
META-GRAPH ADAPTATION FOR VISUAL OBJECT TRACKING

Qiangqiang Wu Antoni B. Chan

Department of Computer Science, City University of Hong Kong
qiangqwu2-c@my.cityu.edu.hk abchan@cityu.edu.hk

ABSTRACT

Existing deep trackers typically use offline-learned backbone
networks for feature extraction across various online track-
ing tasks. However, for unseen objects, offline-learned repre-
sentations are still limited due to the lack of adaptation. In
this paper, we propose a Meta-Graph Adaptation Network
(MGA-Net) to adapt backbones of deep trackers to specific
online tracking tasks in a meta-learning fashion. Our MGA-
Net is composed of a gradient embedding module (GEM) and
a filter adaptation module (FAM). GEM takes gradients as an
adaptation signal, and applies graph-message propagation to
learn smoothed low-dimensional gradient embeddings. FAM
utilizes both the learned gradient embeddings and the target
exemplar to adapt the filter weights for the specific tracking
task. MGA-Net can be end-to-end trained in an offline meta-
learning way, and runs completely feed-forward for testing,
thus enabling highly-efficient online tracking. We show that
MGA-Net is generic and demonstrate its effectiveness in both
template matching and correlation filter tracking frameworks.

Index Terms— Meta-graph adaptation, meta learning,
single object tracking, real-time tracking

1. INTRODUCTION

Visual object tracking is a fundamental task that has gained
much attention due to its wide usage in many other tasks.
Recent progress on deep learning-based trackers [1, 2, 3]
shows that deep trackers can better handle the general chal-
lenges (e.g., rotation and background clutter) in online track-
ing, due to their learned good feature representations. How-
ever, besides these explicit challenges, another main difficulty
in visual tracking is the uncertainty of the object type to be
tracked, This definition distinguishes the tracking task from
other computer vision tasks like object detection and segmen-
tation, where the algorithms only focus on finding objects be-
longing to pre-defined categories, making the tracking task
hard to solve by applying existing deep learning techniques.

One common strategy is to treat visual tracking as a gen-
eral similarity learning problem. Existing such end-to-end
trainable deep trackers (e.g., template matching [1, 4] and
correlation filter [2, 5] methods) typically maintain a fixed of-
fline learned backbone network θ, which is trained on a large-
scale annotated training, aiming to learn a generally good fea-

ture representation for online template matching. However,
for some unseen instances or objects with unseen categories,
their feature representations of the backbone network are still
not discriminative enough, since important features may be
missed. As illustrated in Fig. 1, we show the limited general-
ization ability of SiamFC [1] to some unseen objects.

To adapt the backbone network θ to a specific online
tracking task, one naı̈ve approach is to use a gradient-based
optimization method like stochastic gradient descent (SGD)
to fine-tune the backbone network in an online manner,

θ̂ = θ + θupdate = θ − α 1
n

n∑
i=1

∇Li(θ, η), (1)

where Li(θ, η) indicates the loss of the i-th training sample
with the correlation filter layer η and α is a learning rate.
Due to the limited training samples in online tracking, the
SGD method suffers from overfitting, thus resulting in track-
ing performance degradation. Previous works (e.g., using
multi-domain learning [3] and meta learning [6]) alleviate this
issue by finding a good initial backbone model θ in an offline
manner, and hopefully this model can generalize well across
various test videos. However, due to the uncertainty of online
tracked objects, it is difficult to find such an initial model (or
even adapt an initial model) that can generalize well to all cat-
egories, instances, and appearance variations of target objects
during tracking. Therefore, in this work, instead of finding an
optimal offline initial model θ, we focus on learning a specific
residual updating term θupdate.

