
That was fast! Speeding up NN search of high dimensional

distributions.

Emanuele Coviello ecoviell@ucsd.edu

University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093

Adeel Mumtaz adeelmumtaz@gmail.com

City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Antoni B. Chan abchan@cityu.edu.hk

City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Gert R.G. Lanckriet gert@ece.ucsd.edu

University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093

Abstract

We present a data structure for fast near-
est neighbor retrieval of generative mod-
els of documents based on Kullback-Leibler
(KL) divergence. Our data structure, which
shares some similarity with Bregman Ball
Trees, consists of a hierarchical partition of a
database, and uses a novel branch and bound
methodology for search. The main technical
contribution of the paper is a novel and ef-
ficient algorithm for deciding whether to ex-
plore nodes during backtracking, based on a
variational approximation. This reduces the
number of computations per node, and over-
comes the limitations of Bregman Ball Trees
on high dimensional data. In addition, our
strategy is applicable also to probability dis-
tributions with hidden state variables, and is
not limited to regular exponential family dis-
tributions.

Experiments demonstrate substantial speed-
ups over both Bregman Ball Trees and over
brute force search, on both moderate and
high dimensional histogram data. In addi-
tion, experiments on linear dynamical sys-
tems demonstrate the flexibility of our ap-
proach to latent variable models.

Proceedings of the 30

th

International Conference on Ma-

chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

1. Introduction

Nearest neighbor (NN) search is a core routine in many
applications of machine learning and information re-
trieval. Formally, given a database X, a query q and
a dissimilarity d, the problem consists of finding the
x 2 X for which d(x, q) is minimum. In this work
we are particularly interested in the case where the
data points represent probability distributions, and
the dissimilarity measure is the Kullback-Leibler (KL)
divergence (relative entropy). KL has been exten-
sively used to compare generative models of docu-
ments, e.g., in text analysis (Pereira et al., 1993; Blei
& La↵erty, 2007) and content-based image retrieval
(Puzicha et al., 1999; Rasiwasia et al., 2007), where
documents are often modeled using histograms, as well
as in computer vision for video classification (Chan &
Vasconcelos, 2005), where videos are modeled as linear
dynamical systems.

Brute-force search is often prohibitive on large
datasets. As a consequence, a large body of work,
starting from KD-trees (Friedman et al., 1977) and
metric-ball trees (Omohundro, 1989; Uhlmann, 1991;
Moore, 2000), has investigated the use of spatial data
structures to accelerate search. These consist of a
hierarchical space decomposition based on geometric
properties and database’s statistics, that enables fast
search by pruning out portions of the search space via
a branch and bound exploration. Cayton (2008) ex-
tends these ideas to the class of Bregman divergences,
of which KL is a member. In particular, Bregman Ball
trees (bbtrees) are defined in terms of Bregman balls,
and search uses bounds on the Bregman divergence
from a query to a Bregman ball. Succesively, Nielsen

Variational Branch & Bound

et al. (2009a; 2009b) developed an extension of the
bbtree to symmetrized Bregman divergences, Zhang et
al. (2009) adapted the VA-file and R-tree to decom-
posable Bregman divergence, and Cayton (2009) used
the bbtree for e�cient range search. Abdullah et al.
(2012) formally analyze approximated Bregman NN
search. These accelerated search methods are not im-
mediately practical in high dimensions (Moore, 2000;
Cayton, 2008), where the number of close neighbors
is often very large, and consequently the procedure
needs to run on many nodes, which results in several
additional divergence computations and a total com-
putation time that may become comparable or worse
than brute force.

The pruning operation of (Cayton, 2008) requires pro-
jecting the query onto the shell of a Bregman ball,
which is found using a bisection search. However, this
has 2 limitations: 1) the procedure is not amenable to
distributions outside the exponential family (e.g., la-
tent variable models); 2) two divergence calculations
are required for each iteration of the bisection search,
which leads to slow performance when the divergence
calculation is computationally intensive (e.g., in high
dimensions, or latent variable models).

To do more e�cient NN search, Bbtrees naturally han-
dle approximate NN operations, by stopping search
early after a fixed budget of leaves has been visited
(Cayton, 2008). This increases e�ciency without an
excessive degradation of quality.

In this paper we propose a novel branch and bound
method based on variational approximations. The cor-
responding bisection procedure has a small computa-
tional overhead, since it requires only one divergence
computation at each backtracked node, independent of
the number of iterations, and then needs to evaluate
only scalar functions at each iteration. The algorithm
provides a speedup over (Cayton, 2008) on medium
and high-dimensionality, and over brute force search at
each dimensionality, and returns almost perfect NNs.
In addition, our algorithm readily serves search of la-
tent variable distributions.

Other data structures for approximated NN search rely
on mapping techniques, for example locality sensitive
hashing (reviewed in (Slaney & Casey, 2008)) adapted
to non-metric dissimilarities by (Mu & Yan, 2010).

In Section 2 we overview Bregman and KL divergences.
In Section 3 we discuss Cayton’s (2008) NN search
with bbtrees, which lays the basis for our novel contri-
bution, in Section 4. Experiments on histogram data
and linear dynamical systems are reported in Sections
5 and 6, and conclusions are drawn in Section 7.

