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Figure 1: Conceptual comparisons of four mechanisms in the cross-domain crowd counting evaluation. (a) Directly applying a counting model trained in a source
domain for cross-domain crowd counting evaluation. (b) Fine-tuning the source model with labeled target data. (c) Fine-tuning the source model with large-scale
unlabeled target data. (d) Ours: encoding domain specific information via the proposed dynamic Momentum Template (MoT). Without using any domain specific
data for fine-tuning, our method can achieve leading zero-shot cross-domain crowd counting performance.

ABSTRACT
Zero-shot cross-domain crowd counting is a challenging task where
a crowd counting model is trained on a source domain (i.e., training
dataset) and no additional labeled or unlabeled data is available for
fine-tuning the model when testing on an unseen target domain
(i.e., a different testing dataset). The generalization performance
of existing crowd counting methods is typically limited due to the
large gap between source and target domains. Here, we propose
a novel Crowd Counting framework built upon an external Mo-
mentum Template, termed C2MoT, which enables the encoding
of domain specific information via an external template represen-
tation. Specifically, the Momentum Template (MoT) is learned in
a momentum updating way during offline training, and then is
dynamically updated for each test image in online cross-dataset
evaluation. Thanks to the dynamically updated MoT, our C2MoT
effectively generates dense target correspondences that explicitly
accounts for head regions, and then effectively predicts the density
map based on the normalized correspondence map. Experiments on
large scale datasets show that our proposed C2MoT achieves lead-
ing zero-shot cross-domain crowd counting performance without
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model fine-tuning, while also outperforming domain adaptation
methods that use fine-tuning on target domain data. Moreover,
C2MoT also obtains state-of-the-art counting performance on the
source domain.
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1 INTRODUCTION
Crowd counting is the task of automatically counting the total
number of people in surveillance images or videos. This task is
an essential research topic and has gained much attention in both
academic and industrial fields.

Recent advances [39, 50] in crowding counting have witnessed
significant progress, with existing counting methods achieving
promising performance on large-scale crowd counting datasets,
where the crowd counter is trained and tested on the same dataset
(same domain). However, we argue that this training and evaluation
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scheme still has a large gap to practical usage, where the crowd
counters are required to perform favourably on both similar surveil-
lance crowd scenes (source domain), as well as generalize to unseen
crowd scenes and crowd distributions (i.e., the target domain). One
naive solution is to directly evaluate the counter trained on the spe-
cific dataset on various test datasets with variety of unseen scenes.
This however typically leads to large performance drop due to the
domain gap.

To alleviate the domain gap problem, several works have investi-
gated leveraging labeled or large-scale unlabeled data to fine-tune
the counters on the target domain for domain adaptation. As a
representative work, [8] performs model fine-tuning with a photo-
realistic dataset that is generated by applying style transfer on a
large-scale synthetic dataset. [49] proposes a method based on the
fine-tuning on a re-sampled dataset. However, online fine-tuning is
time-consuming. Moreover, in real-world applications, labeled data
in the target domain may not always be available for fine-tuning,
and large-scale unlabeled data in the target domain may also be
unavailable (e.g., for a new camera installation). These limitations
affect the practicality of real-world crowd counting applications in
unseen scenes.

To address the above problem, we introduce a new task that
is closer to real-world applications, termed zero-shot cross-domain
crowd counting. We consider the case where no additional labeled
or unlabeled data is available for model fine-tuning. Given a single
test image without any annotations in the target domain, a counter
trained in the source domain is directly employed to predict the total
count in the test image. In this zero-shot cross-domain evaluation
setting, most existing domain adaptation-based methods [8, 46, 49]
cannot work since there is no domain specific training data for
model fine-tuning. Moreover, existing counting methods suffer a
large performance drop in this zero-shot cross-domain evaluation,
due to the lack of online adaptation to bridge the domain gap.

In this paper, we propose a novel crowd counting framework
for zero-shot cross-domain crowd counting. As illustrated in Fig. 1,
different from traditional crowd counting frameworks that implic-
itly encode domain information by training a counting model, our
proposed crowd counting framework, denoted as C2MoT, is based
on an external momentum template (MoT), which explicitly en-
codes domain specific information. The MoT enables the model
to perform domain adaptation in a single feed-forward without
model fine-tuning. Specifically, the proposed MoT is firstly learned
in a momentum updating way during offline training in the source
domain, and then is dynamically updated for each test image in the
target domain. The basic idea is to aggregate reliable online target
(i.e., head) features for the online updating of MoT. By treating the
updated MoT as the target kernel, our C2MoT can generate accu-
rate dense head correspondences that explicitly account for head
regions in the test image via a cross-correlation operation. The den-
sity map is then predicted from this normalized cross-correlation
map.

We conduct experiments on four large-scale crowd counting
datasets, including ShanghaiTech [50], UCF-QNRF [13], NWPU-
Crowd [44] and JHU-CROWD++ [37]. Our proposed C2MoT achieves
leading zero-shot cross-domain crowd counting performance with-
out model fine-tuning, and also outperforms domain adaptation
methods that use target domain fine-tuning. In addition to the

zero-shot cross-domain evaluation, we also evaluate C2MoT using
the normal source domain evaluation, where our C2MoT also ob-
tains state-of-the-art counting performance. In summary, our main
contributions are:

• We propose a novel crowd counting framework built upon
an external Momentum Template (MoT), which explicitly
encodes domain specific information for domain adaptation
without model fine-tuning.

• Wepropose a dynamicmomentum adaptationmethod, which
dynamically updates the MoT for each specific test image in
unseen crowd scenes. By leveraging the dynamically updated
MoT, we can effectively find dense head correspondences in
unseen scenes, which are useful for the final density map
prediction.

