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Abstract
Active learning (AL) is a subfield of machine learn-
ing (ML) in which a learning algorithm aims to
achieve good accuracy with fewer training samples
by interactively querying the oracles to label new
data points. Pool-based AL is well-motivated in
many ML tasks, where unlabeled data is abundant,
but their labels are hard or costly to obtain. Al-
though many pool-based AL methods have been
developed, some important questions remain unan-
swered such as how to: 1) determine the current
state-of-the-art technique; 2) evaluate the relative
benefit of new methods for various properties of
the dataset; 3) understand what specific problems
merit greater attention; and 4) measure the progress
of the field over time.In this paper, we survey and
compare various AL strategies used in both recently
proposed and classic highly-cited methods. We pro-
pose to benchmark pool-based AL methods with a
variety of datasets and quantitative metric, and draw
insights from the comparative empirical results.

1 Introduction
AL is an effective technique when the training data is insuf-
ficient, which selects the most critical instances and queries
their labels through the interaction with oracles (annotated by
experts or apply crowd-sourcing techniques). AL contrasts
with passive learning, where the labeled data are taken at
random. The objective in AL is to produce highly-accurate
classifiers, ideally using fewer labels than that of passive learn-
ing to achieve the same performance [Yang et al., 2013]. AL
has many variants according to the sample selection strategy:
stream-based AL, membership query synthesis and pool-based
AL. All these variants of AL strategies query the oracle for the
labels of the points, but differ from each other in the nature
of their queries [Settles, 2009]. In this paper, we focus on
the category of pool-based AL, which assumes that one has
access to a large pool of unlabeled i.i.d data samples, and
selects the most informative set of points iteratively until the
classifier reaches a certain level of performance, e.g., the clas-
sification accuracy or a pre-defined budget is exhausted [Chu
∗Contact Author

et al., 2011].
While many pool-based AL methods have been proposed,

relatively less benchmarking and integration of AL techniques
have occurred. Some researchers employ AL to improve or
solve the data insufficiency problems in their own specific
research tasks instead of improving the AL technique itself.
The natural isolating effect of research communities may lead
researchers to develop new AL methods only within those
communities they participate in, which dampens the aware-
ness of effective techniques in other research fields, especially
when the method is applied to domain-specific tasks. In many
papers, AL algorithms are evaluated on handpicked datasets
on which they show major advantage. Although such evalu-
ation shows the benefits of the AL algorithm, it ignores the
failure regimes of the algorithms, which are important for un-
derstanding and addressing the challenges in AL. For these
reasons, it is difficult to determine the current state-of-the-
art of pool-based AL, which affects the evaluation of newly
proposed AL methods, and obfuscates progress in the field.

Looking at other fields of ML, such as Computer Vision
(CV) and Natural Language Processing (NLP), significant
research progresses have been made in conjunction with stan-
dard benchmark datasets, such as ImageNet, MNIST, Pascal
VOC, MSCOCO, GLUE, etc., on which disparate algorithms
can be compared in a standard way. In this paper, we propose
an AL benchmark, consisting of multiple datasets with vari-
ous properties, associated evaluation metrics, and experiment
protocol. We perform benchmark tests on a variety of AL
approaches. We hope that this benchmarking test could bring
authentic comparative evaluation for the researchers in AL,
providing a quick look at which methods are more effective
for those who want to incorporate AL techniques into other
research fields, as well as construct a standard benchmark for
new AL methods on which fair comparisons can be made.

2 Pool-based AL Techniques
For the sake of generality, we exclude the AL with crowd-
sourcing work (labels generated by multiple oracles/human
annotators) [Mozafari et al., 2014; Huang et al., 2017], AL
with transfer learning or semi-supervised learning [Hoi and
Lyu, 2005; Zhao et al., 2013; Guo et al., 2016; Guo et al.,
2017] and AL with multi-label classification, regression or
ranking tasks [Cai et al., 2013; Mohajer et al., 2017; Reyes
et al., 2018]. Since the space of AL algorithms is vast, we
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consider a variety of well-known AL methods that provide
representative baselines of current practice. We next review
these methods while emphasizing relationships between them
and distinguishing traits and possible variants.

2.1 Problem Definition
We consider a general process of pool-based AL for clas-
sification task. We have a small initial labeled set Dl =
{(x1, y1), ..., (xM , yM )} and a large unlabeled data pool
Du = {x1, ...,xN}, where each instance xi ∈ Rd is a d-
dimensional feature vector and yi ∈ {0, 1} is the class label of
xi for binary classification, or yi ∈ {1, ..., k} for multi-class
classification. In each iteration, the active learner selects a
batch Dq with size S from Du, and queries their labels from
the oracle. Dl and Du are then updated, and the basic clas-
sifier(s) is retrained on Dl. The process terminates when the
querying budget B is exhausted.