In this paper, we improve state-of-the-art deep trackers by
dynamically adapting their backbone networks to a specific
online tracking task. Given a new target as input, the gradi-
ent of the loss function w.r.t. a layer’s weights indicates the
fit of its offline-learned features to the current target. Thus,
we use the loss gradient as an input into a meta-learning net-
work that learns to directly update the weights of the layer. To
achieve this, we propose a novel meta-graph adaptation net-
work (called MGA-Net) consisting of two stages. The first
stage is a gradient embedding module (GEM), which learns a
low-dimensional embedding of the loss gradient that can rep-
resent high-level relationships among loss gradients for a va-
riety of objects. Here a graph neural network (GNN) is used
in order to aggregate information between similar filters. The

Copyright notice – please select from the list provided at Camera-Ready Instructions

Appears in IEEE Intl. Conf. on Multimedia and Expo (ICME) 2021

,
x

y

ASDSAD SHEEP ANTELOPE BICYCLE CAR HORSE BEAR CAT LION SNAKE VESSEL BIRD

 SiamFC-GOT10K 82 47 27 60 41 62 12 47 8 44 27

SiamFC-VID 75 46 16 47 34 58 18 39 9 38 23

0

40

80

120

160

Sheep Antelope Bicycle

 SiamFC-GOT10K SiamFC-VID

0

23

45

68

90

Sheep Antelope Bicycle

DP
 (%

)

0

23

45

68

90

Sheep Antelope Bicycle Car Horse Bear Cat Lion Snake Vessel Bird

23.4

38.4

8.9

39.4

17.6

58.2

33.7

46.9

16.3

46.1

74.9

26.8

43.6

8.1

46.7

12.4

61.6

40.5

59.8

27.2

47.3

81.8
 SiamFC-GOT10K SiamFC-VID

 1

4

Fig. 1. Object and video domain gap: performance compar-
ison between SiamFC-GOT10K and SiamFC-VID trackers,
which are trained on 11 common categories from GOT-10K
[7] or VID-2015 [8] (using the same number of videos from
each dataset). The two trackers are tested on a held-out set
of videos (10% of each category) from GOT-10K. Since the
test videos in GOT-10K contain many objects belonging to
subcategories that never appear in VID-2015, for these un-
seen objects, SiamFC-VID cannot generalize well and thus
achieves inferior results on the 11 main categories, especially
for Bicycle, Car and Lion, as compared to SiamFC-GOT10K.

second stage is the filter adaptation module (FAM), which
uses the gradient embedding and target to adapt the feature
extraction layer. In the offline training stage, we show that
our MGA-Net can be easily incorporated into existing deep
tracking frameworks and be effectively trained in an end-to-
end meta learning fashion.

In summary, this paper makes the following contributions:

• We propose a novel meta-graph adaptation network
(MGA-Net) to effectively adapt backbone feature ex-
tractors in existing deep trackers to a specific online
tracking task.

• To demonstrate its effectiveness and broad applicabil-
ity, we apply MGA-Net to three deep trackers, includ-
ing two template matching trackers (SiamFC [1] and
SiamRPN++ [9]) and one end-to-end trainable correla-
tion filter tracker (DCFNet [10]).

• Through extensive evaluations on four popular bench-
marks, OTB-2013/15 [11], VOT-2016 [12], and VOT-
2018 [13], we show that the MGA-adapted trackers
outperform their baselines while running at above real-
time speeds. In addition, our MGA-Net can be effec-
tively trained using the same training data as the origi-
nal trackers, which does not introduce additional train-
ing data.

2. RELATED WORK

Deep Visual Tracking. The pioneering work of template-
matching tracker is SiamFC [1], which learns a general
template-matching function in an offline manner. Based on
SiamFC, some improved variants include [4, 9, 14, 15]. Com-
pared with template matching-based deep trackers, deep dis-
criminant correlation filters (DCFs) naturally models target
appearance variations via an online learned CF model. Com-
monly, state-of-the-art DCFs adopt deep features extracted
from either a pre-trained classification backbone network [16]
or a backbone network that is specifically offline end-to-end

Residual Filter (theta')

Offline-learned Filter (theta)

..
.

Context
Parameters

..
.

Offline-learned

Parameters

1st

2nd

k-th

1st

2nd

3rd

4th

i-th

..
..
..

Residual Filter Estimation:

Zero Initialization

 To learn the complement domain-specific representation

Second Step Propogation: L-th layer GCN

AggregatorUpdate

Goal: To lean w and h(,)

Meta-Test

Loss

1st

......

Propagation

Intra-Propogation:

A. Build intra-graph to propogate gradients of the i-th group offline learned filters to the

i-th domain specific filter.

Externel-Propogation:

Build external-graph to propogate gradients between domain specific filters. GCN

......