2. Bregman divergence and

Kullback-Leibler divergence

This section provides background on Bregman and KL
divergence and describes some related properties.

2.1. Bregman divergences

Given a strictly convex di↵erentiable function f(·), the
Bregman divergence based on f is d

f

(x, y) = f(x) �
f(y)�hrf(y), x�yi. A Bregman divergence d

f

(x, y) is
convex in x, and the Bregman ball of radius R around
µ

B(µ,R) = {x : d
f

(x, µ) R} (1)

is a convex set. The interested reader may refer to
(Cayton, 2008; Banerjee et al., 2005) for more details.

Let f

⇤ be the dual function of f .1 Since f is strictly
convex, f⇤ is strictly convex as well, and f and f

⇤are
Legendre dual of each other (Rockafellar, 1996). One
important property is that the gradient rf defines a
bijective mapping, and the inverse mapping is given
by the gradient of the dual function f

⇤, i.e.:

µ

rf(µ)�����! �����
rf

⇤
(µ

0
)

µ

0 (2)

Consistently with the exposition in (Cayton, 2008), we
use prime (i.e., 0) to denote the results of applying rf .

2.2. Regular exponential families, regular
Bregman divergences and KL divergence

Given a pair of random variables with p.d.f.s X and
Y, respectively, their KL divergence is the functional

D(X||Y) =

Z

X (!) log
X (!)

Y(!)
d! = EX

log
X
Y

�

. (3)

The KL divergence is never negative, and is zero i↵
X = Y (a.e.).

There is an interesting correspondence between Breg-
man divergences and KL divergence, which occurs
when we deal with exponential family distributions
(Banerjee et al., 2005). In particular, for any regular
Bregman divergence d

f

based on f(µ), there is associ-
ated a regular exponential family of distributions

F
f

⇤ = {p
f

⇤
,µ

0(·) = exp (h�(·), µ0i � f

⇤(µ0))} , (4)

where �(·) are the su�cient statistics, µ0 are the canon-
ical parameters, and the dual function f

⇤ is the parti-
tion function. The gradient operation rf⇤ maps from

1Given f(x), the dual function is defined as f

⇤(y) =
sup

x

{hx, yi � f(x)}

Variational Branch & Bound

canonical to mean parameters µ (Wainwright & Jor-
dan, 2008). f(µ) is the negative entropy and its gradi-
ent rf maps µ to the canonical parameters µ0 (Wain-
wright & Jordan, 2008). d

f

is the KL divergences be-
tween members of F

f

⇤ .

Hence, when X and Y are distributions from the same
exponential family with mean parameters x and y re-
spectively, we have that

D(X||Y) = d

f

(x, y) = f(x)� f(y)� hrf(y), x� yi,
(5)

where the l.h.s is a functional of two p.d.f.s and the
r.h.s. is a function of the mean parameters.

3. Branch and bound for BB trees

In this section we briefly review the branch and bound
method for Bregman ball trees by Cayton (2008).

3.1. BB trees

Bregman ball trees and the associated search rou-
tine follow the same principles of KD trees (Friedman
et al., 1977) and metric ball trees (Omohundro, 1989;
Uhlmann, 1991; Moore, 2000), with the di↵erence that
they are based on Bregman balls instead of rectangular
cells or metric balls. A bbtree consists of a binary tree
that partitions a database X = {x

1

, . . . , x

n

}. Every
node i is associated with a subset of points X

i

⇢ X,
and defines a Bregman ball with center µ

i

and radius
R

i

such that 8x 2 X

i

: x 2 B(µ
i

, R

i

). Each non-leaf
node i is associated with left and right child nodes, l
and r, andX

i

is consequently split betweenX

l

andX

r

.
The entirety of leaf nodes covers X. A Bregman Ball
tree can be grown from the database X in a top-down
fashion, recursively using (Banerjee et al., 2005).

3.2. Searching with BB trees

Given a query q, we are interested in its left-NN2

x

L

= argmin
x2X

d

f

(x, q). (6)

Search with a BB tree proceeds as follow. The al-
gorithm initially descends the BB tree, starting from
the root. At every non-leaf node the algorithm de-
scends through the most promising child node and
temporarily ignores the sibling node. Once the algo-
rithm reaches a leaf node X

i

, it selects the candidate
nearest neighbor x

c

= argmin
x2Xi df (xi

, q).

2Cayton (2008) shows that the right-NN can be found
using the left-NN algorithm for the divergence d

f

⇤ and the
database X

0 = {x0
1

, . . . , x

0
n

}.

At this point, the algorithm backtracks, and explores
an originally ignored sibling j if

d

f

(x
c

, q) > min
x2B(µj ,Rj)

d

f

(x, q). (7)

where the right side of (7) is the Bregman projection of
q onto the Bregman ball B(µ

j

, R

j

) (see Figure 1(a)).
Cayton (2008) proves that the optimal x

p

of (7) corre-
sponds to an x

p

0 = rf(x
p

) along the line ✓µ0+(1�✓)q0,
0 ✓ 1,3 lays on the shell of B(µ

j

, R

j

) and can be
found by bisection search over ✓.

At step i of the bisection search, given ✓

i

, a point
x

0
✓i

= ✓

i

µ

0 + (1 � ✓

i

)q0 is identified along the line,
and the corresponding x

✓i = rf⇤(x0
✓i
) is recovered.