2.2 Querying Strategy
In terms of AL sampling strategies, pool-based AL ap-
proaches/heuristics can be roughly classified into 3 categories
[Monarch, 2021]. First, uncertainty-based sampling strate-
gies [Lewis and Catlett, 1994] aim to select the unlabeled
data samples with lowest confidence (largest uncertainty)
for the model to be classified correctly, such as least con-
fidence [Culotta and McCallum, 2005], margin/ratio of con-
fidence [Scheffer et al., 2001], or entropy-based [Dagan and
Engelson, 1995]. Second, diversity/representative sampling
strategies select data that contains diversity information of
the data pool to reduce the constraints on the supervised
machine learning models from data. e.g., outlier detection
[Abe et al., 2006], cluster-based sampling [Dasgupta and Hsu,
2008], representative/density-based sampling [Wang and Ye,
2015]. Third, advanced/combined strategies [Shen et al., 2004;
Ebert et al., 2012; Li and Guo, 2013; Ash et al., 2019] inte-
grate the advantages of uncertainty-based and diversity-based
criteria, and are widely adopted in AL and its applications
since they are more adaptable to varying data types.
Uncertainty-based. Classical uncertainty-based sampling
strategies include: Uncertainty Sampling (US) which
queries the instances in Du that have the least certainty in
their predicted label [Lewis and Catlett, 1994], and its vari-
ants including Least Confident (LC), Margin-based (M) and
Entropy-based (ENT). US has become one of the most fre-
quently used AL heuristics since it is both simple and com-
putationally efficient. However, US only considers the un-
certainty of samples and ignores their category distribution,
which restricts the quality of sampling [Ye et al., 2016].
Query-by-Committee (QBC) uses a committee of models
C = {θ(1), ..., θ(C)} (constructed by ensemble methods or
various basic classifiers), which are trained on Dl to pre-
dict the labels of Du, and the ones with largest disagreement
are selected for labeling by an oracle [Seung et al., 1992;
Settles, 2009]. The disagreement level could be measured by
Voting Entropy (VE) or KL divergence.

Other methods aim to reduce the uncertainty in the classi-
fier. Expected Model Change (EMC) selects instances that
induce the largest change in the classifier (e.g., largest gradi-
ent descent) [Cai et al., 2013]. Expected Error Reduction

(EER) maximizes the decrease of loss by adding new data
samples [Settles, 2009]. Variance Reduction (VR) regards
the most informative data points which minimize the model’s
variance [Cohn, 1994].

Some AL techniques are designed for specific ML algo-
rithms. Kapoor [2007] proposed an algorithm that balances
exploration and exploitation by incorporating mean and vari-
ance estimation of the Gaussian Process classifier (ALGP).
Kremer [2014] proposed a SVM-based AL strategy by min-
imizing the distances between data points and classification
hyperplane (HintSVM). These model-driven active learning
strategies aim to estimate how strongly learning from a data
point influences the current model. Learning Active Learn-
ing (LAL) is a data-driven approach that uses properties of
classifiers and data to predict the potential error reduction
[Konyushkova et al., 2017]. However, general uncertainty-
based sampling strategies focus more on the benefit obtained
by a single point, which might not be robust to outliers. To
address this issue, density-weighted methods consider the av-
erage similarity between the selected samples and the whole
data pool as a weight on the informativeness-based scores. In
Section. 4, we adopt density-weighted US (DWUS) method.

Diversity/Representative-based. Diversity/representative
sampling strategies measure whether an instance well
represents the overall pattern of the unlabeled data pool and
whether the selected batch maximizes the training utility, by
comparing the similarity among data samples. However, this
strategy requires querying a large number of instances before
reaching the optimal decision boundary, and hence it is not as
efficient as the uncertainty-based criterion. A typical method
for measuring diversity/representativeness is via clustering
[Hsu and Lin, 2015]. Dasgupta [2008] proposed a hierarchical
clustering strategy (Hier), which uses the cluster information
to calculate representativeness. Another typical clustering
based method is k-Center (KCenter), which finds subset
(denote as C) that minimizes the maximum distance of any
point to a center [Sener and Savarese, 2017].

Most diversity/representative sampling methods perform
better when the number of labeled samples is not sufficient,
while uncertainty-based criterion usually overtakes the diver-
sity/representative measure after substantial sampling. The
main reason is that the diversity/representative criterion could
obtain the entire structure of a database in the beginning stage,
but it is insensitive to the data samples that are close to the deci-
sion boundary, notwithstanding the fact that such samples are
probably more important to the prediction model. In addition,
uncertainty-based measure always searches for the “valuable”
samples around the current decision boundary, and the optimal
decision boundary cannot be found unless a certain number of
samples have already been labeled. The uncertainty-based and
diversity-based sampling criterion can only guarantee their
optimal performance over a period of time in the entire AL
processes, and the optimal period differs for each criterion
[Zhao et al., 2019].

