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Abstract

Although support vector machines (SVMs)
for binary classification give rise to a de-
cision rule that only relies on a subset of
the training data points (support vectors), it
will in general be based on all available fea-
tures in the input space. We propose two
direct, novel convex relaxations of a non-
convex sparse SVM formulation that explic-
itly constrains the cardinality of the vector
of feature weights. Omne relaxation results
in a quadratically-constrained quadratic pro-
gram (QCQP), while the second is based on a
semidefinite programming (SDP) relaxation.
The QCQP formulation can be interpreted
as applying an adaptive soft-threshold on the
SVM hyperplane, while the SDP formulation
learns a weighted inner-product (i.e. a ker-
nel) that results in a sparse hyperplane. Ex-
perimental results show an increase in spar-
sity while conserving the generalization per-
formance compared to a standard as well as
a linear programming SVM.

1. Introduction

Support vector machines (SVMs) (Vapnik, 1995) ad-
dress binary classification problems by constructing
a maximum-margin hyperplane that separates two
classes of data points. Typically, the SVM hyperplane
is a function of a relatively small set of training points,
i.e., those on or over the margin. Although sparse with
respect to data points, the SVM hyperplane is usually
not sparse in the original feature space; the decision
surface spans all dimensions of the latter, and all fea-
tures contribute to the decision rule. In many appli-
cations this may not be desired. First, if it is known
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that some of the features are noise it may be sensible
to simply ignore the associated dimensions, improving
the generalization ability of the decision rule. Second,
if some features are redundant (e.g. linear combina-
tions of other features), it may be possible to ignore the
redundant features without drastically changing the
classification performance, and thus reduce the com-
putational (or experimental) requirements of feature
extraction. Third, feature selection is often desirable
for reasons of interpretability, i.e. there is a need to
find which features are important for a given physical
process. For example in biological experiments, the
features may be gene expression data on DNA micro-
arrays, and identifying important features may lead
to a better understanding of the underlying biological
process. Finally, if the input space is high dimensional,
and obtaining the features is expensive (e.g., the result
of costly or time-consuming biological experiments),
economical considerations may strongly advocate for
a classifier based on a small subset of features.

An example of the improved generalization achiev-
able with a sparse decision-rule is presented in Fig-
ure 1, which shows a two-dimensional classification
problem where the second feature is noise. Twenty
feature-vectors were randomly drawn from each class
y € {—1,1}, with the first feature containing the sig-
nal 1 ~ N (3y,3), and the second feature containing
only noise zo ~ N(0,3), where N(p,0?) is a Gaus-
sian of mean g and variance o2. A standard and a
sparse SVM (using an SDP relaxation to be described
later) are trained, and the hyperplanes and margins of
the two SVMs are shown in the figure. Note that the
standard SVM hyperplane is skewed by the noise in
the second feature, while the sparse SVM finds a hy-
perplane that only depends on the first feature. The
latter has better generalization properties.

Numerous methods for feature selection have been
proposed (Guyon & Elisseeff, 2003; Blum & Langley,
1997). In the area of feature selection in SVMs, previ-
ous work falls into two categories: 1) algorithms that
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Figure 1. Example of a two-dimensional classification
problem where the second feature is noise. The normal
SVM fits the noise in the data, while the sparse SVM is
robust and ignores the noise.

adopt a feature selection strategy disjoint from SVM
training, and 2) algorithms that simultaneously learn
the optimal subset of features and the SVM classifier.
Algorithms in the first category rank features based
on the parameters of the SVM hyperplane. In (Guyon
et al., 2002), recursive feature elimination is combined
with linear SVMs. After training an SVM, the feature
with smallest weight in the decision rule is removed.
A new SVM is trained on the remaining features and
the process is repeated until the desired number of
features remains. This method was later extended in
(Rakotomamonyjy, 2003) to other ranking criteria, still
based on the hyperplane parameters. (Weston et al.,
2003) proposes another iterative method, alternating
between SVM training and re-scaling of the data, ac-
cording to the feature weights.