1) Directly Mapping: 16*(192*3*3+1) input.
2) Filter-Attention: weight all the filters in each group. 2 layer fc (input 16, output 16,
 hidden 32). (Inspired by SENet)
3) Spatial-Attention. Determine which position of graident is more important. 3 Layer MLP

 (input 192*3*3+1).

 B. Auusume that 16 filters in each group

Different from Adaptive convolutuon and Hypernet (manifold --> filters)

Learning two parts of paras: 1) Filter-Weight (which filter is more important);
��� 2) Spatial-Weight (which position is more important)

To learn the complement domain-specific representation

Direct Mapping:

Theta: 256*192*3*3+256 Params.

Theta': N*192*3*3+N Params.

Devide K groups:

......

......
......

K Groups

Shared NN

......

......

......

......

......

..........

Implementation of NN:

1-st

2-nd

K-th

1-st

2-nd

K-th

Meta-Training:

Loss

Gradients
......

SiamFC

Meta-Loss

Update residual filter
generation network

Shared NN

Graph Building

G
C
N

 Layer

...

G
C
N

 Layer

G
C
N

 Layer

Layer
Gradients

Gradient
Embeddings

Encoder Decoder

Reconstructed
Gradients

Reconstructed
Gradients

Gradient Embedding Module Filter Adaptation Module

Feat. Target

Graph Building

G
C
N

 Layer

...

G
C
N

 Layer

G
C
N

 Layer

Layer
Gradients

Gradient
Embeddings

Encoder Decoder

Reconstructed
Gradients

Gradient Embedding Module
(GEM)

Filter Adaptation Module
(FAM)

TargetFeat.

Fig. 2. Pipeline of the proposed meta-graph adaptation net-
work (MGA-Net).

trained [17, 10] for the tracking task. In recent years, much
efforts [18] have been made on how to effectively learn a CF
model in online tracking, such that the learned CF model can
handle well with online target appearance variations. Sim-
ilar to Siamese network trackers, DCFs usually maintain a
fixed backbone network for target feature extraction in online
tracking, thus lead to suboptimal results. We show that our
MGA-Net can improve both deep Siamese and DCF track-
ers by changing the underlying features extracted from their
offline-learned backbone networks.
Meta Learning for Visual Tracking. The representative
work is MetaTracker [6], which follows the idea in MAML,
i.e., learning a general initial tracking model and performs
first-frame adaptation for online tracking. However, due to the
uncertainty of tracked objects, finding such an optimal initial
model becomes very challenging and the first-layer adapted
model can also be easily corroded during the online tracking.
GradNet [19] and UpdateNet [20]) mainly focus on learning
to update online target template for Siamese trackers. Differ-
ent from these methods, our method aims to perform online
backbone network adaptation, which can also be applied to
these methods. MLT [21] is a closely related method to ours,
which uses additional convolutional filters to encode online
target information. But this way cannot change the under-
lying features of the backbone network, thus still leading to
limited online adaptation. For our method, instead of adding
additional filters, we directly modify the underlying feature
extractors of the backbone network for more effective online
adaptation.

3. METHODOLOGY

In this section, we introduce a novel meta-graph adaptation
network (MGA-Net) to adapt backbone networks of existing
deep trackers to specific online tracking tasks. The whole
framework is shown in Fig. 2.

3.1. Gradient Embedding Learning

We propose a gradient embedding module (GEM) to effec-
tively learn gradient embeddings that summarize the gradient
information in a low-dimensional space. The input into GEM
are the raw loss gradients of filters in a layer of the backbone.
The gradients can usually serve as a signal to judge whether
the backbone needs to be adapted or how to adapt the back-
bone, i.e., large loss gradients typically indicate a large do-
main gap between offline training and online testing. Instead
of encoding the gradient embedding of each filter separately,
it is better to capture co-dependencies between similar filters

2

in the layer. In this way, global updating information can be
well gained for each filter, thus facilitating the learning.