Advanced/Combined-based. Both uncertainty and diver-
sity based strategies are single criterion-based AL methods,
which only consider one optimization goal during the AL pro-
cess, i.e., select the most informative (maximum uncertainty
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Algorithm Optimization Function Notation
US (LC) x∗LC = arg maxx 1− pθ(ŷ|x) ŷ = arg maxy pθ(y|x)
US (M) x∗M = arg minx pθ(ŷ1|x)− pθ(ŷ2|x) y1 and y2 are the first and second most probable class labels
US (ENT) x∗ENT = arg maxx −

∑
i p(yi|x; θ) log p(yi|x; θ)

QBC (VE) x∗V E = arg maxx −
∑
i
V (yi)
C

log
V (yi)
C

V (·) is the voting entropy across the committee of classifiers, C represents the committee as a whole
QBC (KL) x∗KL = arg maxx

1
C

∑
cKL(P

θ(c)
||PC) KL – Kullback-Leibler Divergence

EMC x∗EMC = arg maxx −
∑
i pθ(yi|x)||∇lx(θ)||

EER
x∗EER = arg minx

∑
i pθ(yi|x)(−

∑U
u=1

∑
j

p
θ+

(yj |x(u)) log p
θ+

(yj |x(u)))
θ+ refers to the newly trained model after adding new data tuple

VR x∗VR = arg minx σ̃
2
o σ̃2

o is the model’s variance, which models the learner’s squared-loss with respect to the target function.
DWUS x∗DE = arg maxx φA(x)( 1

U

∑U
u=1 sim(x, x(u)))β φ indicates the informativeness score generated by aforementioned strategies, sim(·) is the similarity measure.

ALGP x∗ALGP = arg min
xu∈Du

|ŷu|√
Σu+σ2

This optimization function is based on GP classification models, ŷu and Σu are posterior mean and variance,
σ2 is the variance of data distribution

LAL x∗LAL = arg max
x∈Dtu

g(φt, ψx) g reflects to a regressor which constructs the relationship between classification state parameter φ, data state ψ
and loss reduction δ

KCenter min
C:|C|<b

max
i

min
j∈C∪Dl

∆(xi, xj) ∆ for pair-wise distance

QUIRE x∗QUIRE = arg minxs L̂(Dl, Du, xs) L̂(Dl, Du, xs) = min
yu∈{±1}nu−1

max
ys=±1

minf∈H
λ
2
|f |2H +

∑n
i=1 l(yi, f(xi)) (n refers

to the size of all data)
Graph x∗Graph = arg minx β(t)r(U(x)) + (1− β(t))r(D(x)) r(·) refers to ranking,U is the info measure,D is rep measure, β is a time-varying parameter

Margin
min

α:α∈{0,1},αT 1=b
|| 1
nl+b

(
∑
j∈L Φ(xj) +∑

i∈U αiΦ(xi))− 1
nu−b

∑
i∈U (1− αi)Φ(xi)||

α indicates whether the data point is selected or not, Φ(·) is known as the feature space map from the nonempty
compact set (x ∈ X ) to the complete inner product space (i.e., a reproducing kernel Hilbert space (RKHS))

AAL x∗AAL = arg maxi∈U hβ(xi) hβ(x) = f(x)βd(x)1−β . f(x) is the uncertainty measure, d(x) is the mutual information based infor-
mative density

BMDR min
Dq,f

∑
{x,y}∈Dl

l(f,x, y) +
∑

xi∈Dq
l(f,x, ŷ) +

λ||f ||2 + βMMD(D,Dl ∪ Dq)

D = Dl ∪ Du

SPAL min
f,w,v

l(f,w,v)+λg(v)+µh(Dl∪Dq ,Du/Dq)+γΩ(f) w and v reflect the informativeness and representativeness of data samples, f is the learning model, g(·) is the
self-paced regularizer, h is MMD, Ω(f) is for controlling the model complexity. l, h, and g are responsible for
informativeness, representativeness and easiness, respectively.

Table 1: Summary of various AL algorithms: sampling strategies and objective functions.

score) or the most representative data points. The effective-
ness of AL could be improved by integrating multiple criteria,
that is, constructing the advanced/combined AL strategies that
avoid the pitfalls of a single criterion. The combined strategies
can be categorized according to the integration pattern [Zhao
et al., 2019]:

1) Serial-form combined strategies employ each selection
criterion sequentially to filter out non-useful samples until the
batch size is reached. Shen [2004] proposed an integration
strategy by first selecting a subset from Du via informative-
ness scores, then clustering the pre-selected set, taking the
clustering centers as final results. This pattern is efficient and
flexible since specific querying strategies can be added into
the original process. However, its performance relies on the
selection of the committee of basic query strategies, and the
size of the subsets generated by each component.

2) Criteria selection strategies choose one criterion with
the highest criterion selection parameter to query samples
within one iteration, which could be also called “mix-up
AL strategies”. Active Learning by Learning (ALBL) [Hsu
and Lin, 2015] selects data points with probability qj(t) =∑K

k=1 pk(t)φ
k
j (t), where p refers to the probability of select-

ing an AL algorithm.
3) Parallel-form combined strategies select samples from

multiple querying criteria by using a weighted sum of ob-
jectives or other multi-objective optimization methods. The
normal practice is to combine two or three criteria measuring
informativeness, representativeness and diversity. Parallel-
form is the most widely of the combined AL strategies, but
the disadvantage is that it depends heavily on how the weights
of each criterion are set. Graph Density (Graph) is a typi-
cal parallel-form combined strategy that balances the uncer-