• Extensive experiments on four large-scale crowd counting
datasets demonstrate that our proposed method achieves
state-of-the-art counting performance on both zero-shot
cross-domain evaluation (also outperforming domain adap-
tation methods that use fine-tuning on target domain data)
and standard source domain evaluation.

2 RELATEDWORK
In this section, we review the relevant work about crowd counting
and domain adaptation approaches.
2.1 Crowd Counting
Traditional crowd counting algorithms count the number of people
via either detection [9] or direct regression [3] using low-level
features [4, 12]. [9] proposes to count the crowd number based on
the detection of the whole human body, while [17] is based on the
detection of body parts. To avoid detection, [3] proposes to directly
estimate the crowd count based on the low-level features extracted
from the image.

Recent approaches focus on using deep neural networks to esti-
mate crowd density maps, which are smoothed heatmaps generated
from the dot annotations. Different architectures [50] and loss func-
tions [39] are proposed to deal with challenges such as scale vari-
ation and annotation noise [39]. A multi-column neural network
[50] is proposed to extract multi-scale features using a network
with multiple branches with different receptive field. [34] propose
to select a proper branch instead of fusing the multi-scale features.
[2] proposes a scale aggregation architecture to model multi-scale
information for each layer. [15] utilized an image pyramid to handle
scale variations. [25] proposes a context-aware method to encode
contextual information. To predict high-quality density maps, [31]
proposes a two-stage refinement approach, while [32] proposes a
feedback mechanism, and [23] proposes a region-based refinement
method.

Most of the density map based approaches adopt pixel-wise
mean squared error (MSE) as the loss function. However, the choice
of Gaussian bandwidth used to generate the density map affects
the performance. Thus, [38, 42] propose to learn the density map
supervision for a given dataset and architecture. [29] proposes a
point-wise Bayesian Loss (BL), which directly uses dot annotation
as the supervision. [39] proposed a robust loss function to model
the noisy point annotations, while [40] proposes a generalized loss
function and proves that both MSE and BL are special cases of it.
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The above previous approaches mainly focus on training and
testing counting models on a specific source domain, and their
performances drop significantly under cross-domain evaluation
due to the lack of domain adaptation. In contrast, our proposed
method is also only trained on the source domain, but achieves
significantly better generalization performance when tested on
target domains due to our external adapted dynamic MoT.

2.2 Domain Adaptation
For cross-domain crowd counting, fine-tuning based approaches are
proposed to apply crowd counting to novel scenes. [49] proposes
fine-tuning a pre-trained crowd counting model on a re-sampled
dataset. [45] proposes a Generative Adversarial Network (GAN)
to adapt the model trained on synthetic data to real-world images.
[46] proposes a neuron transformation to model domain shifts. [41]
proposes to model the residual between two samples to improve
the generalization ability, but the support images used for training
is fixed, which limits the adaptation ability. [8] proposes to extract
domain-invariant features via adversarial training. In [30], multiple
domain specific modules are trained using labeled data from target
domains for online switching. [27] proposes to take advantage of
both detection and regression-based counting frameworks, and
fine-tunes the offline learned counter via online-estimated pseudo
labels.

The above cross-domain crowd counting methods require com-
plex fine-tuning based on re-sampled dataset or unlabeled/labeled
data, which requires additional online optimization steps for dif-
ferent scenes. Thus, methods that require fine-tuning may not be
practical for quick deployment of surveillance systems. Moreover,
most of the cross-domain methods only model the appearance shift
with a GAN, while the shift of crowd density distribution is not con-
sidered. To address those issues, we propose a zero-shot adaptation
method, which can be directly applied to different domains without
fine-tuning the model. We also propose a dynamic momentum tem-
plate to model the shift in the crowd density distribution. It should
be noted that our proposed zero-shot domain adaptation framework
is generic, and it can be applied to domain adaptation or transfer
in other tasks (e.g., visual tracking [1] and segmentation [28]) by
modelling source domain knowledge via external representation
(offline MoT) and then generating an external dynamic MoT for
each specific online testing task.

3 OUR APPROACH
In this section, we first revisit the basic crowd counting frame-
work and illustrate its limitation in the zero-shot cross-domain
crowd counting task. We then introduce a novel crowd counting
framework based on an external Momentum Template (MoT) rep-
resentation. We finally show how to dynamically update the MoT
for each specific test image in unseen crowd scenes in the target
domain.

3.1 Basic Crowd Counting Framework
In the basic crowd counting framework, a crowd counting model
is typically trained on a training set to encode source domain in-
formation via offline model updating, and then tested on a test set
within the same dataset. The main assumption behind this training

Figure 2: Left: The input image. Right: The cross-correlation map generated
via amean target vector calculated based on the initial memory bank built on
SHA.
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Figure 3: Crowd counting framework using offline Momentum Template
(MoT). ∗ is a depth-wise convolution operation. The solid lines indicate the in-
ference stage, and the dashed lines show the updating of the counting model
and the memory bank during the training stage.

and testing scheme is that the data distribution of the training set
should be similar to the distribution of the test set (i.e., both sets
are from the source domain), such that the source crowd counting
model can generalize well to the unseen test set. The basic counting
framework can be implemented with various designs, e.g., total
count prediction [49] and density map estimation [42].

Formally, given training images 𝐼 in the source domain (i.e., train-
ing set) and a crowd counting model M, the basic crowd count-
ing framework trains the model by minimizing a counting loss
L(M(𝐼 ), 𝑌 ), where 𝑌 denotes the ground-truth, which can be a
count number, a density map or an annotated dot map. The loss
function L may have various formulations, e.g., the mean square
error (MSE) loss [42] with 𝑌 as a groundtruth density map, and
Bayesian Loss (BL) [29] with 𝑌 as a groundtruth dot map.