A second category of approaches integrates feature se-
lection and classifier training by adjusting the SVM
formulation to ensure sparsity of the resulting decision
rule. The proposed adjustments indirectly attempt to
minimize the ¢yp-norm (i.e., cardinality) of the hyper-
plane normal, a non-convex and difficult problem. The
linear programming SVM (LP-SVM) (Bennett & Man-
gasarian, 1992; Bradley & Mangasarian, 2000; Zhu
et al., 2003) achieves sparsity by minimizing the con-
vex envelope of the {y-norm, i.e., the £1-norm of the
normal vector (rather than the £o-norm as in the stan-
dard SVM). It has been applied to various problems
in computational biology (Grate et al., 2002; Fung &
Mangasarian, 2004) and drug-design (Bi et al., 2003).
Several methods achieve sparsity by augmenting the
SVM objective function with a penalty term on the

cardinality of hyperplane normal. (Bradley & Man-
gasarian, 1998) proposes to modify the LP-SVM with
a penalty term based on an fy-norm approximation.
Similarly, (Neumann et al., 2005) proposes two mod-
ified SVMs that add penalty terms based on the /¢;-
norm and on an {p-norm approximation. In contrast to
adding a penalty term on the cardinality, several meth-
ods introduce adaptive scale parameters that multiply
with the hyperplane normal, and feature selection is
achieved by encouraging sparsity of the scale param-
eters. (Grandvalet & Canu, 2003) proposes to learn
the scale parameters simultaneously with the standard
SVM problem. In (Weston et al., 2000) the scale pa-
rameters and SVM are learned by minimizing a bound
on the leave-one-out error, while (Peleg & Meir, 2004)
uses the global minimization of a data-dependent gen-
eralization error-bound.

In this paper, we study a sparse SVM formulation
that is obtained by augmenting the standard SVM
formulation with an explicit cardinality constraint on
the hyperplane normal. Note that this formulation
is in contrast to previous work, which either penal-
izes an fp-norm approximation of the hyperplane in
the objective, or uses adaptive scale-parameters. We
explore two direct convex relaxations of the sparse
SVM formulation. A first relaxation results in a
quadratically-constrained quadratic program (QCQP)
(Boyd & Vandenberghe, 2004), while the second is
based on a semidefinite programming (SDP) relax-
ation (Lemaréchal & Oustry, 1999). Empirical results
show an increase in sparsity, with roughly identical
classification performance, compared to both the stan-
dard and LP-SVM. The remainder of the paper is or-
ganized as follows. In Section 2, we briefly review the
standard SVM and the LP-SVM. Section 3 presents
the sparse SVM and derives the QCQP and SDP con-
vex relaxations. Finally, in Section 4 we present the
results of experiments on a synthetic example and on
a large set of UCI databases.

2. Standard SVM

Given a set of feature vectors {z;}Y, with z; € RY,
and corresponding labels {y;}Y, with y; € {-1,1},
the standard (linear) SVM learns the hyperplane that
separates the two classes of training points with maxi-
mal margin, measured in ¢3-norm. The C-SVM (Vap-
nik, 1995) formulation introduces slack variables to al-
low errors for data that may not be linearly separable.
The SVM hyperplane is learned by solving a quadratic
programming problem:
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Problem 1 (C-SVM)
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The dual of the C-SVM is also a quadratic program.

Problem 2 (C-SVM dual)
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The normal of the maximum-margin hyperplane can
be computed as w = Efil a;y;x; (Vapnik, 1995). The
«; variables are usually sparse (i.e., many of them are
zero), and the hyperplane only depends on a few train-
ing points. The hyperplane is, however, generally not
sparse in the original feature space; w is usually a
dense vector and the decision rule depends on all fea-
tures. An alternative formulation, which encourages
feature selection, is the LP-SVM, introduced in (Ben-
nett & Mangasarian, 1992). It replaces the £o-norm of
the C-SVM formulation with the ¢;-norm.

Problem 3 (LP-SVM)
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The dual of the LP-SVM is also a linear program,

Problem 4 (LP-SVM dual)
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3. Sparse SVM

The goal of the sparse SVM (SSVM) methods now pro-
posed is to construct a maximum-margin hyperplane

based on a limited subset of features in input space.
This is to be achieved by computing the hyperplane
parameters and the optimal feature subset simultane-
ously. The sparsity of the hyperplane normal w can be
explicitly enforced by adding a cardinality constraint
on w

Problem 5 (Sparse SVM)
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where Card(w) is the cardinality of w, i.e., its £y-norm
or the number of non-zero entries. This is a difficult
optimization problem, since the cardinality constraint
is not convex. However, a convex relaxation of the
SSVM can be found by replacing the non-convex cardi-
nality constraint by a weaker, non-convex, constraint.
Indeed, for all w € Rd, it follows from the Cauchy-
Schwartz inequality that

Card(w) =7 = |wll; <Vrlwly, (1)

enabling the replacement of the cardinality constraint
2 2 .

by ||lwl|] < rlwl|5. This weaker, non-convex, con-

straint can now be relaxed in two ways, leading

to two convex relaxations of the sparse SVM, a

quadratically-constrained quadratic program (QCQP)

and a semidefinite program (SDP).