This in fact consists of computing a left-sided centroid
(Nielsen & Nock, 2009)

x

✓i = argmin
x

✓

i

d

f

(x, µ) + (1� ✓

i

)d
f

(x, q) (8)

= rf⇤(✓
i

µ

0 + (1� ✓

i

)q0). (9)

3.3. Bregman projection vs. stopping early

Since exact evaluation of the Bregman projection (7) is
not needed, Cayton (2008) derives stopping conditions
based on upper and lower bounds

a min
x2B(µj ,Rj)

d

f

(x, q) A. (10)

Upper and lower bounds are computed at each itera-
tion of the bisection, until either d(x

c

, q) < a (prune
the node) or d(x

c

, q) > A (explore the node).

The lower bound a is given by weak duality:

L(✓) = d

f

(x
✓

, q) +
✓

1� ✓

(d
f

(x
✓

, µ)�R) , (11)

where L(✓) is the Lagrangian of the right side of (7)
and 0✓1. The upper bound A comes directly from
the primal problem:

if x
✓

2 B(µ
j

, R

j

)) d

f

(x
✓

, q) � min
x2B(µj ,Rj)

d

f

(x, q). (12)

Hence the algorithm operates bisection search on ✓

as follows (see Figure 1(b)). At the i-th step, given
✓

i

, the algorithm computes the left-sided centroid
rf⇤(✓

i

µ

0 + (1 � ✓

i

)q0) and then checks the bounds.
If L(✓

i

) > d

f

(x
c

, q), it prunes the node. Else, if
x

✓i 2 B(µ
j

, R

j

), it updates the upper bound, and if
d

f

(x
✓i , q) < d

f

(x
c

, q) the node must be searched. If

3This requires to define the Lagrange dual function of
(7), inf

x

d

f

(x, q) + �(d
f

(x, µ)�R), � � 0, set the gradient
to zero, and use the change of variable ✓ = �

1+�

.

Variational Branch & Bound

Algorithm 1 CanPrune by Cayton (2008)

1: Input: ✓
l

, ✓
r

, q, x
c

, µ, R
2: Set ✓ = ✓l+✓r

2

3: Set x
✓

= rf

⇤(✓µ0 + (1� ✓)q0)
4: Compute d

f

(x
✓

, q) and d

f

(x
✓

, µ)
5: if L(✓) > d

f

(x
c

, q)
Return Yes

6: else if x

✓

2 B(µ,R) and d

f

(x
✓

, q) < d

f

(x
c

, q)
Return No

7: else if x

✓

/2 B(µ,R)
Return CanPrune(✓, ✓

r

,q,x
c

,µ,R)
8: else if x

✓

2 B(µ,R)
Return CanPrune(✓

l

, ✓,q,x
c

,µ,R)

neither bound holds, the algorithm continues the bisec-
tion. The procedure from (Cayton, 2008) is reported
in Algorithm 1 for the reader’s convenience. Note that
in each iteration of CanPrune, two divergences are cal-
culated in Step 4.

4. Variational Branch and Bound

In this section we present a novel and approximated
bisection search based on variational inequalities. The
proposed method requires only one divergence oper-
ation at each backtracked node (independent of the
number of iterations), is e�cient in high dimensions,
and can be applied to latent variable models. The ef-
fect of the approximation is discussed in Section 4.4.

4.1. Overview and notation

In this section we assume that d
f

is a regular Bregman
divergence (i.e., KL divergence for an exponential fam-
ily). Let M, Q, X

c

be the distributions corresponding,
respectively, to the node, the query, and the candidate
nearest neighbor. Their mean parameters are, respec-
tively, µ, q and x

c

. Define a mixture distribution of
components M and Q with weights ✓ and 1� ✓:

⇥ = ✓M+ (1� ✓)Q. (13)

Our algorithm works as illustrated in Figure 1(c). In-
stead of explicitly computing the left-sided centroid x

✓

(Step 3 of CanPrune, Figure 1(b)) at each recursive it-
eration, it uses a mixture model ⇥ (equation (13)).
This allows to approximate d

f

(x
✓

, µ) and d

f

(x
✓

, q)
with lower bounds to D(⇥||M) and D(⇥||Q). The
bounds depend only on d

f

(µ, q) and d

f

(q, µ) (which
are fixed), and on the mixing parameter ✓. As a con-
sequence, bisection search only requires evaluating of
simple scalar functions (as opposed to divergences).

4.2. Variational lower bounds

Our algorithm builds on the variational approximation
to the KL divergence between mixtures by Hershey

and Olsen (2007),4 and on the observation that the
approximation holds as an inequality whenever one of
the two terms is unimodal.

4.2.1. Variational approximation to the KL
(Hershey & Olsen, 2007)

Let A = {⇡
i

,A
i

} be a mixture with weights ⇡

i

and
components A

i

. Similarly, let B = {!
j

,B
j

} be a dif-
ferent mixture. Assume the mixture components A

i

and B
j

belong to some family for which we can com-
pute the KL divergence. Consider the KL divergence
between A and B:

D(A||B) = EA[log
A
B] = EA[logA]� EA[logB]. (14)

Hershey and Olsen (2007) derive a lower bound to the
expected log-likelihood terms on the right-hand side of
(14), and in turn an approximation (as the di↵erence
of two lower bounds) to the KL:

D(A||B) ⇡
X

i

⇡

i

log

P

i

0 ⇡
i

0 exp{�D(A
i

||A
i

0)}
P

j

!

j

exp{�D(A
i

||B
j

)} .