tainty and representative based measure simultaneously via a
time-varying parameter [Ebert et al., 2012]. Marginal Prob-
ability based Batch Mode AL (Margin) [Chattopadhyay et
al., 2013] selects a batch that makes the marginal probabil-
ity of the new labeled set similar to the one of unlabeled set,
via optimization by Maximum Mean Discrepancy (MMD).
Representative Marginal Cluster Mean Sampling (MCM)
first selects the data points in the separating hyperplane gen-
erated by SVM and then clusters them to find k centroid data
points [Xu et al., 2003]. QUIRE queries the most informative
and representative data points in each AL iteration [Huang et
al., 2010]. Adaptive Active Learning (AAL) considers how
to adjust the trade-off parameter of each criterion via a self-
adjusting mechanism [Li and Guo, 2013]. Batch-mode Dis-
criminative and Representative AL (BMDR) [Wang and
Ye, 2015] queries a batch of informative and representative
examples by minimizing the empirical risk bound of AL. Self-
paced AL (SPAL) [Tang and Huang, 2019] selects a batch of
informative, representative and easy examples by minimizing
a well designed objective function.

To facilitate a more intuitive method comparison, we have
selected some of these AL methods that can clearly present
their optimization goals and summarized them into Table 1.

3 Pool-based AL Benchmark
While many Al methods have been proposed, there still exist
fundamental questions worth exploring. In which scenarios
are uncertainty or diversity-based querying strategies more
suitable? Compared with single-criterion based methods, how
well do the advanced/combined sampling strategies foster
strengths and circumvent weaknesses? To answer these ques-
tions, we construct a large benchmark for pool-based AL,
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including datasets, protocol, and metric.

Datasets. Most works employ large number of public gen-
eral real-life datasets for validating the effectiveness of their
AL models on general tasks and several domain-specific
datasets for their concerned research field, thereby increas-
ing validity of experimental findings. Synthetic data can also
be useful for sanity checks, carefully controlled experiments,
and benchmarking. We have studied a large number of papers
in the AL literature, and found that there is no uniform set
of datasets for evaluation, which potentially leads to the fol-
lowing problems: 1) the disjointed sets of evaluation datasets
make it difficult to compare horizontally among various AL
methods; 2) When implementing new AL approaches, some
datasets are too simple to verify efficacy as the performance
is already saturated. Therefore, a unified set of appropriate
datasets is required, which could help facilitate meaningful
comparisons among methods and benefit progress in AL.

In Table 2, we summarize 35 public datasets that we use in
our benchmark1. The table shows the source, data properties,
imbalance ratio, dimension, size, number of categories and the
related literatures that used these datasets.

Experiment protocol. We next describe the experiment pro-
tocol for the benchmark. For each dataset, we randomly select
60% of the data for training and the remaining 40% for test-
ing. We select data samples from the training set and evaluate
the classification performance on the testing set. In order to
reduce the variance of the result (and avoiding results that are
just “lucky” splits of the data), we repeat each experiment for
100 trials for dataset of n < 2000 and 10 trials for dataset of
n > 2000, with random splits of the training and testing sets,
and report the average testing performance. Note that we set
the random seed in each trial so that all AL methods use the
same training/testing/initial data in each trial, which ensures a
fair comparison among methods. To avoid bias problems, we
avoid any dataset-specific tuning or pre-processing.

Evaluation metrics. To evaluate the overall performance,
we propose an evaluation metric called area under the bud-
get curve (AUBC), which based on the performance-budget
curves, computed by evaluating the AL method for different
fixed budgets (e.g., accuracy vs. budget – AUBC(acc)). Given
the budget curve, the AUBC is calculated by the trapezoid
method, and the higher value reflects better performance of
the AL strategy under varying budgets. In our experiments,
we varying budgets from zero to the size of whole unlabeled
data pool. In our experiments, we employ AUBC(acc).

Beam-Search Oracle result. As each dataset is different,
the performance of AL methods will vary substantially across
datasets based on the data distribution. We compute the “near-
optimal AL performance” on each dataset as reference. A full
search of all permutations of sample sequences is intractable,

1It is an ongoing process to increase the size since this bench-
marking task should become a dynamic and evolving community
resource.

2http://www.keel.es
3https://archive.ics.uci.edu/ml/datasets.php
4http://openclassroom.stanford.edu
5http://www.cs.toronto.edu/ delve/data

and thus we resort to a beam-search method for approximating
the optimal sequence of selected samples that maximizes the
classification accuracy. Given an initial labeled data pool D(0),
in the first iteration, we select 5 data points xi that yield the
largest test accuracy of the classifier trained on the updated
pool D(1)

i = D(0) ∪ xi. In the second iteration, for each D(1)
i ,

we select another 5 samples xj that yield largest test accuracy
of the classifier trained on the updated pool D(2)

ij = D(1)
i ∪ xj .

Now there are 25 pools D(2)
ij , from which we select the 5 with

largest testing accuracy, to obtain pruned set of 5 pools D(2)
k .

