. This result is denoted as DoubleShiftTrain in Figure 4. In particu-
lar, using the noisy training data degrades the accuracy, when compared to the
Orig performance (e.g, the accuracy drops 5% to 53.5% for K=20). However, in
spite of this added noise to the training set, the system is still able to do genre
classification, albeit with reduced accuracy.

Finally, we look at the effect of using the proposed data-augmented classi-
fiers. From Figure 4, we observe that the AugTrain classifier gives constantly
better performance than the DoubleShiftTrain classifier, while its performance
is still lower than that of the Orig dataset. This suggests that using augmented
training data improves the accuracy, at least compared to the unaugmented
classifier using similar noisy training data. This improvement, however, is not



Tempo Key Tempokey Fifth1 Fifth2 Average

Orig – – – – – 64.5%

DoubleShiftTrain – – – – – 61.9%

AugTrain 65.1% 62.0% 64.5% 60.5% 62.8% 63.0%

AugPredict 66.2% 63.6% 66.4% 61.0% 63.7% 64.2%

AugBoth 66.6% 67.8% 68.9% 67.5% 67.3% 67.6%

Table 1. Genre classification accuracy for different data-augmentation schemes and
transformed datasets, for K=20 and MFCC length 13.

blues classical country disco hip-hop jazz metal pop reggae rock average

Orig 59 92 62 41 64 86 77 58 61 45 64.5

Tempo 64 97 62 46 66 85 75 64 68 39 66.6

Key 62 99 67 55 65 90 83 64 60 33 67.8

Tempokey 63 98 67 55 65 91 87 61 63 39 68.9

Fifth1 61 98 67 52 63 88 83 63 62 38 67.5

Fifth2 64 94 63 58 63 90 79 64 66 32 67.3

Table 2. AugBoth Classification Rates for different genres, with K = 20 and MFCC
length 13.

enough to overcome the transformation noise. On the other hand, using data-
augmented prediction (AugPredict) gives constantly better performance than
the Orig dataset. Finally, using both data-augmented classification and predic-
tion (AugBoth) achieves the best accuracy, dominating both AugPredict and
Orig. Table 1 shows the average classification accuracy using different trans-
formed datasets and data-augmentation schemes for K=20 and MFCC length
13. The best performance achieved for all experiments is 69.3%, using the Aug-
Both classifier with the Key transformations, K=18 and MFCC length 13.

Table 2 shows the classification accuracy for different genres using the Aug-
Both classifier. Comparing the genres, Classical has the highest accuracy, scoring
over 90% on all datasets, followed by Jazz and Metal. In contrast, Disco and Rock
are the two worst performing genres. In general, the augmentation of the dataset
improves the genre classification. The only exception is the Rock genre, where
augmentation always lowers the classification accuracy. Looking at the confu-
sion matrix for AugBoth, we found that more instances of Rock are misclassified
as Metal. On the other hand, Disco performs significantly better because less
instances are misclassified as Blues, Pop and Rock.

5.3 Discussion

From these experimental results we have three conclusions. First, the MFCC fea-
ture set is largely a timbral feature set. From the confusion matrices we found
that confusable genres have similar instrumentation. Additionally, genres with



distinct instrumentation stand out from others easily, e.g., Classical uses orches-
tral instruments, while Metal has high frequency distorted guitar.

Second, in addition to timbral information, MFCCs also encodes key infor-
mation, which eventually affects the genre classification accuracy. We observed
that the key and tempo augmented classifiers have a significant change in per-
formance over the baseline. Rock and Metal both use guitars and drums as the
main instruments, but they have very different key distributions as shown in Fig-
ure 1. The confusion between Rock and Metal after key augmentation suggest
that the classification of Rock music is partly due to musical keys. If we blur the
lines between keys for these two genres, we are likely to lose such information,
leading to a degradation of classification performance.

Third, making the genre classifier tempo- and key-invariant, via data aug-
mentation, generally improves the classification accuracy. The accuracies of the
AugTrain, AugPredict and AugBoth classifiers are significantly better than the
noise-added DoubleShiftTrain baseline. Despite the noise from the imperfect
musical transforms, the accuracy of the AugPredict and AugBoth classifiers
are constantly better than the Orig baseline. These results suggest a method
for boosting overall genre classification performance, by artificially generating
transformed songs to augment the classifier training and prediction phases, thus
strengthening the timbre-orientation of the classifier. However, some genres (e.g.
Rock) will suffer from such augmentation since the recognition of that genre is
partly due to musical keys.

While the concept of “musical genre” is perceptual and largely based on tim-
bre information, there is still a strong correlation between genre and key, due to
instrumentation, which should also be considered. Future work will look at com-
bining timbral and key information, using appropriate machine learning models,
to push the performance further. In addition, reducing the noise introduced by
the musical transform will also likely improve the classification accuracy.

6 Conclusion

MFCCs are widely used audio features in music information retrieval. Extracted
over a short-duration frame, MFCCs are typically perceived as a timbral descrip-
tor. In this paper, we have shown that the MFCCs are not invariant to changes
in key, and hence they encode both timbral and key information. On the other
hand, we found that musical genres, which should be independent of key, are in
fact influenced by the fundamental keys of the instruments involved. As a result,
genre classifiers based on the MFCC features will be influenced by the domi-
nant keys of the genre, resulting in poor performance on songs in less common
keys. We suggested an approach to address this problem, which consists of data-
augmentation during the classifier training and prediction phases, with key and
pitch transformations of the song. The resulting genre classifier is invariant to
key, and thus more timbre-oriented, resulting in improved classification accuracy
in our experiments.
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