4.2.2. Variational lower bound to KL

Assume that A = ⇥ = ✓M + (1 � ✓)Q is a mixture
of two components, and that B consists of a single
component, and consider their KL divergence

D(⇥||B) = E
⇥

[log⇥]� E
⇥

[logB]
= ✓EM[log⇥] + (1� ✓)EQ[log⇥]

| {z }

E⇥[log⇥]

� ✓EM[logB] + (1� ✓)EQ[logB]
| {z }

E⇥[logB]

.

(15)

The first term cannot be computed exactly, but can be
lower bounded (Hershey & Olsen, 2007). The second
term can be computed exactly since it only involves ex-
pected log-likelihoods of individual components. Con-
sequently, the variational approximation to D(⇥||B)
holds as a lower bound. Dealing with lower bounds (as
opposed to approximations) allows to characterize the
errors made by Algorithm 2 (see Section 4.4).

Lower bounds to D(⇥||M) and D(⇥||Q) are easily de-
rived (Coviello et al., 2013):

`

m

= ✓ log [✓ + (1� ✓) exp{�D(M||Q)}]
+ (1� ✓) log [✓ + (1� ✓) exp{D(Q||M)}] ,

(16)

`

q

= ✓ log [✓ exp{D(M||Q)}+ (1� ✓)]

+ (1� ✓) log [✓ exp{�D(Q||M)}+ 1� ✓] .
(17)

4Cfr., Section 7 in (Hershey & Olsen, 2007)

Variational Branch & Bound

x

*

d

f

(x*
,µ) d

f

(x*
,q)

µ q

B(µ,R)

x

* =arg min
xЄB(µ,R)

d

f

(x,q).

(a) Bregman projection

L(✓)

d

f

(x
✓

,µ) d

f

(x
✓

,q)

µ

q

x

✓

µ x

✓

q

B(µ,R)

x

✓

=argmin
x

✓d

f

(x,µ)+(1 � ✓)d
f

(x,q)

(b) Cayton’s (2008) bisection search

B(µ,R)

✓µ

(1 � ✓)q

⇥

d

f

(q ,µ)
d

f

(µ,q)

⇥
µ

q

⇡ +

q

(✓)⇡ +

m

(✓)

⇡ L(✓)

(c) Our approximation

Figure 1. a) Bregman projection of q onto the Bregman ball B(µ,R). The optimum x

⇤ lies at the intersection of shell of
B(µ,R) and the image under rf

⇤ of the line segment between µ

0 and q

0. There is no general analytical solution, and
x

⇤ can be found with bisection search. b) Algorithm 1 performs bisection search over ✓, at each iteration computing a
new centroid x

✓

between µ and q (Step 3) and the two divergences from x

✓

to the node µ and the query q, d
f

(x
✓

, µ)
and d

f

(x
✓

, q) (Step 4). Conditions to stop the bisection depend on these two divergences. c) Our method uses a mixture
⇥ with components µ and q and weights ✓ and 1 � ✓, instead of computing a new centroid x

✓

. d

f

(x
✓

, µ) and d

f

(x
✓

, q)
are approximated with `

+

m

(✓) and `

+

q

(✓), which are functions only of the scalar ✓, given the fixed quantities d

f

(µ, q) and
d

f

(q, µ). Conditions to stop the bisection depend only on `

+

m

(✓) and `

+

q

(✓).

4.2.3. Monotonicity

When D(Q||M) is very close to zero, `
m

is not always
monotonic (see (Coviello et al., 2013) for an illustra-
tion). This would make the bound useless for bisec-
tion search. Luckily, we can easily derive a monotonic
bound `

+

q

(✓) = max(0, `
q

(✓)), i.e., by setting `
m

to zero
when it is not informative (i.e., when it is negative).

Lemma 4.1 `

+

m

(✓) = max(0, `
m

(✓)) is monotonic in
[0 1].

Proof `

m

(✓) is convex in [0 1].5 As a consequence of
convexity, `

m

(✓) can cross zero at most twice, and in
particular at most twice in [0 1].
We have that `

m

(1) = 0 and `

m

(0) = D(Q||M) � 0.
If `

m

(✓) crosses zero only once (i.e., at ✓ = 1), then
`

m

(✓) is monotonic for ✓ 2 [0 1]. If `
m

(✓) crosses zero
also at ✓⇤ 2 (0 1), we have that `

m

(✓) is monotonic for
✓ 2 [0 ✓⇤] (and until it reaches its minimum).6 The
result follows.

Similarly, we can define the lower bound `

+

q

(✓) =
max(0, `

q

(✓)) (which is monotonic as well).

4.3. Approximated pruning algorithm

Our algorithm is based on the quantities:

`

+

q

(✓), `

+

m

(✓), `L(✓) ⌘ `

+

q

(✓) +
✓

1� ✓

�

`

+

m

(✓)�R

�

. (18)

The algorithm performs bisection search over ✓, and
attempts to locate the ✓ for which l

+

m

(✓) = R, using

5This follows from the positivity of the second derivative
d

2
`m(✓)

d✓

2 in [0 1] see (Coviello et al., 2013).
6For ✓ 2 [✓⇤ 1], `

m

(✓) is negative, and is a trivial bound.