Despite the great success achieved by the basic crowd counting
framework based methods in the source domain evaluation, their
performances drop significantly in the cross-domain evaluation
due to the large domain gap (as shown in Fig. 5b). Since the basic
counting framework encode domain specific information in the
model parameters, one basic idea to improve the generalization
performance is to finetune the source counting model in the target
domain by leveraging labeled or large-scale unlabeled target data.
However, the target domain data is not always available in the
real-world applications (e.g., deployment of a counting system in a
temporary event like an outdoor concert). This may severely limit
the real-world applications of existing crowd counting methods in
the zero-shot cross-domain crowd counting problem.

In order to address the above problem, we propose a novel crowd
counting framework built upon an external momentum template,
which explicitly encodes domain specific information via an ex-
ternal representation, instead of within the model parameters as
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with the traditional approach. This new framework enables effec-
tive adaptation to a new target domain without model fine-tuning.
In the next subsection, we will give a detailed description of our
proposed novel crowd counting framework.

3.2 Momentum Template Representation
In this section, we propose a novel crowd counting framework built
upon an external Momentum Template (MoT) for zero-shot cross-
domain crowd counting. The proposed MoT encodes rich target
head information, and is calculated using a momentum-updated
memory bank. Our hypothesis is that an effective MoT can accu-
rately find target head correspondences in a test image by using
a cross-correlation operation, and the resulting target correspon-
dence map can be used to predict the density map. For this MoT
guided crowd counting framework, we will introduce: 1) building
of the memory bank; 2) momentum updating of the memory bank;
3) calculation of MoT based on the memory bank, and 4) how to
perform crowd counting with the MoT by using a cross-correlation
operation.
Building the Memory Bank. The first step is to build a memory
bank. Since only the source domain data is available for this zero-
shot cross-domain crowd counting problem, the memory bank is
built based on the source domain training data. Given a source
domain training image 𝐼𝑠 with ground-truth head annotations
{(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑠

𝑖=1, we first use a backbone feature extractor M𝑏 to ex-
tract convolutional feature map of 𝐼𝑠 . For each annotation position
(𝑥𝑖 , 𝑦𝑖 ) in the input space, the corresponding location at the ex-
tracted backbone featuremap can be calculated as ( 𝑥𝑖Δ −0.5, 𝑦𝑖Δ −0.5),
where Δ is the total stride of the backbone feature extractor. The
feature at the annotation point ( 𝑥𝑖Δ − 0.5, 𝑦𝑖Δ − 0.5) is extracted via
a RoIAlign operation with the output size of 1× 1. Thus for the 𝑖-th
head point annotation, a feature vector 𝑓𝑖 ∈ R𝐷 is extracted. Stor-
ing all the head point features in the memory bank is not memory
efficient. Here, we calculate a mean head feature for each training
image, and thus obtain an image-level feature set F = {f̄𝑗 }𝑁𝑗=1,
where 𝑁 is the number of images. The memory bank is firstly
initialized to store the whole set F and their corresponding keys
(i.e., image names). Note that similar to existing methods [29, 42],
we use a pre-trained VGG19 backbone network as M𝑏 for feature
extraction. The role of the memory bank is to store the specific
appearance features of the heads in each image. In Fig. 2, we show
that a mean target vector calculated based on the initial memory
bank can effectively generate target head correspondences in a
testing image via a cross-correlation operation.
Momentum Updating. After obtaining the initial memory bank,
we update its contents during offline training of the counting model.
Specifically, as shown in Fig. 3, for each training iteration, we firstly
calculate the MoT f̄ = 1

𝑁

∑𝑁
𝑗=1 f̄𝑗 , which averages all the image-

level feature vectors F stored in the memory bank. The MoT and
the feature map extracted from the input image are further input
to a depth-wise cross correlation layer, i.e., treating f̄ as a target
kernel and performing depth-wise convolution on the input feature
map M𝑏 (𝐼 ). The obtained cross-correlation map is then used for
density map prediction:

m = M𝑟 (𝐿𝑁 (f̄ ∗M𝑏 (𝐼 ))), (1)
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Figure 4: Crowd counting framework using dynamic MoT. ∗ is a depth-wise
convolution operation. The solid lines indicate the inference stage, and the
dashed lines show the updating of the counting model and the memory bank
during the training stage.

where m is a density map, ∗ indicates a depth-wise convolution op-
eration, 𝐿𝑁 (·) is a layer normalization operation that can alleviate
the affect of response-value shift during cross-domain evaluation,
andM𝑟 represents a density regression module. For offline training,
we use the Bayesian counting framework [29] as the basic counting
framework. For fair comparison, we use the same architecture for
the density prediction moduleM𝑟 , backbone feature extractorM𝑏 ,
and Bayesian loss for supervision as in [29].

With the updating of M𝑏 during training, the target feature set
{f̄𝑗 }𝑁𝑗=1 gradually becomes outdated. For each training iteration,
updating the whole target feature set is time-consuming. Here, we
propose to update the feature vectors of the sampled mini-batch
images in a momentum updating way:

f̄𝑗 = (1 − 𝑟 )f̄𝑗 + 𝑟 f̄
′
𝑗 , (2)

where 𝑟 ∈ [0, 1] is a momentum coefficient and f̄
′
𝑗
indicates the

target mean vector of the 𝑗-th training image calculated with the
updated M𝑏 . The updated f̄𝑗 is further stored into the memory
bank.

The proposed MoT can explicitly encode domain-specific infor-
mation of the training set via its external representation. In the next
subsection, we show how to learn to dynamically update the MoT
on each specific testing image for domain adaptation.

3.3 Dynamic Momentum Adaptation
Given a testing image in a new target domain, the MoT is adapted
by aggregating reliable online target head information in the testing
image. The goal is to encode domain specific target information,
such that the adaptedMoT generates more accurate correspondence
(cross-correlation) maps for the density map predictor. The pipeline
is shown in Fig. 4. We firstly use the offline MoT calculated on
the memory bank to generate a weight map, which represents the
potential head locations in the test image. We then calculate an
online target template based on the generated weight map and
the input testing image. Finally, the dynamic MoT is computed by
combining both the offline MoT and online target template, which
is then used for density map prediction. We next describe these
steps in detail.