3.1. QCQP Relaxation

If the £o-norm of w is bounded by another variable t,
ie., ||w||§ < t, then the constraint ||wa <r ||w||§ can
be relaxed to the weaker, convex, constraint ||wa <
rt. Relaxing the cardinality constraint of Problem 5
in this way, gives rise to a quadratically-constrained
quadratic programming relaxation of the sparse SVM

(QCQP-SSVM):

Problem 6 (QCQP-SSVM)

1 N
i —t+C i
min 5 + ;{

w,&,b,t
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This problem is equivalent to
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Problem 7 (QCQP-SSVM)

N
. 1 1 2 2
min, g mox (1l Jul3) + €36

b,t
webt 2 £

s.t. yz(wT.IZ—i-b)Zl—fl, ’L'::L...,]V7

& > 0.

In other words, the QCQP-SSVM is a combination
of the C-SVM and the LP-SVM where the (squared)
¢1-norm encourages sparsity and the fo-norm encour-
ages a large margin (in £2-norm). The dual of QCQP-
SSVM is given by (see (Chan et al., 2007) for a deriva-
tion):

Problem 8 (QCQP-SSVM dual)
N

max iZai — %

v, p

s.t. Zaiyizo, 0<a; <C, i=1,...,N,

The hyperplane normal w can be recovered from the
dual as w = % (Zfil o YiT; + 1/). Note that the dual

formulation is similar to the C-SVM dual (Problem 2)
in that they both contain similar linear and quadratic
terms of a;. However, the QCQP-SSVM dual intro-
duces a d-dimensional vector v, subjected to a box
constraint of p, which adds to the SVM hyperplane
q= Zi\il a;y;x;. The role of the vector v is to apply
a soft-threshold to the entries of q. Consider the case
where we only optimize v, while holding all the other
variables fixed. It can be shown that the optimal v* is

—4q; |qj| <p
Vi=og i, g > (2)
T, g < —p
Hence, when computing the hyperplane w = %(q—i—l/*),
the feature weight w; with corresponding ¢; < p will
be set to zero, while all other weights will have their
magnitudes reduced by p. This is equivalent to ap-
plying a soft-threshold of © on the hyperplane weights
q; (see Figure 2), and leads to sparse entries in w. In
the general case, the magnitude of the soft-threshold
(and hence the sparsity) is regularized by a quadratic
penalty term weighted by the parameter r. In this
sense, the QCQP-SSVM dual is automatically learn-
ing an adaptive soft-threshold on the original SVM
hyperplane.

2

Figure 2. Example of a soft-threshold of ;x = 1 on hyper-
plane weight g;.

There are two interesting modes of operation of the
QCQP-SSVM dual with respect to the trade-off pa-
rameter 1. The first is when n = 0, which corre-
sponds to when the ¢;-norm constraint is active and
the fo-norm constraint is inactive in the primal (Prob-
lem 6). Noting that v = — Zﬁl ;Y;x; maximizes the
quadratic a term, the dual problem reduces to

Problem 9
N ru?
a f—_
N N
s.t. —u < Zaiyixi < u, Z oy =0,
i=1 i=1
OSO@SC, iZl,...,N.

Problem 9 is similar to the dual of the LP-SVM (Prob-
lem 4), except for two additions: 1) the variable u
which sets the box constraint on ), a;y;x; (for the
LP-SVM, this is set to u = 1); and 2) a quadratic
penalty, weighted by r, that regularizes p, i.e. keeps
the box constraint from becoming too large. This can
be interpreted as an extension of the LP-SVM dual
where the box-constraint is automatically learned.

The second interesting mode is when n = 1, which
corresponds to when the fo-norm constraint is active
and the /1-norm constraint is inactive in the primal
(Problem 6). In this case, 4 = 0 and v = 0, and
the QCQP-SSVM dual simplifies to the standard SVM
dual (Problem 2).

3.2. SDP Relaxation

A semidefinite programming relaxation (Lemaréchal &
Oustry, 1999) of the sparse SVM is obtained by first
rewriting the weak, non-convex, cardinality constraint
(1) using the matrix W = ww?