To achieve this, we implement GEM with a graph
neural network (GNN) architecture [22]. Let δi ∈
Rk×k×cin×cout+cout (i.e., k is kernel size, cin and cout are the
input and output channel numbers) be the gradients of the i-
th filter at a specific layer. We firstly construct an undirected
graph G(V,E), where V = {v1, v2, ..., vN} are nodes that
represent the N filters in the layer, whose initial representa-
tions are the raw gradients, vi = δi. E represents the set of
graph edges, whose edge weights Ei,j are computed accord-
ing to the similarity between the corresponding two filters,

Ei,j = max(0, cos(Wi,Wj)) (2)

where Wi denotes the filter weight of the i-th filter and cos
is the cosine similarity function. Note that we remove the
connection (i.e., Ei,j = 0) between two nodes if their fil-
ter weights are not positively correlated. For these two fil-
ters, their features are not typically activated at the same time
due to the ReLU non-linearity zeroing out any negative re-
sponses, and thus they capture different features of the object.
The initial node representations in the graphG(V,E) are pro-
cessed iteratively with a neighborhood aggregation schema,
for l ∈ {1, · · · , k},

hli = F l
((

1 + µl
)
· hl−1

i +

N∑
j=1

Ei,j · hl−1
j

)
, (3)

where i ∈ {1, · · · , N}, l is the layer number of GEM and hli
is the aggregated value for node i in layer l, with initial value
h0i = vi. F l denotes a multi-layer perceptron (MLP) in the
l-th layer, and µl is a learnable weight parameter. Our GEM
iteratively aggregates the gradient information in neighboring
nodes to obtain the global gradient embedding hki in the last
layer. In the next subsection, we show how to leverage the
learned hki to perform filter adaptation in the backbone.
3.2. Filter Adaptation

To adapt the filters in the specific layer of the backbone net-
work, a novel filter adaptation module (FAM) is presented.
FAM is composed of an encoder En and a decoder De. En
improves the previous learned gradient embeddings {hki }Ni=1

by explicitly incorporating target-specific information, to ob-
tain a gradient-feature embedding. De takes these gradient-
feature embeddings as input to reconstruct the one-step gra-
dient updates of each filter.

In more detail, we first use a shallow feature extractor
φ(z) (i.e., containing three convolutional layers with kernel
sizes of 3 × 3 and two fully-connected layers) to extract fea-
tures of target z, which encodes the target exemplar into a
low-dimensional vector φ(z). We input both {hki }Ni=1 and
φ(z) into En to obtain the gradient-feature embeddings {ĥi},

[ĥ1, · · · , ĥN] = En

(
hk1 , · · · , hkN , φ(z)

)
. (4)

Since the gradient-feature embeddings have already encoded
both the global gradient information and the target informa-
tion, we then separately input them toDe to generate the final
update gradients:

δ̂i = De

(
ĥi
)
, ∀i = 1, 2, ..., N, (5)

and the generated gradients are used to update the filter
weights:

Ŵi =Wi + δ̂i, ∀i = 1, 2, ..., N. (6)

The adapted filters {Ŵi}i=1 in the backbone network are then
directly used in the online test video. Note that the original
gradient δi could also be used to update the weights. How-
ever, the generated gradients δ̂i should be better since: 1)
they are end-to-end learned to perform an optimal one-step
update (see next section); 2) they explicitly encode the tar-
get information; 3) the GEM regularizes the raw gradient by
aggregating gradients of similar filters and embedding into a
low-dimensional space.
3.3. End-to-end Offline Meta Learning

We next show how to effectively offline train MGA-Net to
learn to update backbone networks of deep trackers during on-
line tracking. Let T be a deep tracker with an offline-learned
backbone network θ andL be the loss function. Given a target
exemplar z, the loss of the tracker T estimated on the search-
ing patch x is L(z, x, θ). By back-propagating the loss, the
loss gradients δ of filters in θ can be obtained. By inputing
the gradients δ and z into MGA-Net, we can get the adapted
backbone network θ̂.

Additionally, we sample another test patch q sampled in
a future frame to construct triplet training samples (z, x, q).
The tracker T with the adapted backbone network θ̂ is tested
on both the searching patches x and q, and the overall meta
loss is

Lall = L(z, x, θ̂) + L(z, q, θ̂). (7)

Using Lall, we can train the proposed MGA-Net in an end-to-
end offline manner. Note that the second loss term L(z, q, θ̂)
in (7) is a meta test loss, which makes our MGA-Net general-
ize well to future frames, and avoids overfitting on a frame.

