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Proposition 1. Using the settings and notations in Section 2.3, maximizing the
data log-likelihood is equivalent to maximizing the mutual information between
ground-truth y and the prediction ŷ, i.e.,

max
Θ

Ex,y∼px,y
log pΘ(y|x)⇔ max

Θ
I(y, ŷ). (1)

Proof. The structure of pΘ(y|x) is given by

pΘ(y|x) =
∫
pΘ(y|ŷ)pΘ(ŷ|x)dŷ

=

∫
pΘ(y|ŷ)δfM,Θ(x)(ŷ)dŷ

= p0(y|fM,Θ(x)) (2)

where δfM,Θ(x)(ŷ) = δ(ŷ−fM,Θ(x)), fM,Θ(x) =
∑M

i=1 viσ(U
T
i x). That is, given

an input x0, pΘ(y|x = x0) = p0(y|ŷ = fM,Θ(x0)) are the same. The joint
probability

pΘ(y, ŷ) = pΘ(y|ŷ)pΘ(ŷ) = p0(y|ŷ)pΘ(ŷ) (3)

The MLE objective is,

max
Θ

Ex,y∼px,y
log pΘ(y|x). (4)

The mutual information between ground y and prediction ŷ can be written as,

max
Θ

I(y, ŷ) = max
Θ

H(y)−H(y|ŷ)

= max
Θ
−H(y|ŷ) (5)
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We can write,

H(y|ŷ) = Ey,ŷ∼pΘ(y,ŷ) − log pΘ(y|ŷ)
= EyEy|ŷ − log p0(y|ŷ)
= EyEx|yEŷ|x − log p0(y|ŷ) (6)

where the second equation is due to Eq. 3.
Note that ŷ|x ∼ δfM,Θ

leads to

Eŷ|x − log p0(y|ŷ) = − log p0(y|fM,Θ(x)) = − log pΘ(y|x) (7)

where the second equation is due to Eq. 2 again.
Now, we see that

max
Θ

Ex,y∼px,y
log pΘ(y|x)⇔ max

Θ
−H(y|ŷ)⇔ max

Θ
I(y, ŷ). (8)

Thus Eq. 1 holds.

Corollary 1. Using the setting and notations in Section 2.3, by applying ordered
dropout on the element of v, the maximum likelihood objective (LHS Eq. 1) is
equivalent to

max
Θ

I1 +
1

M

M∑
c=2

(M − c)(Ic − Ic−1), (9)

where Ic = I(y, fc(x)), fc(x) =
∑c

i b(x;Ui,vi) =
∑c

i viσ(U
T
i x).

Proof. By assigning the C(·) over the indices of elements in v, Eq. 1 is written
as

max
Θ

Ec∼CEx,y∼px,y
log pΘ(y|x)⇔ max

Θ
Ec∼CI(y, fc(x)) (10)

Let the C(·) be with uniform probability parameter 1
M , the objective becomes

max
Θ

∑
c

1

M
Ic, (11)

which is expanded as

max
Θ

I1 + (1− 1

M
)(I2 − I1) + (1− 2

M
)(I3 − I2) · · ·+ (1− M − 1

M
)(IM − IM−1)

(12)

⇔max
Θ

I1 +
1

M

M∑
c=2

(M − c)(Ic − Ic−1) (13)
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