Algorithm 2 CanPruneApprox

1: Input: ✓
l

, ✓
r

; Const: d
f

(µ, q), d
f

(q, µ), R, d
f

(x
c

, q)
2: Set ✓ = ✓l+✓r

2

3: Compute `

+

q

(✓), `+
m

(✓) and `L(✓)
4: if `L(✓) > d

f

(x
c

, q)
Return Yes

5: else if `

+

m

(✓) < R and `

+

q

(✓) < d

f

(x
c

, q)
Return No

6: else if `

+

m

(✓) > R

Return CanPruneApprox(✓, ✓
r

)
7: else if `

+

m

(✓) < R

Return CanPruneApprox(✓
l

, ✓)

early stopping. As a lower bound we use `L(✓) instead
of L(✓). We set the upper bound to `

+

q

(✓) whenever
`

+

m

(✓) < R.7

At each iteration i, the algorithm computes the quan-
tities in (18). If `L(✓i) > d

f

(x
c

, q), it prunes the node.
Else, if `+

m

(✓
i

) < R, it updates the upper bound, and
if `+

q

(✓
i

) < d

f

(x
c

, q) the node is searched. If neither
bound holds, the algorithm continues the bisection.
The procedure is summarized in Algorithm 2.

4.4. Discussion

The proposed algorithm executes faster on a node
than Cayton’s original algorithm. In particular, at
every recursive iteration the latter requires updating
the centroid x

✓

plus two divergence operations (i.e.,
computing d

f

(x
✓

, q) and d

f

(x
✓

, µ)). On high dimen-

7We could update the upper bound for early stopping
using an upper bound to d

f

(x
✓

, q) instead of `+
q

. The rea-
son we do not is to make the algorithm over-explorative
under the circumstances explained in Section 4.4.

Variational Branch & Bound

sional data, this results in a significant overhead, since
individual divergence operations are expensive, and,
most importantly, the procedure needs to be executed
on a large fraction of the nodes (due to the large
number of close neighbors in high dimensions (Moore,
2000)). Not surprisingly, Algorithm 1 did not work
well for exact NN search on high dimensional data
(Cayton, 2008), where it registered slow-downs (in-
stead of speedups) relative to brute force search.

On the other hand, our method drastically reduces the
amount of computation per backtracked node to a sin-
gle divergence operation, independently of the number
of iterations in the bisection search. At each recursive
call of Algorithm 2, `+

m

(✓) and `

+

q

(✓) are functions of
the scalar ✓ and of the fixed quantities d

f

(q, µ) and
d

f

(µ, q). Since d

f

(q, µ) is already computed by the
search routine when descending the tree (for choosing
between a node’s left and right child), only one addi-
tional divergence needs to be computed. We expect
this to give our algorithm an edge for e�ciency on
high-dimensional data.

The solution proposed by Cayton (2008) to speed up
retrieval time uses the bbtree for approximate search,
by fixing a maximum budget of leaves that can be
explored for each query, after which backtracking is
stopped. This is suboptimal, since the approximation
is independent of the query and may blindly ignore
(once the budget is depleted) promising portions of
the search space only because they appear later in the
backtracking order. Our approximation, on the other
hand, only depends on the parameters of the query
and of the nodes of the tree (as opposed to a fixed
leaf budget), and the resulting backtracking will adapt
better to individual queries and the local structure of
the tree, as illustrated below.

In fact, we can argue that Algorithm 2 tends to
be over-explorative on nodes close to the query, and
under-explorative on nodes further away. Since we
are using in sequence an approximation and a lower
bound,

d

f

(x
✓

, q) ⇡ D(⇥||Q) � `

+

q

(✓), (19)

d

f

(x
✓

, µ) ⇡ D(⇥||M) � `

+

m

(✓). (20)

in general (19) (20) are not bounds to d

f

(x
✓

, q) and
d

f

(x
✓

, µ). However, as shown by the next claim, when
the query and the node have very close distributions,
(19) and (20) hold as lower bounds.

Claim 4.2 If q

0 = µ

0 + �

0, for �

0 small, we have
d

f

(x
✓

, µ) � l

+

m

(✓) (similarly, d
f

(x
✓

, q) � `

+

q

(✓)).