By treating the offline MoT f̄ as a convolutional kernel, we firstly
use a cross-correlation operation to generate a multi-channel cor-
respondence map V = f̄ ∗ M𝑏 (𝐼 ) ∈ R𝐻×𝑊 ×𝐷 , which indicates
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Table 1: Evaluation of cross-domain performance of crowd counting: (top) no adaptation; (middle) domain adaptation via fine-tuning on target domain data;
(bottom) domain adaptation without fine-tuning, i.e., zero-shot cross-domain. ‘A′, ‘B′ and ‘Q′ refer to SHA, SHB and UCF-QNRF. Syn indicates a large-scale source
synthetic dataset (i.e., GCC [45]) used for transfer learning. Real denotes a real source dataset (i.e., SHA or SHB) for source domain training. The best performance
is highlighted bold, and 2nd best is underlined.

Method Fine-tuning Adaptation A → B A → Q B → A B → Q

MAE MSE MAE MSE MAE MSE MAE MSE

no
adaptation

MCNN [50] 2016 Real ✗ ✗ 85.2 142.3. - - 221.4 357.8 - -
D-ConvNet [35] 2018 Real ✗ ✗ 49.1 99.2 - - 140.4 226.1 - -
SPN+L2SM [48] 2019 Real ✗ ✗ 21.2 38.7 227.2 405.2 126.8 203.9 - -
RegNet [21] 2019 Real ✗ ✗ 21.7 37.6 198.7 329.4 148.9 273.9 267.3 477.6
DetNet [24] 2019 Real ✗ ✗ 55.5 90.0 411.7 731.4 242.8 400.9 411.7 731.4
D2CNet [6] 2021 Real ✗ ✗ 21.6 34.6 126.8 245.5 164.5 286.4 267.5 486.0

adaptation
w/ fine-
tuning

Cycle GAN [51] 2017 Syn ✓ ✓ 25.4 39.7 257.3 400.6 143.3 204.3 257.3 400.6
SE CycleGAN [45] 2019 Syn ✓ ✓ 19.9 28.3. 230.4 384.5 123.4 193.4 230.4 384.5

SE+FD [10] 2020 Syn ✓ ✓ 16.9 24.7 221.2 390.2 129.3 187.6 221.2 390.2
RBT [27] 2020 Real ✓ ✓ 13.4 29.3 175.0 294.8 112.2 218.2 211.3 381.9

zero shot
adaptation

BL [29] (baseline) 2019 Real ✗ ✗ 15.9 25.8 166.7 287.6 138.1 228.1 226.4 411.0
C2MoT Ours Real ✗ ✓ 12.4 21.1 125.7 218.3 120.7 192.0 198.9 368.0

potential target head positions in the input image 𝐼 . To further re-
fine the correspondence map, we propose refinement module (RM)
formulated as:

W = softmax(𝐹 ( [Φ𝐴 (V),Φ𝑀 (V)])), (3)

where Φ𝐴 (·) and Φ𝑀 (·) respectively are average and max pooling
operations, Φ𝐴 (V) ∈ R𝐻×𝑊 , and 𝐹 (·) is a convolutional operation
with the kernel size of 7 × 7 and the output dimension of 1. The
output of the RM is a weight mapW ∈ R𝐻×𝑊 , where each position
represents the probability that the corresponding position is a target
head, and the of W equals to 1.

With the weight map W, we calculate an online target template:

f̂ = W ×M𝑏 (𝐼 ), (4)

where we reshape the W and the extracted feature map (M𝑏 (𝐼 ))
of the input image to W ∈ R1×𝐻𝑊 and M𝑏 (𝐼𝑠 ) ∈ R𝐻𝑊 ×𝐷 , respec-
tively. We finally get an online target template f̂ ∈ R1×𝐷 with the
above matrix multiplication operation. Finally, the dynamic MoT is
formed by combining the offline MoT f̄ and online target template
f̂ :

f∗ =
1

1 + 𝑒−𝛼
f̄ + 𝑒−𝛼

1 + 𝑒−𝛼
f̂, (5)

where 𝛼 is learnable parameter that is initialized to zero in the start
of training. The dynamic MoT contains the source information (the
offline MoT f̄) that is adapted to the target domain via the online
target template f̂ .

Compared with several similar works [5, 47] in image classi-
fication, there are several main differences in our RM design: 1)
our RM is built on the top of the cross-correlation map instead of
appearance features used in [29, 42]. Since the final output of RM
is a probabilistic weight map, the input cross-correlation map is
closer to the final probabilistic weight map, which makes the refine-
ment easier to be achieved. 2) Our RM models correlations between
locations in the correspondence map with a SoftMax function.
Training. During the offline training stage, each training image
is considered as a new target domain and our method is trained
to learn to generate a dynamic MoT for domain adaptation. In

particular, as illustrated in Fig. 4, a dynamic MoT f∗ that encodes
specific online target information is firstly generated from the input
image and offline MoT. Then we use the dynamic MoT f∗ instead
of the offline MoT in (1) for predicting the density map. Using the
same steps described in Section 3.2, we then calculate a Bayesian
loss for end-to-end training. Here, for each training iteration, the
backbone feature extractorM𝑏 , the density regression moduleM𝑟 ,
the convolutional kernel 𝐹 and the parameter 𝛼 are updated. Finally,
the memory bank and offline MoT are updated in each training
iteration with the updating of M𝑏 based on (2).

4 EXPERIMENTS
In this section, we evaluate the zero-shot crowd-domain crowd
counting performance of our proposed 𝐶2MoT and current state-
of-the-art counting methods.