The iterations are repeated until the budget is exhausted. Thus,
we obtain a near-optimal labeling sequence for calculating
the AUBC. We denote this method as Beam-Search Oracle
(BSO), since it uses the test data to optimize the AL sequence.
Following the benchmark protocol, we conduct BSO with the
same settings as the AL methods.

4 Experiment
In this section we run experiments on our benchmark, com-
paring 17 aforementioned methods in Section 2 on 35 datasets
in Table 2. The main goals of our experiment are to: 1) iden-
tify which datasets are more meaningful for evaluating the
effectiveness of pool-based AL methods; 2) distinguish high-
performance AL methods under multiple datasets.

AL model setup. We use the public implementations of
these algorithms: US, QBC, HintSVM, QUIRE, ALBL,
DWUS and VR are implemented by the libact [Yang et al.,
2017]; Uniform, KCenter, Margin, Graph, Hier, InfoDiv
and MCM are from the Google AL toolbox6; EER, BMDR,
SPAL and LAL are from ALiPy [Tang et al., 2019]. We use
SVM (RBF) as the basic classifier to test the AL performance.

4.1 Experimental Results
There are a large number of results, as we consider a large
number of AL methods and datasets. Thus, we analyze the
experimental results at a high level, from the aspects of dataset
and method with their different properties.

Dataset aspect. Table 3 summarizes the BSO performance,
mean, minimum and maximum performance across 17 AL
methods for each dataset. Note that the differences between
the actual results and BSO results on some datasets are not
as large as one might expect (e.g., Seeds and GCloudb), since
the AUBC metric actually takes the average performance of
the whole labeling sequence, while most labeling sequences
will converge when the budget is large enough. The perfor-
mance is saturated on some highly-cited datasets (e.g., Iris,
Wine, Ionosphere, Diabetes, Tic-tac-toe). However, we do not
advocate removing these well-worn datasets, since we want
our benchmark to contain both easy and hard datasets, so as
to test AL methods under different regimes. In Table 3, we
underline the datasets that have significant disparities between
the BSO results and the best performance of AL methods (i.e.,
the BSO result is more than one percentage point higher than
the best performing AL method), which indicates that there

6https://github.com/google/active-learning
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Dataset Property IR (d, n,K) Source Related Literature

Appendicitis Real-life 4.05 (7, 106, 2) KEEL2 [Wang et al., 2019]
Sonar Real-life 1.14 (60, 108, 2) UCI3 [Chattopadhyay et al., 2013; Hsu and Lin, 2015; Du et al., 2015; Cuong et al., 2016; Tüysüzoğlu and Yaslan, 2018; Wang et al., 2019]
Iris Real-life 1.00 (4, 150, 3) UCI [Chattopadhyay et al., 2013; Du et al., 2015; Wang et al., 2018b; Bernard et al., 2018; Wang et al., 2019]
Wine Real-life 1.48 (13, 178, 3) UCI [Cai et al., 2013; Chattopadhyay et al., 2013; Du et al., 2015; Wang et al., 2018b]
Parkinson Real-life 3.06 (22, 195, 2) UCI [Xiong et al., 2013; Yang and Loog, 2018]
EX8b (linear) Synthetic 1.00 (2, 206, 2) ML Course4 −
Seeds Real-life 1.00 (7, 210, 3) UCI [Wang et al., 2018a; Wang et al., 2019]
Glass Real-life 8.44 (9, 214, 7) UCI [Mozafari et al., 2014; Wang et al., 2018b; Wang et al., 2018a]
Thyroid Real-life 5.00 (5, 215, 4) UCI [Abe et al., 2006; Wang and Ye, 2015; Wang et al., 2018a; Tang and Huang, 2019]
Heart Real-life 1.25 (13, 270, 2) UCI [Chattopadhyay et al., 2013; Ali et al., 2014; Du et al., 2015; Hsu and Lin, 2015]
Haberman Real-life 2.78 (3, 306, 2) UCI [Azimi et al., 2012; Mozafari et al., 2014; Wang et al., 2019]
Ionosphere Real-life 1.79 (34, 351, 2) UCI [Ali et al., 2014; Du et al., 2015; Cuong et al., 2016; Wang et al., 2018b; Tüysüzoğlu and Yaslan, 2018; Wang et al., 2019]
MUSK (Clean1) Real-life 1.30 (168, 475, 2) UCI [Chattopadhyay et al., 2013; Yang and Loog, 2018; Tang and Huang, 2019]
Breast Cancer Real-life 1.00 (10, 478, 2) UCI [Azimi et al., 2012; Hsu and Lin, 2015; Cuong et al., 2016; Wang et al., 2018a; Yang and Loog, 2018]
Wdbc Real-life 1.68 (30, 569, 2) UCI [Huang et al., 2010; Chen and Krause, 2013; Li et al., 2015; Yang and Loog, 2018]
R15 Synthetic 1.00 (2, 600, 15) − [Wang et al., 2018a; Wang et al., 2019]
Statlog (Australian) Real-life 1.25 (14, 690, 2) UCI [Huang et al., 2010; Chen and Krause, 2013; Li et al., 2015; Du et al., 2015; Wang et al., 2018b; Zhao et al., 2019]
Diabetes Real-life 1.87 (8, 768, 2) UCI [Li et al., 2015; Hsu and Lin, 2015; Du et al., 2015; Cuong et al., 2016]
Mammographic Real-life 1.06 (5, 830, 2) UCI [Abe et al., 2006; Mozafari et al., 2014; Krempl et al., 2015; Yang and Loog, 2018]
EX8a (non-linear) Synthetic 1.00 (2, 863, 2) ML Course −
Statlog (Vehicle) Real-life 1.10 (18, 946, 4) UCI [Huang et al., 2010; Chattopadhyay et al., 2013; Huang et al., 2017; Wang et al., 2018b; Zhao et al., 2019]
Tic-Tac-Toe Real-life 6.79 (9, 958, 2) UCI [Huang et al., 2010; Huang et al., 2017; Yang and Loog, 2018; Zhao et al., 2019; Tang and Huang, 2019]
Statlog (German) Real-life 2.33 (20, 1000, 2) UCI [Azimi et al., 2012; Du et al., 2015; Li et al., 2015; Tüysüzoğlu and Yaslan, 2018; Yang and Loog, 2018]
Molecular Biology (Splice) Real-life 1.07 (61, 1000, 2) UCI [Wang and Ye, 2015; Du et al., 2015; Li et al., 2015; Konyushkova et al., 2017; Huang et al., 2017]
Gaussian Cloud Balance Synthetic 1.00 (2, 1000, 2) − [Konyushkova et al., 2017]
Gaussian Cloud Unbalance Synthetic 2.00 (2, 1000, 2) − [Konyushkova et al., 2017]
XOR (Checkerboard2×2) Synthetic 1.00 (2, 1600, 2) − [Konyushkova et al., 2017]
Phishing Websites Real-life 1.26 (30, 2456, 2) UCI [Tang and Huang, 2019]
D31 Synthetic 1.00 (2, 3100, 31) − [Wang et al., 2019]
Spambase Real-life 1.68 (57, 4601, 2) UCI [Mozafari et al., 2014; Huang et al., 2017]
Banana Synthetic 1.23 (2, 5300, 2) − [Wang and Ye, 2015; Wang et al., 2019]
Phoneme Real-life 2.41 (5, 5404, 2) ELENA Project [Tang and Huang, 2019]
Texture Real-life 1.00 (40, 5500, 11) UCI [Wang et al., 2019]
Ringnorm Real-life 1.02 (21, 7400, 2) Leo Breiman5 [Wang and Ye, 2015; Du et al., 2015]
Twonorm Real-life 1.00 (50, 7400, 2) Leo Breiman [Wang and Ye, 2015; Du et al., 2015; Wang et al., 2019]