1TW1 < rtr(W),

W = T (3)

2 2
< =
wll2 < r 3
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where |[W] is the element-wise absolute value of the
matrix W. Replacing the cardinality constraint of
Problem 5 with the non-convex constraint in (3) yields

Problem 10

N
. 1
pnin §tr(W) +C ; &

s.t. yz(waz-i-b)Zl—fl, iZl,...,N,
é—i 2 Oa
11wl <rte(W), W =ww’,

which is still non-convex because of the quadratic
equality constraint, W = ww”. Since we are minimiz-
ing tr(W), the quadratic equality constraint is equiv-
alent to (Lemaréchal & Oustry, 1999)

W—waiO,

T
W=ww & rank(W) = 1. (4)

Finally, relaxing the constraint (4) by simply dropping
the rank constraint leads to a convex relaxation of the
sparse SVM as a semidefinite program (SDP-SSVM):

Problem 11 (SDP-SSVM)

N

. 1

pnin §tr(W) +C ; &

s.t. yi(wlz; +b) >1-¢&;,
é—i 2 Oa

17w < rtr(W),
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The dual of the SDP-SSVM is also an SDP (again see
(Chan et al., 2007) for derivation):

Problem 12 (SDP-SSVM dual)

N 1 N
2% —3 > aagyyial Alay
=

3,5=1
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a,p,A,v

N
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A=(1—pur)I4+v =0,
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The hyperplane w is computed from the optimal dual
variables as w = A~! sz\il a;y;x;. The SDP-SSVM
dual is similar to the SVM dual (Problem 2), but in
the SDP dual, the inner product between z; and x;
is replaced by a more general, weighted inner prod-
uct {(z;,x;)p = xI A~'z;. The weighting matrix A

is regularized by p and r, which controls the amount
of rotation and scaling. Ideally, setting A~! = 0 will
maximize the quadratic term in the objective function.
However, this is not possible since the entries of A are
bounded by p. Instead, the optimal weighting ma-
trix is one that increases the influence of the relevant
features (i.e. scales up those features), while demot-
ing the less relevant features. Hence, the SDP-SSVM
learns a weighting on the inner product (i.e., learns
a kernel) such that the separating hyperplane in the
feature space is sparse.

4. Experiments

We compare the performance of the two proposed
sparse SVMs, QCQP-SSVM and SDP-SSVM, with the
standard C-SVM and LP-SVM, on a synthetic prob-
lem and on fifteen UCI data sets.

4.1. Data Sets

The synthetic problem is a binary classification prob-
lem, similar to (Weston et al., 2000), where only the
first six dimensions of the feature space are relevant for
classification. With probability 0.7, the first three fea-
tures {x1,x2,x3} are drawn as z; ~ yN(4,1) and the
second triplet {z4, x5, 26} as z; ~ N(0,1). Otherwise,
the first three features are drawn as x; ~ N(0,1), and
the second triplet as z; ~ yN (i —3,1). The remaining
features are noise z; ~ N(0,20) fori = 7,...,30. One
thousand data points are sampled, with equal proba-
bility for each class y € {—1,1}.

The remaining experiments were performed on the fif-
teen UCI data sets listed in Table 2. Most of these
are straightforward binary or multi-class classification
problems. For the Wisconsin prognostic breast cancer
data set (wpbc) two classes were formed by selecting
examples with recurrence before 24 months, and exam-
ples with non-recurrence after 24 months (wpbc 24).
The data set was also split using 60 month recurrence
(wpbc 60). The Cleveland heart-disease data set
was split into two classes based on the disease level
(> 2 and < 2). All data sets are available from (New-
man et al.,, 1998), and the brown yeast data set is
available from (Weston et al., 2003).

4.2. Experimental Setup

For each data set, each dimension of the data is nor-
malized to zero mean and unit variance. The data is
split randomly with 80% of the data used for train-
ing and cross-validation, and 20% held-out for test-
ing. Two standard SVMs, the C-SVM (Problem 1)
and the LP-SVM (Problem 3), and two sparse SVMs,



Direct Convex Relaxations of Sparse SVM

0.25 :
N O C-SVM
X 0 LP-SVM
o2l x  QCQP-SSVM
: + SDP-SSVM
g
5 015
]
g
~ 04t o
O
@
0.05F ©
g (@]
O
o
0 ; ¥ ; ® ; S
0 20 40 60 80 100

Number of training examples

30r O (3] O Q L©] (o ]
O C-SVM
o LP-SVM
25} x  QCQP-SSVM
+ SDP-SSVM
20t
>
2
5 15
[
(6]
10+
o x
* m]
5 O g E + * g
+
0 ‘ ‘ ‘ ‘ ;
0 20 40 60 80 100

Number of training examples

Figure 3. Results on the toy experiment: (left) test error and (right) cardinality of the SVM hyperplane versus the number

of training examples.