4.1 Experiment setup
Datasets. We evaluate our method on four datasets including
ShanghaiTech [50], UCF-QNRF [13], NWPU-Crowd [44] and JHU-
CROWD++ [37]. ShanghaiTech consists of two parts: SHA and SHB.
SHA and SHB respectively contain 300/400 training images and
182/316 testing images. UCF-QNRF contains 1535 high resolution
images with 1,201 for training and 334 for testing. JHU-CROWD++
and NWPU-CROWD are two recently proposed large-scale datasets.
For JHU-CROWD++, it contains 4,317 high-resolution images in to-
tal, with 2,722/500/1,600 images for training/validation/testing. For
NWPU-CROWD, there are 3,109/500/1,500 training/validation/testing
images. Note that the annotations of the testing images in NWPU-
CROWD are not released to the public, and the test performance
of our method is obtained via the official online evaluation server.
Evaluation protocol. For zero-shot cross-domain crowd counting,
we train our model on the training set of the source domain (e.g.,
SHA), and evaluate it directly on the test sets of the other datasets
(e.g., SHB, UCF-QNRF, NWPU-CROWD, and JHU-CROWD++). We
use the widely used metrics, mean absolute error (MAE) and mean
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Table 2: Performance of zero-shot cross-domain counting using NWPU-CROWD as the source domain and other datasets as the target domain. All models are
trained on the source training data, are directly tested on the target domainwithout fine-tuning. The number of testing images in each dataset is shown in brackets.
“Overall” indicates the performance on the combined test sets of the source and target domains. The best performance is in bold, and 2nd best is underlined.

Method ShanghaiTech (498) UCF-QNRF (334) JHU-Val (500) JHU-Test (1,600) Overall (4,432)
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [50] 2016 79.3 139.4 308.7 502.4 138.3 441.9 163.5 485.3 185.5 548.7
CSRNet [18] 2018 49.2 103.6 159.0 287.9 111.3 248.5 130.6 349.4 118.3 330.7
C3F-VGG [7] 2019 43.3 93.1 171.5 331.9 93.1 230.4 111.2 333.4 - -
SCAR [21] 2019 42.3 98.6 148.8 251.2 129.4 304.5 144.5 408.5 - -
BL [29] 2019 34.9 83.1 104.1 208.4 86.8 294.7 92.0 318.1. 90.4 346.7
DM [43] 2020 32.9 73.7 101.2 201.3 88.1 248.7 96.3 308.1 85.9 297.0

NoiseCC [39] 2020 37.4 75.3 109.2 188.2 84.5 269.6 93.4 314.3 88.5 379.2
D2CNet [6] 2021 41.7 101.8 110.3 187.2 - - - - - -
C2MoT Ours 31.7 69.1 94.8 177.2 82.4 281.7 81.8 288.8 76.6 292.9

Table 3: Performance of zero-shot cross-domain counting using JHU-CROWD++ as the source domain and other datasets as the target domain. All models are
trained on the source training data, are directly tested on the target domain without fine-tuning.

Method ShanghaiTech (498) UCF-QNRF (334) NWPU-Val (500) NWPU-Test (1,500) Overall (4,432)
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

BL [29] 2019 56.0 117.5 190.8 332.9 114.1 521.9 133.0 478.9 105.6 388.2
DM [43] 2020 47.4 108.0 161.4 301.3 99.1 471.4 129.4 500.6 97.2 383.4

NoiseCC [39] 2020 43.3 109.1 139.9 259.9 95.5 527.8 112.6 443.6 88.7 358.6
D2CNet [6] 2021 49.9 108.0 171.4 302.2 - - - -
C2MoT Ours 43.1 101.5 135.3 251.9 89.4 499.5 110.5 426.3 84.1 344.8

squared error (MSE), to measure counting performance:

MAE =
1
𝑁

∑
𝑖

|𝑔𝑖 − 𝑔𝑖 |, MSE =

√
1
𝑁

∑
𝑖

|𝑔𝑖 − 𝑔𝑖 |2, (6)

where 𝑁 is image numbers, 𝑔 and 𝑔 indicate GT and predicted
counts.
Implementation details. For fair comparison, we use the same
backbone feature extractor M𝑏 (i.e., VGG19 pre-trained on Ima-
geNet), density prediction moduleM𝑟 and Bayesian loss as used in
[29]. The momentum coefficient 𝑟 in (2) is set to 0.5. The parameter
𝛼 in (5) is initialized to zero and learned during end-to-end offline
training. We use the Adam optimizer [16] with the learning rate of
10−5 for end-to-end training.

4.2 Zero-Shot Cross-Domain Crowd Counting
Source domain training on ShanghaiTech. Following the exper-
iment design of other domain adaptation methods [10, 27], we first
evaluate cross-domain counting using SHA or SHB as the source
domain, and SHB/SHA and UCF-QNRF as the target domains. We
compare our proposed C2MoT with two main types of counting
methods: 1) fine-tuning based domain adaptation methods, includ-
ing Cycle GAN [51], SE CycleGAN [45], SE+FD [10] and RBT [27];
2) state-of-the-art counting methods without domain adaptation
[6, 21, 24, 29, 35, 48, 50]. For Cycle GAN, SE CycleGAN and SE+FD,
a large-scale synthetic dataset GCC [45] is used together with the
target domain data for fine-tuning via adversarial learning.

