Fully Nested Neural Network for Adaptive Compression and Quantization - Proof

Yufei Cui ${ }^{1}$, Ziquan Liu ${ }^{1}$, Wuguannan Yao 2, Qiao Li 1, Antoni B. Chan ${ }^{1}$, Tei-wei Kuo ${ }^{1}$, and Chun Jason Xue ${ }^{1}$
${ }^{1}$ Department of Computer Science, City University of Hong Kong
${ }^{2}$ Department of Mathematics, City University of Hong Kong

Proposition 1. Using the settings and notations in Section 2.3, maximizing the data log-likelihood is equivalent to maximizing the mutual information between ground-truth y and the prediction \hat{y}, i.e.,

$$
\begin{equation*}
\max _{\Theta} \mathbb{E}_{\mathbf{x}, y \sim p_{\mathbf{x}, y}} \log p_{\Theta}(y \mid \mathbf{x}) \Leftrightarrow \max _{\Theta} \mathbb{I}(y, \hat{y}) \tag{1}
\end{equation*}
$$

Proof. The structure of $p_{\Theta}(y \mid \mathbf{x})$ is given by

$$
\begin{align*}
p_{\Theta}(y \mid \mathbf{x}) & =\int p_{\Theta}(y \mid \hat{y}) p_{\Theta}(\hat{y} \mid \mathbf{x}) d \hat{y} \\
& =\int p_{\Theta}(y \mid \hat{y}) \delta_{f_{M, \Theta}(\mathbf{x})}(\hat{y}) d \hat{y} \\
& =p_{0}\left(y \mid f_{M, \Theta}(\mathbf{x})\right) \tag{2}
\end{align*}
$$

where $\delta_{f_{M, \Theta}(\mathbf{x})}(\hat{y})=\delta\left(\hat{y}-f_{M, \Theta}(\mathbf{x})\right), f_{M, \Theta}(\mathbf{x})=\sum_{i=1}^{M} \mathbf{v}_{i} \sigma\left(\mathbf{U}_{i}^{T} \mathbf{x}\right)$. That is, given an input $\mathbf{x}_{0}, p_{\Theta}\left(y \mid \mathbf{x}=\mathbf{x}_{0}\right)=p_{0}\left(y \mid \hat{y}=f_{M, \Theta}\left(\mathbf{x}_{0}\right)\right)$ are the same. The joint probability

$$
\begin{equation*}
p_{\Theta}(y, \hat{y})=p_{\Theta}(y \mid \hat{y}) p_{\Theta}(\hat{y})=p_{0}(y \mid \hat{y}) p_{\Theta}(\hat{y}) \tag{3}
\end{equation*}
$$

The MLE objective is,

$$
\begin{equation*}
\max _{\Theta} \mathbb{E}_{\mathbf{x}, y \sim p_{\mathbf{x}, y}} \log p_{\Theta}(y \mid \mathbf{x}) . \tag{4}
\end{equation*}
$$

The mutual information between ground y and prediction \hat{y} can be written as,

$$
\begin{align*}
\max _{\Theta} \mathbb{I}(y, \hat{y}) & =\max _{\Theta} \mathbb{H}(y)-\mathbb{H}(y \mid \hat{y}) \\
& =\max _{\Theta}-\mathbb{H}(y \mid \hat{y}) \tag{5}
\end{align*}
$$

We can write,

$$
\begin{align*}
\mathbb{H}(y \mid \hat{y}) & =\mathbb{E}_{y, \hat{y} \sim p_{\Theta}(y, \hat{y})}-\log p_{\Theta}(y \mid \hat{y}) \\
& =\mathbb{E}_{y} \mathbb{E}_{y \mid \hat{y}}-\log p_{0}(y \mid \hat{y}) \\
& =\mathbb{E}_{y} \mathbb{E}_{\mathbf{x} \mid y} \mathbb{E}_{\hat{y} \mid \mathbf{x}}-\log p_{0}(y \mid \hat{y}) \tag{6}
\end{align*}
$$

where the second equation is due to Eq. 3.
Note that $\hat{y} \mid \mathbf{x} \sim \delta_{f_{M, \Theta}}$ leads to

$$
\begin{equation*}
\mathbb{E}_{\hat{y} \mid \mathbf{x}}-\log p_{0}(y \mid \hat{y})=-\log p_{0}\left(y \mid f_{M, \Theta}(\mathbf{x})\right)=-\log p_{\Theta}(y \mid \mathbf{x}) \tag{7}
\end{equation*}
$$

where the second equation is due to Eq. 2 again.
Now, we see that

$$
\begin{equation*}
\max _{\Theta} \mathbb{E}_{\mathbf{x}, y \sim p_{\mathbf{x}, y}} \log p_{\Theta}(y \mid \mathbf{x}) \Leftrightarrow \max _{\Theta}-\mathbb{H}(y \mid \hat{y}) \Leftrightarrow \max _{\Theta} \mathbb{I}(y, \hat{y}) . \tag{8}
\end{equation*}
$$

Thus Eq. 1 holds.
Corollary 1. Using the setting and notations in Section 2.3, by applying ordered dropout on the element of \mathbf{v}, the maximum likelihood objective (LHS Eq. 1) is equivalent to

$$
\begin{equation*}
\max _{\Theta} \mathbb{I}_{1}+\frac{1}{M} \sum_{c=2}^{M}(M-c)\left(\mathbb{I}_{c}-\mathbb{I}_{c-1}\right) \tag{9}
\end{equation*}
$$

where $\mathbb{I}_{c}=\mathbb{I}\left(y, f_{c}(\mathbf{x})\right), f_{c}(\mathbf{x})=\sum_{i}^{c} b\left(\mathbf{x} ; \mathbf{U}_{i}, \mathbf{v}_{i}\right)=\sum_{i}^{c} \mathbf{v}_{i} \sigma\left(\mathbf{U}_{i}^{T} \mathbf{x}\right)$.
Proof. By assigning the $\mathcal{C}(\cdot)$ over the indices of elements in \mathbf{v}, Eq. 1 is written as

$$
\begin{equation*}
\max _{\Theta} \mathbb{E}_{c \sim \mathcal{C}} \mathbb{E}_{\mathbf{x}, y \sim p_{\mathbf{x}, y}} \log p_{\Theta}(y \mid \mathbf{x}) \Leftrightarrow \max _{\Theta} \mathbb{E}_{c \sim \mathcal{C}} \mathbb{I}\left(y, f_{c}(\mathbf{x})\right) \tag{10}
\end{equation*}
$$

Let the $\mathcal{C}(\cdot)$ be with uniform probability parameter $\frac{1}{M}$, the objective becomes

$$
\begin{equation*}
\max _{\Theta} \sum_{c} \frac{1}{M} \mathbb{I}_{c} \tag{11}
\end{equation*}
$$

which is expanded as

$$
\begin{align*}
& \max _{\Theta} \tag{12}\\
& \mathbb{I}_{1}+\left(1-\frac{1}{M}\right)\left(\mathbb{I}_{2}-\mathbb{I}_{1}\right)+\left(1-\frac{2}{M}\right)\left(\mathbb{I}_{3}-\mathbb{I}_{2}\right) \cdots+\left(1-\frac{M-1}{M}\right)\left(\mathbb{I}_{M}-\mathbb{I}_{M-1}\right) \tag{13}\\
& \Leftrightarrow \max _{\Theta} \\
& \mathbb{I}_{1}+\frac{1}{M} \sum_{c=2}^{M}(M-c)\left(\mathbb{I}_{c}-\mathbb{I}_{c-1}\right)
\end{align*}
$$