Proof We have x0
✓

= µ

0+(1� ✓)�0 and µ

0 = x

0
✓

� (1�
✓)�0. Consider the Riemannian manifold around x

0
✓

(with curvature rf⇤(x0
✓

)), and that the Riemannian
metrics associated to f and f

⇤ have identical infinites-
imal length (Amari, 2009; Nielsen & Nock, 2009). Con-
sequently we have:8

d

f

(x
✓

, µ)=
1

2
(1� ✓)2�0

tr2

f

⇤(x0
✓

)�0 (21)

=
1

2
(1� ✓)2�tr2

f(x
✓

)� = (1� ✓)2� (22)

where we use the notation � = 1

2

�

tr2

f(x
✓

)� to reduce
clutter. Similarly, we have that d

f

(q, µ) = 1

2

� and
d

f

(µ, q) = 1

2

�. Using the approximations exp{a} =
1 + a and log(1 + a) = a (for |a| small), we have that:

`

m

(✓)= (1�✓) log [1+(1�✓)�] + ✓ log [1�(1�✓)�](23)

 log {(1�✓) [1+(1�✓)�] + ✓ [1�(1�✓)�]} (24)

= log
n

1 +
h

(1� ✓)2 � ✓(1� ✓)
i

�
o

(25)

=
h

(1� ✓)2 � ✓(1� ✓)
i

� (1� ✓)2� (26)

where (24) follow from Jensen inequality and (26)
form the fact that ✓(1 � ✓) � 0 for ✓ 2 [0 1]. Since
d

f

(x
✓

, µ) � 0 we also have d

f

(x
✓

, µ) � `

+

m

(✓).

In this case, the decision whether to prune a node is
based on a looser lower bound (i.e., `L(✓) L(✓) in-
stead of L(✓) in Algorithm 1), and Algorithm 2 will
consequently prune less frequently. Similarly, check-
ing the condition `

+

m

(✓) < R results in inflating the
ball around the node, and may determine more explo-
rations.

On the opposite, if q is far from µ, (19) and (20) may
actually hold as upper bounds, making the backtrack-
ing under-explorative.9 This has the e↵ect that our
algorithm better accounts for the sparsity of data rel-
ative to the dimensionality, reducing the backtrack-
ing for high-dimensional data. Skipping a large region
of space centered far away form the query determines
computational savings, but does not a↵ect NN perfor-
mance too much. Even if the region could potentially
contain points very close to query, it most likely does
not, since the points it contains are very few (relative
to the dimensionality).

Our results in Section 5 demonstrate that, on
moderate- and high-dimensional data, our algorithm is
very e�cient and returns almost perfect nearest neigh-
bors. In addition, the approximation does not require

8To show (21) we can use Legendre duality d

f

(x
✓

, µ) =
f(x

✓

)+f

⇤(µ0)�hµ0
, x

✓

i and second order Taylor expansion
of f⇤(µ0) = f

⇤(x0
✓

� (1� ✓)�0) around x

0
✓

.
9Since x

✓

is zero forcing (as a left-sided centroid), it will
have smaller support than ⇥, and consequently d

f

(x
✓

, µ)
(respectively, d

f

(x
✓

, q)) will be smaller than D(⇥||M) (re-
spectively, D(⇥||Q)).

Variational Branch & Bound

empirically tuning any meta-parameter (such as the
leaf budget in (Cayton, 2008)).

Interestingly, since our algorithm requires only the
computation of divergence terms (and bypasses the
computation of the centroid), it is by no means lim-
ited to the exponential family. In fact, it can be readily
applied to NN-search of any family of distributions,10

as long as the divergence between individual members
can be computed (e�ciently). In Section 6 we illus-
trate this for time series models with latent variables.

Algorithm 1, on the other hand, cannot be adapted
to latent variable models in an e�cient way. In par-
ticular, the left-sided centroid x

✓

cannot be computed
analytically, since the hidden-state bases correspond-
ing to the query and the node (i.e., Q and M) may be
mismatched.11,12

5. Experiments on histogram data

We first consider experiments on histogram data,
where we can directly compare our proposed method
against Cayton’s (2008) exact and approximate NN
search.13 We consider the 9 histogram datasets from
(Cayton, 2008) listed in Table 1, most of which are
fairly high dimensional. We refer to our algorithm
as Variational, Cayton’s exact and approximated
search as Cayton and CaytonApprox, respectively, and
brute force search as Brute.

Performance is measured in terms of speedup relative
to brute force search, and by the average number of
elements in the database that are closer to the query
than the returned one (NC) (Cayton, 2008). For ex-
act algorithms (e.g., Cayton and Brute), NC = 0
always. All results are averages over queries not in the
database.

In Table 1 we compare performance of Variational to
Cayton. In general, on moderate to high dimen-
sional data (d � 32), our algorithm provides larger
speedups than Cayton. The gain in computational
e�ciency has a very modest e↵ect on the quality of

10For distributions not in the exponential family, Algo-
rithm 2 (and in particular the quantities in (18)), need to
be expressed in terms of KL divergences between the dis-
tributions Q, M, X

c

, since they do not correspond to a
regular Bregman divergence.

11For example, for hidden Markov models, the labeling
of hidden states may be swapped.

12 Note that näıvely approximating the centroid with
iterative algorithms or numerical techniques would be in-
e�cient.

13For Cayton’s (2008) NN search we use the code avail-
able at http://lcayton.com. Our method is implemented
in the same framework and is available on the authors’ web
pages.