The experiment results are presented in Table 1. Despite not
using model fine-tuning, our C2MoT still achieves the best overall
transfer performance on all the four cross-dataset transfer experi-
ments (in terms of MAE, ranking 1st on 3 transfer experiments, and
2nd on 1 experiment). Specifically, our C2MoT achieves the best
performance on transfer experiments A → B, A → Q and B → Q,
which demonstrates that our dynamic MoT can bridge the domain
gap and transfer well to more congested scenes (i.e., UCF-QNRF). In
contrast, on the transfer experiment B → A, our method is inferior

to RBT. The main reason is that there are many similar scenes in
SHB and SHA, and thus fine-tuning based methods can benefit
more from this property by leveraging the similar target domain
data for fine-tuning. Note that our method can achieve the best
transfer performance on A → B. This is because there are more
head annotations in SHA, which can provide a more informative
offline MoT for better generalization.

Compared with state-of-the-art counting methods without do-
main adaptation, ourmethod achieves the best transfer performance
among these methods and significantly outperforms the baseline
BL by large margins. Note that our method uses the same evalua-
tion setup as these state-of-the-art methods, training only on the
source domain data, which shows the effectiveness of the proposed
dynamic MoT for domain adaptation.
Source domain training on large-scale datasets.We next eval-
uate the zero-shot cross-domain performance using a large-scale
dataset as the source domain, and the other datasets as the target
domain. Specifically, we train our method and other state-of-the-art
counting methods on the training set of NWPU-CROWD, and di-
rectly evaluate the models on the test sets of the other datasets, i.e.,
without any fine-tuning on target data. Here we do not compare
fine-tuning based methods because: 1) additional domain specific
data is used for fine-tuning in these methods, which violates the
zero-shot requirement; 2) their models are unavailable on large-
scale datasets for comparison.

Table 2 reports the experiment results using NWPU-CROWD
as the source domain. Our method achieves the leading transfer
performance on ShanghaiTech (i.e., combining both SHA and SHB),
UCF-QNRF and both validation and testing sets of JHU-CROWD++
Our method works well at domain adaptation even on UCF-QNRF
and JHU-test datasets, which have challenging congested scenes
and large count ranges. To measure the overall counting perfor-
mance, we also report the overall MAE and MSE performance on
the test data of both the source and target domains. Our C2MoT
achieves the bestMAE/MSE overall performance (76.6/292.9) among
the state-of-the-art methods. Compared with the baseline method
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Table 4: Source domain comparison with state-of-the-art crowd counting
methods on large-scale datasets.

NWPU-CROWD JHU-CROWD++ UCF-QNRF
MAE MSE MAE MSE MAE MSE

MCNN [50] CVPR’16 232.5 714.6 188.9 483.4 277.0 426.0
SwitchCNN [34] CVPR’17 - - - - 228.0 445.0
CSRNet [19] CVPR’18 121.3 387.8 85.9 309.2 110.6 190.1
CL [13] ECCV’18 - - - - 132.0 191.0
SANet [2] ECCV’18 190.6 491.4 91.1 320.4 - -
DSSINet [22] ICCV’19 - - 133.5 416.5 99.1 159.2
MBTTBF [36] ICCV’19 - - 81.8 299.1 97.5 165.2
BL [29] ICCV’19 105.4 454.2 75.0 299.9 88.7 154.8
LSCCNN [33] TPAMI’20 - - 112.7 454.4 120.5 218.2
KDMG [42] TPAMI’20 100.5 415.5 69.7 268.3 99.5 173.0
ASNet [14] CVPR’20 - - - - 91.6 159.7
AMSNet [11] ECCV’20 - - - - 101.8 163.2
AMRNet [26] ECCV’20 - - - - 86.6 152.2
LibraNet [20] ECCV’20 - - - - 88.1 143.7
DM-count [43] NeurIPS’20 88.4 357.6 68.4 283.3 85.6 148.3
NoiseCC [39] NeurIPS’20 96.9 534.2 67.7 258.5 85.8 150.6
D2CNet [6] TIP’21 85.5 361.5 73.7 292.5 84.8 145.6
Ours 79.9 360.0 59.7 254.2 80.7 143.7

BL, our C2MoT gains large improvements in terms of the MAE
and MSE metrics on all the datasets. Note that C2MoT uses the
same Bayesian loss [29] and has the similar model capacity with
BL, which further demonstrates the advantages of our proposed
dynamic MoT for zero-shot domain adaptation.

We also tested using JHU-CROWD++ as the source domain, and
the experiment results are presented in Table 3. Similar to using
NWPU-CROWD as the source domain, our C2MoT achieves favor-
able transfer performance on the target domain datasets, as well
as overall performance. We note that using NWPU-CROWD as
the source domain leads to lower counting errors in the target do-
mains (e.g., ShanghaiTech and UCF-QNRF). This is mainly because
NWPU-CROWD is more similar to the target datasets, while JHU-
CROWD++ contains more test images with different styles under
challenging weather conditions, e.g., rain and snow.

4.3 Source Domain Evaluation
In this subsection, following the standard evaluation scheme, where
the source domain is used for both training and testing, we report
the source domain performance of our proposed method and state-
of-the-art methods on three large-scale counting datasets, UCF-
QNRF, NWPU-CROWD and JHU-CROWD++.

The source domain evaluation results are presented in Table 4.
In terms of MAE, our C2MoT achieves the leading performance on
all the three datasets, outperforming recent state-of-the-art meth-
ods. Our method significantly outperforms the baseline counting
method BL by large margins. Specifically, our C2MoT improves
BL from 105.4/75.0/88.7 to 79.9/59.7/80.7. This is mainly because
our method treats each test image as a new target domain, and is
trained to adapt to each specific test image. Thus, our C2MoT still
achieves favorable performance in source domain evaluation, by
effectively alleviating the domain gap between training and test
sets of the dataset.

Note that we are using the same C2MoT models trained on
NWPU-CROWD or JHU-CROWD++ in the transfer experiments
(Tables 2 and 3) and the source domain evaluation (Table 4). This
demonstrates that our method has good generalization, achieving
leading zero-shot cross-domain performance as well as state-of-the-
art performance using standard source domain evaluation.