Table 2: Benchmarking datasets. (d, n,K) are the feature dimension, number of samples, and number of categories. The Imbalance Ratio (IR)
is the ratio of the number of samples in the majority class to that of the minority class.

exists enough potential and space for improvement for future
research. For the datasets that have no BSO results, we calcu-
late the difference between the average AL performance and
random sampling performance (average performance is more
than one percentage point higher than RS).

Method aspect. We analyze the results from the method
aspect, comparing 17 AL algorithms, as shown in Table 4.
Note that among these AL methods, US, QBC, HintSVM,
QUIRE, VR, ALBL and DWUS do no support batch mode,
while HintSVM and ALBL do not support multi-class classi-
fication. Considering the overall performance, BMDR, Hier,
QBC, MCM, Graph perform better (performance gap< 0.3).
QBC belongs to uncertainty-based sampling strategies and it
adopts a committee of basic classifiers which could better
adapt to various data situations. Hier belongs to diversity-
based sampling strategies and besides clustering settings, it
also considers reducing the sampling bias during the AL pro-
cesses. BMDR, MCM, Graph are combined strategies, they
show superior effectiveness across datasets (Margin, InfoDiv
are also combined strategies with with overall competitive
performances). Considering various types of data proper-
ties, we divide the datasets into 5 groups: binary/multi-class,
real/synthetic, low/high dimension, small/large scale and bal-
ance/imbalance. We also discuss effectiveness of batch mode.

Binary/multi-class view: For binary classification, LAL,
QBC and Hier have good performance, while some
uncertainty-based methods with single basic classifier, i.e.,
HintSVM, VR, DWUS, EER, show less advantage. The
methods that consider the overall data topology yield better
performance on multi-class classification tasks (i.e., BMDR,

Hier, Graph and KCenter), while uncertainty-based sam-
pling methods (e.g., US) and the methods that only consider
the similarity between the labeled and unlabeled set (e.g.,
SPAL) tend to fall into local optimal.

Low/high dimension view: We observe that the high-
dimensional data are much more difficult than low-
dimensional data, i.e., the performance gap of HD are twice
as large as LD for most AL methods. It shows that testing on
high-dimensional data sets yields more representative evalua-
tions of AL methods. Compared with other AL methods, data
with higher dimension does not have much impact on QBC.