Variational, as demonstrated by the low NC values.
In addition, whereas Cayton is slower than brute force
search on the two datasets of highest dimensionality
(d = 371 and d = 1111), Variational always reg-
isters a speedup. In particular, on “Sift signatures”,
Variational provides a substantial 6⇥ speedup over
brute force search, with an NC of 0.0784. Further
examining the NC values, Variational finds the NN
95.7% of the time, the 2nd NN 2.6%, and 2+ NN 1.7%
(with a low average approximation ratio of ✏ = 0.3).14

Table 1. Results on histogram data, using di↵erent
datasets. The speedup is w.r.t. brute force search. The
databases for rcv-n, Corel hist, Semantic space, and SIFT
signature have size 500, 000, 60, 000, 4, 500 and 10, 000, re-
spectively. The number of queries is 10, 114, 6, 616, 500
and 2, 360, respectively

Cayton Variational

Data set dim speedup speedup NC

rcv-8 8 60.75 21.23 0.0001
rcv-16 16 30.49 19.27 0.0000
rcv-32 32 17.18 24.60 0.0016
rcv-64 64 8.19 24.21 0.0003
Corel hist 64 2.56 4.14 0.0020
rcv-128 128 4.29 14.51 0.0018
rcv-256 256 2.58 2.95 0.0000
Semantic space 371 0.93 1.29 0.0020
SIFT signatures 1111 0.86 5.88 0.0784

In Figure 2 we compare Variational to
CaytonApprox, on three datasets of medium to
high dimensionality. For both methods, we set a
fixed budget �

d

of divergence computations allowed
per query, after which backtracking stops.15 In
general, Variational is superior to CaytonApprox,
achieving more e↵ective speedups and lower NC
values—note that in Figure 2(c) the left-most point
for CaytonApprox (dashed red line) corresponds
to no speedup, and is hence of no practical in-
terest. In particular, the threshold-free version of
Variational (from Table 1 and circled in Figure
2) does not require setting any meta-parameter and
is e�cient also on high dimensional data. These
results show that, by adapting backtracking to the
query and the local structure of the tree, our approx-
imation e↵ectively explores promising regions of the
search space and achieves computational savings by
under-exploring less promising ones.

14The approximation ratio is the smallest ✏ satisfying
d

f

(x, q) (1 + ✏)d
f

(x
q

, q), where x

q

is q’s true NN and x

is the returned element.
15Backtracking stops either when the budget is con-

sumed or when one of the early stopping conditions is met.

Variational Branch & Bound

NN −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

NC

xS
p

e
e
d

u
p

Cayton (div bound)
Variational (div bound)
Variational (free)

(a) rcv-64 (d = 64)

NN −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

NC

xS
p

e
e
d

u
p

Cayton (div bound)
Variational (div bound)
Variational (free)

(b) rcv-128 (d = 128)

NN −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

NC

xS
p

e
e
d

u
p

Cayton (div bound)
Variational (div bound)
Variational (free)

(c) SIFT hist (d = 1111)

Figure 2. Log-log plots (base 10) for approximated NN-search using Variational and CaytonApprox, �
d

2 [20 2log2 |X|].
The vertical axis is the exponent of the speedup over Brute; the horizontal axis is the exponent of the average number of
DB points closer to the query than the returned result (NC). Points toward the top-left corner are better.

6. Experiments on dynamic textures

In this section we test our algorithm on NN search of
dynamic textures (DTs) (Doretto et al., 2003), which
have been used to model video (Coviello et al., 2012;
Mumtaz et al., 2012) and music (Barrington et al.,
2010; Coviello et al., 2011).

A DT model represents a n-dimensional time series of
length T , y

1

, . . . , y

T

, as generated by a linear dynam-
ical system (LDS):

s

t

= As

t�1

+ v

t

,

y

t

= Cs

t

+ w

t

+ ȳ .
(27)

where S

t

2 Rm is a lower-dimensional hidden state
process (m < n) that governs the dynamics, A is a
m⇥m transition matrix, C a n⇥m bases matrix, and
V

t

and W

t

are Gaussian noise processes. The KL di-
vergence between two DTs can be computed e�ciently
with a recursion (Chan & Vasconcelos, 2005), so we
can readily use our branch and bound search.

We consider the 4 datasets used by Coviello et al.
(2012), three of video and one of music. A dataset is
first divided into training/test splits, and a database of
DTsX is compiled from the training set, with each DT
modeling a portion of a video (or song). The database
(of DTs) is then hierarchically organized in a tree
structure using the Bag-of-Systems (BoS) Tree from
(Coviello et al., 2012), which produces balls around
each DT-node M, compact in terms of D(· ||M). Fi-
nally, we model portions of test videos (or songs) as
DTs, and for each we find its NN in X using the BoS
Tree in tandem with our backtracking algorithm.

Videos are preprocessed into a dense sampling of
spatio-temporal cubes of pixels (as in (Coviello et al.,
2012)). Each training video is then modeled as a dy-
namic texture mixture (DTM) with 4 components, and
the databases X are formed by selecting all the video-
level DT components. For each test video, we com-
pute a query-DT from each cube, using (Doretto et al.,

Table 2. Results for NN-search of DTs. Speedup is w.r.t.
Brute. dim are the degrees of freedom of the DT models.

Data set source dim |X| speedup NC

UCLA-39 video 211 624 2.11 0.13
DyTex video 355 630 6.16 1.24
KTH video 760 3040 1.74 1.42
CAL500 music 385 1600 2.60 4.52

2003). Songs are first represented as a dense sampling
of sequences of low-level features (as in (Coviello et al.,
2012)). Each training song is modeled as a DTM with
4 components, and all the song-level DTs form the
database X. For each experiment we compute average
speedup over Brute and NC, using the same cross val-
idation splits as (Coviello et al., 2012). Results on the
video and music datasets are in Table 2. Note that
in average Variational returns good answers. For
example, on the CAL500 music data, where we regis-
tered the highest NC value, Variational still returns
in average answers in the top 0.35%.