Table 1. Test error and sparsity results averaged over the 15 UCI data sets.

| [ C-SVM  LP-SVM | QCQP-SSVM  SDP-SSVM |
average change in error rate w.r.t. C-SVM | 0.000% 0.373% 0.158% 0.485%
average sparsity (cardinality / dimension) 0.980 0.653 0.586 0.606
average sparsity w.r.t. LP-SVM 1.827 1.000 0.898 0.940
the QCQP-SSVM (Problem 6) and the SDP-SSVM 4.3. Results

(Problem 11), are learned from the training data. The
sparsity parameters are set to rgcep = 0.01 for the
QCQP-SSVM, and rsq, = 1 for the SDP-SSVM. Al-
though the value of r could be selected using cross-
validation, in these experiments we select a low value
of 7 to maximize the sparsity of the SSVM!. For each
SVM, the optimal C' parameter is selected using 5-
fold cross-validation (80% training, 20% validation)
over the range C' = {2719 279 ... 210 0} The C
value yielding the best average accuracy on the val-
idation sets is used to train the SVM on all train-
ing data. Finally, the cardinality of the hyperplane
w is computed as the number of weights w; with large
relative magnitude, i.e. the number of weights with
|w;|/ max;(Jw;]) > 107*. The weights that do not fit
this criteria are set to zero.

Each SVM is tested on the held-out data, and the fi-
nal results reported are averaged over 20 trials of dif-
ferent random splits of the data. For the three multi-
class datasets (wine, image, and brown yeast), a 1-
vs-all classification problem is generated for each of
the classes. The reported results are averaged over
all classes. Because of their large size, the image and
spambase data sets are split with 50% for training and
50% for testing. All SVMs are trained using standard
convex optimization toolboxes. In particular, SeDuMi
(Sturm, 1999) or CSDP (Borchers, 1999) is used to
solve SDP-SSVM, and MOSEK for the other SVM.

Hnvestigation of the trade-off between sparsity and ac-
curacy using r is also interesting, but is not presented here.

Figure 3 (left) shows the test error on the synthetic
data set versus the number examples used to train each
of the four SVMs. The results suggest that the accu-
racy of all SVMs depends on the latter. When trained
with at least 20 examples, the test errors of LP-SVM,
QCQP-SSVM, and SDP-SSVM are similar and consis-
tently smaller than the test error of C-SVM. On the
other hand, the performance of the sparse SVMs is
worse than C-SVM and LP-SVM when trained with
too few examples (e.g., 10). Figure 3 (right) shows the
cardinality of the classifiers. C-SVM has full cardinal-
ity (30), while LP-SVM has an average cardinality of
6.1. The QCQP-SSVM selects slightly fewer features
(5.9), while SDP-SSVM selects the lowest number of
features (5.1).

The overall experimental results on the 15 UCI data
sets are shown in Table 1. In these experiments,
the test errors obtained with the C-SVM and the
sparse SVMs are roughly identical, e.g. on average the
QCQP-SSVM error rate only increases by 0.158% over
the C-SVM error rate. However, while C-SVM typi-
cally uses all the dimensions of the feature space, LP-
SVM, QCQP-SSVM, and SDP-SSVM use much fewer.
The QCQP-SSVM used the fewest features, with av-
erage sparsity (i.e. the ratio between the cardinality
and the dimension of the feature space) of 0.586. In
contrast, the SDP-SSVM and LP-SVM had an average
sparsity of 0.606 and 0.653, respectively.

Table 2 shows the cardinality and the change in test



Direct Convex Relaxations of Sparse SVM

Table 2. Results on 15 UCI data sets: d is the dimension of the feature space, ||w||, is the average cardinality of SVM
hyperplane, “err” is the average test error, and “A err” is the average change in test error with respect to the C-SVM test
error. The lowest cardinality and best test errors among the LP-SVM, QCQP-SSVM, and SDP-SSVM are highlighted.