Data scale view: Uncertainty-based sampling strategies
with single basic classifier, e.g., US, VR, DWUS and EER
have severe performance drop when the data scale become
larger. In contrast, the diversity-based and combined strategies
that integrate diversity/representative criterion (e.g., Hier, In-
foDiv) perform even better on large-scale datasets, since these
strategies capture the structure of the data.

Real/synthetic view: For the synthetic datasets, the meth-
ods that consider diversity measure, e.g., Hier and KCen-
ter, achieve good performance. This is because in the sim-
ulated datasets, data are generated by certain well-defined
rules, and therefore the data structure is easy to be captured
by diversity/representative-based strategies. In contrast for
real-life datasets where the data topology is more cluttered
and complex, combined strategies help to select data points
that have higher impact to the predictions and are more repre-
sentative of the entire data pool.

Data balance/imbalance view: QBC and LAL both well
handle various data types (QBC employs multiple classifiers
and LAL learns properties of various classifiers and data), and
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Dataset RS BSO Avg Best Worst
Appendicitis 0.836 0.881 0.844 0.859 EER 0.826 DWUS
Sonar 0.617 0.830 0.755 0.775 LAL 0.732 HintSVM
Iris 0.835 0.932 0.912 0.945 BMDR 0.870 US
Wine 0.858 0.946 0.942 0.967 BMDR 0.889 EER
Parkinsons 0.840 0.865 0.845 0.858 QBC 0.829 HintSVM
Ex8b 0.866 0.924 0.890 0.909 SPAL 0.864 HintSVM
Seeds 0.862 0.922 0.912 0.921 BMDR 0.905 VR
Glass 0.387 0.474 0.446 0.473 KCenter 0.393 DWUS
Thyroid 0.696 0.705 0.708 0.728 EER 0.693 DWUS
Heart 0.808 0.848 0.787 0.830 InfoDiv 0.718 DWUS
Haberman 0.727 0.751 0.727 0.735 BMDR 0.720 QUIRE
Ionosphere 0.901 0.933 0.909 0.931 LAL 0.884 HintSVM
Clean1 0.649 0.871 0.805 0.838 LAL 0.747 HintSVM
Breast 0.954 0.961 0.957 0.963 SPAL 0.953 DWUS
Wdbc 0.952 0.973 0.955 0.965 LAL 0.940 EER
R15 0.877 0.954 0.925 0.978 QBC 0.761 QUIRE
Australian 0.846 0.878 0.845 0.853 KCenter 0.820 DWUS
Diabetes 0.736 0.784 0.741 0.751 KCenter 0.691 EER
Mammographic 0.819 0.844 0.815 0.825 MCM 0.798 EER
Ex8a 0.838 0.873 0.836 0.864 Hier 0.804 QUIRE
Vehicle 0.567 0.598 0.486 0.575 BMDR 0.372 SPAL
Tic-tac-toe 0.870 0.873 0.870 0.872 EER 0.865 QUIRE
German 0.726 0.783 0.737 0.744 QBC 0.720 DWUS
Splice 0.806 0.871 0.791 0.821 QBC 0.679 EER
GCloudb 0.893 0.901 0.886 0.897 Graph 0.868 HintSVM
GCloudub 0.942 0.963 0.929 0.954 QBC 0.864 EER
Checkerboard 0.978 0.992 0.943 0.986 KCenter 0.902 VR
Phishing 0.926 − 0.939 0.945 LAL 0.923 Graph
D31 0.582 0.922 0.805 0.950 KCenter 0.634 QUIRE
Spambase 0.685 − 0.877 0.919 QBC 0.685 DWUS
Banana 0.895 − 0.847 0.893 Hier 0.784 QUIRE
Phoneme 0.822 − 0.823 0.831 QBC 0.802 HintSVM
Texture 0.666 − 0.918 0.973 Hier 0.617 DWUS
Ringnorm 0.976 − 0.949 0.978 LAL 0.800 DWUS
Twonorm 0.976 − 0.975 0.976 KCenter 0.972 DWUS

Table 3: AL performance by AUBC(acc) from the dataset aspect. We
present the Random Sampling (RS) performance, BSO results, aver-
age (Avg) performance of each dataset across 17 AL methods, and
the best (Best) and worst (Worst) performing AL methods. Symbol
“−” indicates that BSO results are not completed yet.

thus well handle imbalanced data. Generally, all AL methods
perform better on data imbalance situations, which indicates
the effectiveness of AL methods. During AL processes, data
samples that belong to the minority classes are more informa-
tive and thus are selected first.

Effectiveness of batch mode: Batch-mode AL aims to re-
duce the computational cost (re-training the classifiers) by
selecting multiple samples in each round. Typically a diversity
measure is included to encourage selection of different points
in the batch – otherwise, without a diversity measure the same
or similar points will be selected in a batch, which reduces
the performance when compared with selecting 1 sample at
time. The diversity measure in batch-mode AL works if the
AL performance does not degrade with increasing batch sizes.
To evaluate its effectiveness, we compare the performance
with batch size of 1 (the basic setting) and batch sizes of 2,
5 and 10 (see “Batch” column in Table 3). Except for LAL,
most batch mode AL methods have only a slight performance
drop when applying larger batch size.