Table 5: Ablation study on𝛼 . The source domain is JHU-CROWD++ and target
domain is UCF-QNRF.

MoT JHU-CROWD++ UCF-QNRF

MAE MSE MAE MSE
only offline MoT (𝛼 → +∞) 61.22 257.18 147.03 270.21

only online target template (𝛼 → −∞) 63.17 263.31 140.95 261.64
learnable 𝛼 59.7 254.2 135.25 251.91

Table 6: Ablation study on the layer normalization (LN). The source domain
is JHU-CROWD++ and target domain is UCF-QNRF.

MoT JHU-CROWD++ UCF-QNRF

MAE MSE MAE MSE
w/o LN 61.67 257.24 159.27 273.76
w/ LN 59.7 254.2 135.25 251.91

Table 7: Ablation study on the average and max pooling operations used in
the RM module. The performance is evaluated on JHU-CROWD++.

Average Pooling Max Pooling MAE MSE
✓ 61.50 260.42

✓ 60.43 259.14
✓ ✓ 59.7 254.2

4.4 Ablation Study
In this subsection, we conduct ablation studies on the various com-
ponents of C2MoT.
Effect of 𝛼 . 𝛼 is a parameter used in (5) that controls the weighting
between the offline MoT and online target template when calcu-
lating the dynamic MoT. Based on (5), when 𝛼 → +∞, only the
offline MoT is used for crowd counting, while when 𝛼 → −∞, only
the online target template is used. In our design, we implement 𝛼
as a learnable parameter, which can be end-to-end learned during
offline training. In this ablation study, we train these three variants
on the JHU-CROWD++ dataset, and report both the source and
target domain performance for comparison in Table 5.

Using a learnable parameter 𝛼 leads to the best performance on
both the source and target domain evaluation, showing the advan-
tage of combining both the offline MoT and online target template.
Using only the offline MoT (𝛼 → ∞) obtains favorable performance
on the source dataset JHU-CROWD++, due to the external offline
MoT encoding the source domain information. However, using only
the offline MoT has limited generalization performance, due to the
lack of online adaptation, which is illustrated by the poor perfor-
mance on the target domain. In contrast, using only the online
target template (𝛼 → −∞) has better generalization performance
on the target domain, but inferior performance on the source do-
main. This is because the online target template could be noisy due
to incorrect prediction of the weight map, which may generate an
unreliable dynamic MoT for crowd counting. By combining both
the offline MoT and online target template with 𝛼 , the optimal
performance can be achieved. The learned 𝛼 was 0.3256 in this
experiment.
Effect of layer normalization. We next study the effect of using
layer normalization (LN) in our density map predictor. When eval-
uating on the target domain, the correspondence map might have
large response value shifts, which affects the final density map pre-
diction. LN provides a more stable normalized correspondence map,
enabling the better density map estimation when there is domain
shift. Table 6 shows the performance on variants with and without
using the LN. The variant without LN obtains similar source do-
main evaluation compared to the variant with LN. However, on the
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EST/GT: 1465/1890EST/GT: 1268/1890

EST/GT: 286/1709 EST/GT: 555/1709

EST/GT: 2219/2745 EST/GT: 2429/2745

EST/GT: 222/236EST/GT: 200/236

EST/GT: 74/155 EST/GT: 99/155

(a) input (b) BL: density map (d) cross-corr. map (e) Ours: density map(c) weight map 𝑊
Figure 5: Visualization of the weight map (c), the cross-correlation map (d) generated via the dynamic MoT and density maps estimated by (b) and (e). The input
images are sampled fromUCF-QNRF [13]while ourmethod andBL are trained on SHB [50] for zero-shot cross-domain evaluation. The estimated and ground-truth
counts (EST/GT) are shown in the bottom right of (b) and (e).

ᐥጱතፏհ໒Ө౮Իᰁᵋᳵጱ۸̵ݒᑗතӨଙଶྲݶी
ᳩᵋᳵጱ۸҅ݒզ݊ᤅܴӨ֛᯿ᵋᳵጱ۸̶ݒ

ଘ࣐ᴳᵨ

BCE OURS

0 80.4 79.6

10 78.5 79.0

20 73.2 76.5

30 65.8 74.5

40 65.2 70.4

OTB-13

DP
R 

(%
)

68.2

71.4

74.6

77.8

81

Noise
0 10 20 30 40

70.4

74.5

76.5

7979.6

65.265.8

73.2

78.5

80.4

BCE Ours

ଘ࣐ᴳᵨ-1

ଘ࣐ᴳᵨ-2

DPR (%) AUC (%)

10 91.0 82.7

20 84.8 77.4

30 80.9 74.0

40 77.4 71.1

50 74.9 68.8

60 73.0 67.2

70 71.4 65.7

LaSOT (Partial)

DP
R 

& 
AU

C 
(%

)

63

70.4

77.8

85.2

92.6

100

Frame Gap
10 20 30 40 50 60 70

65.767.268.8
71.1

74
77.4

82.7

71.473
74.9

77.4
80.9

84.8

91

DPR (%) AUC (%)