C-SVM LP-SVM QCQP-SSVM SDP-SSVM
UCI Data Set d | [Jwl], err || [lw|, Averr | |lw|, Aerr | |lw|, A err

1. Pima Indians Diabetes 8 7.9 22.6% 72  —0.03% 72 -0.16% 6.8 0.07%
2. Breast Cancer (Wisc.) 9 9.0 2.9% 8.5 0.33% 86  0.29% | 8.3 0.37%
3. Wine 13 13.0  1.6% 7.8 0.27% 7.9 0.36% 7.7 0.09%
4. Heart Disease (Cleve.) 13 || 13.0 14.5% || 11.4 0.42% | 10.9 0.17% | 10.5 0.50%
5. Image Segm. 19 176 2.7% 8.6 —0.05% 8.0 0.04% 85 —0.01%
6. SPECT 22 214 17.2% 14.0 —-0.09% | 124 0.19% | 121 —0.09%
7. Breast Cancer (wdbc) 30 | 30.0 3.0% || 14.4 0.70% | 129  0.57% | 134 0.70%
8. Breast Cancer (wpbc 24) | 32 || 32.0 20.2% | 27.7 0.00% | 16.1 —-0.16% | 16.3 —0.63%
9. Breast Cancer (wpbc 60) | 32 32.0 34.1% 16.3 3.04% | 121 1.52% | 13.9 3.26%
10. Tonosphere 34 28.2 16.2% 188 —1.83% | 17.2 —-4.30% | 21.2 —4.16%
11. SPECTF 44 44.0 19.1% 39.3 0.43% | 34.0 0.14% | 36.1 0.50%
12. spambase 57 55.6  7.3% 53.6 —0.12% | 52.1 0.04% | 53.7 3.72%
13. sonar 60 60.0 22.7% 29.4 1.05% | 24.2 1.51% | 28.8 1.40%
14. brown yeast 79 79.0 2.5% 13.3  —-0.07% | 13.0 0.03% | 134 —0.14%
15. musk 166 || 166.0 16.2% 83.5 1.56% | 74.7 2.14% | 83.6 1.72%

error for each of the UCI datasets, and Figure 4 plots 1

the sparsities. Note that the SSVMs have the best o o " %

sparsity for all of the datasets, with the improvement | i v o 5 N

tending to increase with the dimensionality. In some 08¢ i K

data sets, the test error drops significantly when us- .07t

ing SSVM (e.g. ionosphere, —4.30%), which indi- 50_6, " +

cates that some features in these data sets are noise © ¥ o

(similar to the toy experiment). In others, the er- S o5f g 3 * i ¥ L
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Database

the SSVM is too aggressive and the added sparsity in-
troduces a slight increase in error (e.g. sonar). This is
perhaps an indication that the data set is not sparse,
although the SSVM still finds a sparse classifier.

5. Conclusions and Future Work

In this paper, we have formulated the sparse SVM
as a standard SVM with an explicit cardinality con-
straint on the weight vector. Relaxing the cardinality
constraint yields two convex optimization problems,
a QCQP and an SDP, that approximately solve the
original sparse SVM formulation. An interpretation of
the QCQP formulation is that it applies an adaptive
soft-threshold on the hyperplane weights to achieve
sparsity. On the other hand, the SDP formulation
learns an inner-product weighting (i.e. a kernel) that
results in a sparse hyperplane. Experimental results
on fifteen UCI data sets show that both sparse SVM

Figure 4. UCI results: sparsity of the SVM hyperplane.

achieve a test error similar to standard C-SVM, while
using fewer features than both C-SVM and LP-SVM.

One interesting property of SDP-SSVM, which is miss-
ing for LP-SVM, is that its dual problem depends on
an inner product (z!' A='z;), which suggests the possi-
bility of kernelizing SDP-SSVM. In this case, the spar-
sity of the weight vector in the high-dimensional fea-
ture space (induced by the kernel) may lead to bet-
ter generalization of the classifier. The main obstacle,
however, is that the weighting matrix A~! lives in the
feature space. Hence, further study is needed on the
properties of the matrix and whether it can be com-
puted using the kernel.

Finally, the implementation of SDP-SSVM using the
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off-the-shelf SDP optimizers (SeDuMi and CSDP) is
quite slow for high-dimensional data. Future work will
be directed at developing a customized solver that will
make the SDP-SSVM amenable for larger and higher
dimensional datasets.
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