5 Discussion and Conclusion
We began this paper by noting the continued and frequent
use of simple methods (e.g., US, QBC, etc.) to solve AL
related tasks, despite the fact that many more sophisticated
methods have been proposed. We are interested in exploring
how much benefit does these sophisticated methods could offer.
Furthermore, when a limited number of datasets and baselines
are presented (and likely carefully selected to show advantage

Method All B M LD HD SS LS R S BAL IMB Batch
QBC 0.024 0.023 0.039 0.023 0.030 0.028 0.015 0.026 0.016 0.028 0.015 n/a
LAL 0.032 0.020 0.091 0.033 0.041 0.030 0.044 0.025 0.057 0.044 0.016 -0.010
US 0.039 0.033 0.058 0.038 0.047 0.033 0.049 0.032 0.069 0.047 0.024 n/a
HintSVM 0.048 0.048 n/a 0.043 0.067 0.049 0.047 0.045 0.064 0.058 0.036 n/a
VR 0.051 0.049 0.061 0.046 0.093 0.048 0.060 0.050 0.064 0.061 0.035 n/a
EER 0.051 0.051 0.052 0.040 0.117 0.042 0.074 0.047 0.061 0.055 0.034 0.000
DWUS 0.063 0.060 0.076 0.055 0.108 0.050 0.112 0.062 0.068 0.068 0.053 n/a
Hier 0.024 0.024 0.028 0.021 0.039 0.029 0.014 0.025 0.016 0.025 0.021 -0.003
KCenter 0.031 0.035 0.025 0.026 0.060 0.030 0.033 0.033 0.021 0.033 0.026 -0.002
BMDR 0.022 0.027 0.011 0.016 0.063 0.021 0.029 0.024 0.017 0.023 0.021 0.000
Graph 0.027 0.029 0.026 0.024 0.047 0.030 0.023 0.029 0.018 0.028 0.025 -0.003
MCM 0.029 0.029 0.035 0.026 0.043 0.028 0.030 0.027 0.039 0.032 0.024 -0.003
ALBL 0.030 0.030 n/a 0.027 0.042 0.036 0.021 0.030 0.027 0.035 0.024 n/a
InfoDiv 0.031 0.027 0.057 0.029 0.040 0.033 0.028 0.031 0.035 0.035 0.024 -0.004
Margin 0.032 0.029 0.058 0.031 0.040 0.033 0.030 0.032 0.036 0.036 0.025 -0.003
SPAL 0.051 0.029 0.124 0.052 0.066 0.044 0.104 0.045 0.078 0.067 0.024 0.001
QUIRE 0.062 0.048 0.099 0.059 0.088 0.051 0.097 0.048 0.109 0.080 0.029 n/a

Table 4: AL performance by AUBC(acc) from the method aspect. We
present the average performance difference between the best AL/BSO
and the AL method, i.e., δi = max(BSO, a1, · · · , a17)−ai, where
ai is the AUBC for the i-th method. Smaller values indicate better
AL performance. We consider various data properties: the overall
(All) performance, B/M is Binary/Multi-class (K = 2, K > 2),
LD/HD is Low-Dimension/High-Dimension (d < 50, d ≥ 50),
SS/LS is Small-Scale/Large-Scale (n < 1000, n ≥ 1000), R/S is
Real-life/Synthetic, BAL/IMB is BALance/IMBalance (IR < 1.5,
IR ≥ 1.5). For methods that support batch-mode, the average per-
formance drop when increasing batch sizes to 2, 5, and 10 is reported
in the last column (Batch). In each column, the top-3 methods are
bolded: 1st, 2nd, 3rd. “n/a” indicates that the category (e.g., M) is
not applicable to the related AL method.

of the proposed method), how to quantify the superiority of
the proposed AL model is also a crucial problem.

When implementing new methods, we need to validate the
proposed AL method against a variety of AL approaches on a
large set of representative datasets, to ensure its improvement
and generality. The degree of empirical diversity observed
is larger than we expected since we only aggregated the ex-
isting AL methods and public datasets together into a larger
benchmark, yet we obtain a variety of datasets with different
properties: small/large scale, low/high dim, binary/multi-class,
balance/imbalance, etc.

We have observed that some single criterion based methods
(e.g., QBC, Hier) in the benchmark tests are often superior to
many combined strategies. Moreover, in the scenarios where
batch-mode AL is used to accelerate the learning process, the
methods that integrate multiple criteria (e.g., BMDR) also
perform well on our benchmark tests. However, compared
with single criterion based methods, we do not observe much
impressive improvements from the more sophisticated meth-
ods (e.g., SPAL, QUIRE ). It is likely that some methods
have overfit certain datasets at the expense of performance
on other datasets. Thus, horizontal comparisons between AL
methods on a common benchmark are necessary to ensure
overall progress of the field.

We will continue to collect more datasets and AL methods
for our benchmark, since better benchmarking tests help us to
understand where the improvements come from.
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