7. Conclusion

We have presented a branch and bound algorithm
based on variational approximations. We have shown
nearly perfect and e�cient NN-search on histogram
data of challenging dimensionality, as well as applica-
bility to more complex generative time series models.

Acknowledgements
The authors thank Lawrence Cayton for providing
code and data from (Cayton, 2008), and Malcolm
Slaney for helpful discussion. E.C., A.B.C. and
G.R.G.L. acknowledge support from Google, Inc. E.C.
and G.R.G.L. acknowledge support from Yahoo!, Inc.,
the Sloan Foundation, KETI under the PHTM pro-
gram, and NSF Grants CCF-0830535 and IIS-1054960.
A.M. and A.B.C. were supported by the Research
Grants Council of the Hong Kong Special Adminis-
trative Region, China (CityU 110610).

Variational Branch & Bound

References

Abdullah, A., Moeller, J., and Venkatasubramanian,
S. Approximate Bregman near neighbors in sub-
linear time: Beyond the triangle inequality. SCG,
2012.

Amari, S. Information geometry and its applications:
convex function and dually flat manifold. Emerging
Trends in Visual Computing, 2009.

Banerjee, A., Merugu, S., Dhillon, I.S., and Ghosh, J.
Clustering with Bregman divergences. JMLR, 2005.

Barrington, L., Chan, A.B., and Lanckriet, G. Mod-
eling music as a dynamic texture. IEEE TASLP,
2010.

Blei, D.M. and La↵erty, J.D. A correlated topic model
of science. The Annals of Applied Statistics, 2007.

Cayton, L. Fast nearest neighbor retrieval for bregman
divergences. In ICML, 2008.

Cayton, L. E�cient Bregman range search. NIPS,
2009.

Chan, Antoni B. and Vasconcelos, Nuno. Probabilistic
kernels for the classification of auto-regressive visual
processes. In IEEE CVRP, 2005.

Coviello, E., Chan, A.B., and Lanckriet, G.R.G. Time
series models for semantic music annotation. IEEE
TASLP, 2011.

Coviello, E., Mumtaz, A., Chan, A.B., and Lanckriet,
G.R.G. Growing a Bag of Systems Tree for fast and
accurate classification. In IEEE CVPR, 2012.

Coviello, E., Mumtaz, A., Chan, A.B., and Lanckriet,
G.R.G. Supplement to “That was fast! Speeding up
NN search of high dimensional distributions”. 2013.

Doretto, G., Chiuso, A., Wu, Y. N., and Soatto, S.
Dynamic textures. Intl. J. Computer Vision, 2003.

Friedman, J.H., Bentley, J.L., and Finkel, R.A. An
algorithm for finding best matches in logarithmic
expected time. ACM TOMS, 1977.

Hershey, J.R. and Olsen, P.A. Approximating the
Kullback Leibler divergence between Gaussian mix-
ture models. In IEEE ICASSP, 2007.

Moore, A.W. The anchors hierarchy: Using the trian-
gle inequality to survive high dimensional data. In
UAI, 2000.

Mu, Y. and Yan, S. Non-metric locality-sensitive hash-
ing. In AAAI CAI, 2010.

Mumtaz, A., Coviello, E., Lanckriet, G., and Chan, A.
Clustering Dynamic Textures with the Hierarchical
EM Algorithm for Modeling Video. IEEE TPAMI,
2012.

Nielsen, F. and Nock, R. Sided and symmetrized Breg-
man centroids. IEEE Transactions on IT, 2009.

Nielsen, F., Piro, P., and Barlaud, M. Bregman
vantage point trees for e�cient nearest neighbor
queries. In IEEE ICME, 2009a.

Nielsen, F., Piro, P., Barlaud, M., et al. Tailored Breg-
man ball trees for e↵ective nearest neighbors. In
EuroCG, 2009b.

Omohundro, S.M. Five balltree construction algo-
rithms. International Computer Science Institute,
1989.

Pereira, F., Tishby, N., and Lee, L. Distributional clus-
tering of English words. In Association for Compu-
tational Linguistics, 1993.

Puzicha, J., Buhmann, J.M., Rubner, Y., and Tomasi,
C. Empirical evaluation of dissimilarity measures
for color and texture. In IEEE ICCV, 1999.

Rasiwasia, N., Moreno, P.J., and Vasconcelos, N.
Bridging the gap: Query by semantic example.
IEEE Transactions on Multimedia, 2007.

Rockafellar, R.T. Convex analysis. Princeton univer-
sity press, 1996.

Slaney, M. and Casey, M. Locality-sensitive hashing
for finding nearest neighbors. IEEE, SPM, 2008.

Uhlmann, J.K. Satisfying general proximity/similarity
queries with metric trees. IP letters, 1991.

Wainwright, M.J. and Jordan, M.I. Graphical mod-
els, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 2008.

Zhang, Z., Ooi, B.C., Parthasarathy, S., and Tung,
A.K.H. Similarity search on Bregman divergence:
towards non-metric indexing. VLDB E, 2009.