ଘ࣐ᴳᵨ-3

FRAME GAP RANDOM AHM

10 96.5 97.0

20 93.0 94.0

30 91.0 92.2

40 89.0 90.2

50 88.5 89.9

60 85.8 87.9

70 84.7 86.7

80 84.9 86.6

90 85.1 87.1

100 83.2 85.9

All 65.1 10 10

OTB-13

Fr
am

e 
G

ap

10

20

30

40

50

60

70

80

90

100

All

85.9

87.1

86.6

86.7

87.9

89.9

90.2

92.2

94

97

65.1

83.2

85.1

84.9

84.7

85.8

88.5

89

91

93

96.5
ଘ࣐ᴳᵨ-3-1

FRAME GAP RANDOM AHM

10 82.8 83.7

20 78.0 79.4

30 75.3 76.7

40 73.1 74.6

50 71.9 73.2

60 69.6 71.3

70 68.7 70.4

80 68.1 69.8

90 67.9 69.7

100 67.2 69.2

All 48 1.2

ଘ࣐ᴳᵨ-4

MINING-10 MINING-20 SUPER

10 84.9 84.7 85.9

20 81.4 80.9 82.8

30 79.0 78.5 81.0

40 76.9 76.6 79.4

50 75.3 75.3 78.4

60 74.3 73.7 77.1

70 72.5 71.8 75.7

80 72.0 70.9 75.7

90 71.9 71.2 75.0

100 71.4 70.6 75.5

All 53.7 51.5 60.8

OTB-13

 A
U

C
 (%

)

45

53

61

69

77

85

Frame Gap
10 20 30 40 50 60 70 80 90 100 All

60.8

75.57575.775.7
77.1

78.479.4
81

82.8
85.9

51.5

70.671.270.971.8
73.7

75.3
76.6

78.5
80.9

84.7

53.7

71.471.97272.5
74.375.3

76.9
79

81.4

84.9

Mining-10 MINING-20 Super

ଘ࣐ᴳᵨ-4-1

MINING-10 AHM

10 82.8 97.0

20 78.0 94.0

30 75.3 92.2

40 73.1 90.2

50 71.9 89.9

60 69.6 87.9

70 68.7 86.7

80 68.1 86.6

90 67.9 87.1

100 67.2 85.9

All 49.1 51.5

ଘ࣐ᴳᵨ-5

BD SUPERVISED TCL-20 TCL-10

10 97.0 97.5 97.9 98.5

20 94 95.0 95.8 97.2

30 92.2 93.4 94.5 96.4

40 90.2 91.8 93.0 94.9

80 86.6 88.8 90.2 92.1

Pr
ec

.  
(%

)

84

87.2

90.4

93.6

96.8

100

Video Length
10 20 30 40 80

BD
TCL-10
TCL-20
Supervised

ᤒ໒ 1

ଘ࣐ᴳᵨ-5-2

OURS BCE

10 81.8 78.5

20 76.5 73.2

30 72.8 65.8

40 71.9 65.2

50 69.7 61.5

Pr
ec

.  
(%

)

60

64.6

69.2

73.8

78.4

83

Noise
10 20 30 40 50

Ours
BCE

ଘ࣐ᴳᵨ-5-2-1

OURS BCE

0 61.2 60.8

10 59.4 58.0

20 55.5 54.1

30 52.9 48.8

40 52.5 48.0

50 51.8 46.1

AU
C 

 (%
)

45

48.3

51.6

54.9

58.2

61.5

Noise
0 10 20 30 40 50

46.1
4848.8

54.1

58

60.8

51.852.552.9

55.5

59.4
61.2

Ours
BCE

ଘ࣐ᴳᵨ-6

MAE MSE

1 11.18 19.40

2 15.34 27.04

3 18.39 31.28

6 23.68 39.94

0

10

20

30

40

1 2 3 6

MAE MSE

ଘ࣐ᴳᵨ-5-2-1-1

MAE

0.1 61.6

0.3 60.3

0.5 59.7

0.7 61

0.9 61.3

M
AE

55

57

59

61

63

65

r
0.1 0.3 0.5 0.7 0.9

61.361
59.760.3

61.6

6

Figure 6: Ablation study on the momentum coefficient 𝑟 . The performance is
evaluated on JHU-CROWD++.

target domain, using LN leads to substantial improvements, which
confirms the necessity of LN for cross-domain testing.
Effect of average andmax pooling operations in RM. In Table
7, we show that using both average and max pooling operations
provides a more informative input for the generation of the weight
map in RM. In addition, only using average or max pooling achieves
competitive MAE performance due to the reliable initial cross-
correlation map generated with the offline MoT.
Effect of 𝑟 . The momentum coefficient 𝑟 controls the updating
smoothness of the memory bank. As shown in Fig. 6, our method
is generally not sensitive to the selection of 𝑟 . Using too slow (i.g.,
0.1) or too fast (i.e., 0.9) updating only causes small performance
drop. This is mainly because the updating of the memory bank is
jointly conducted with the model training, which makes the two
processes adapt to each other in the end-to-end training.
Detailed visualization. We show the detailed visualization of the
generated weight map, cross-correlation map and density maps
estimated by the baseline BL and our method in Fig. 5. Our method
effectively aggregates reliable online target information for the gen-
eration of dynamic MoT. For our method, the weight maps assign
weights on the head positions for computing the online templates
(Fig. 5c), and the cross-correlation maps effectively indicate the

head positions (Fig. 5d), which provides a strong prior for the fi-
nal density map prediction (Fig. 5e). Compared with the baseline
BL (Fig. 5b), our method is more robust to illumination variations
(first three input images), viewpoint changes (last two images) and
appearance variations (heads in the 3rd image with white hats).

5 CONCLUSION
This paper proposes a novel crowd counting framework for zero-
shot cross-domain crowd counting, which is closer to real-world
counting applications. The proposed counting framework is built
upon an external Momentum Template (MoT), which explicitly
encodes the source domain information via the external represen-
tation. To effectively adapt to unseen target domains, we propose
to learn to dynamically adapt the external MoT using an online
target template extracted from the test image. With the dynamically
adapted MoT, our model effectively finds dense head correspon-
dences via the cross-correlation operation, thus providing a strong
features for the final density map prediction. Extensive experiments
on four large-scale crowd counting datasets demonstrate that our
method achieves leading zero-shot cross-domain crowd counting
performance without model fine-tuning, while also outperform-
ing supervised domain adaptation methods that use fine-tuning
on target domain data. Our method also obtains state-of-the-art
performance on the source domain.
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