4. PROPOSED META-GRAPH ADAPTATION
TRACKERS

We apply our MGA-Net to 3 representative trackers, i.e.,
SiamFC [1], DCFNet [10] and SiamRPN++ [9]. The over-
all adaptation pipeline of the proposed trackers is shown in
Fig. 3.

4.1. Meta-Graph Adaptation for SiamFC

SiamFC [1] compares a target exemplar z and a searching im-
age x using a cross-correlation operation. The tracking out-
put is Sθ(x, z) = fθ(z) ∗ fθ(x), where fθ denotes the back-
bone with parameters θ, ∗ is cross-correlation and Sθ(x, z)

3

i-th

Layer 2 ... Layer K

Backpropagation

Layer 1

Grad. 1 Grad. 1

GCN

 Target
Embedding

AE

Leanred Grad.
Embedding

Generation

Updating

Grad. 1 Grad. 1

GCN AE

LossUpdating

Generation

Global Grad.
Embedding

GCN Layer

SiamFC
DCFNet

SiamRPN++

........

Feature

Extractor

Layer K
Back-Propagation

Grad. 1

Layer 1

Feat.
Extractor

Target

Searching

Layer 2 ... Layer K
Loss

MGA-Net 1

Grad Target

Layer 1 Layer 2 Layer K

Loss

SiamRPN++

.....

...

MGA-Net 2

Grad Target

...

AdaptationAdaptation

Tracking

MGA-Net K

Grad Target

Adaptation

Loss

SiamFC

DCFNet

SiamRPN++

Fig. 3. The overall adaptation pipeline of the proposed meta-
graph adaptation (MGA) trackers. The original backbone net-
work is in blue, and the adapted backbone is in red.

indicates the response map. The backbone θ of SiamFC is
offline trained using the logistic loss Lsim between Sθ(x, z)
and ground truth y(x).

Offline MGA-Net learning. For the training of MGA-
Net in SiamFC, the loss L described in Section 3.3 is the
SiamFC loss, Lsim(y(x), Sθ(z, x)). Thus, the training loss
for MGA-Net in (7) is

Lall = Lsim(y(x), Sθ̂(z, x)) + Lsim(y(q), Sθ̂(z, q)). (8)

Online MGA-Net tracking. We first sample the target
exemplar z as described in SiamFC [1] and a searching im-
age x1 centered at the target center position in the first frame,
which are used by MGA-Net to obtain the updated backbone
θ̂. In the following frames, we use the updated backbone θ̂ for
template matching. During tracking, we store intermediate
reliable target samples whose response values are larger than
the target response in the first frame. After every T frames,
the latest stored target sample xt is used for backbone adap-
tation, yielding a new θ̂ for tracking.
4.2. Meta-Graph Adaptation for SiamRPN++

Different from SiamFC, SiamRPN++ [9] uses two training
losses: a smooth L1 loss [23] Lreg for scale regression, and a
logistic loss [1] Lcls for classification.

Offline MGA-Net learning. We set the loss function L
for meta-learning to the loss of SiamRPN++, Lreg(z, x, θ) +
λLcls(z, x, θ), where λ is a parameter set according to [9].
Thus the meta-loss of MGA-Net in (7) for SiamRPN++ is

Lall = Lreg(z, x, θ̂) + Lreg(z, q, θ̂) (9)

+λ(Lcls(z, x, θ̂) + Lcls(z, q, θ̂)). (10)

Online MGA-Net tracking. We use the same tracking
procedure as described above for MGA-Net with SiamFC.
4.3. Meta-Graph Adaptation for DCFNet

DCFNet [10] improves the basic correlation filter (CF) frame-
work by learning the backbone network feature extractor fθ
in an end-to-end offline manner. Given a target exemplar z
and a searching image x, the learning loss for DCFNet is

Lcf (z, x, θ) = ||rz ∗ fθ(x)− y(x)||2 + γ||θ||2, (11)

where rz is the CF learned from the target exemplar z (via
the ridge regression problem in [24]), γ is a regularization
parameter, and y(x) is the desired Gaussian label map corre-
sponding to the target image x.

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

Precision plots of OPE

MGA-SiamFC [0.823]
MGA-SiamFC-w/o-Grad [0.793]
MGA-SiamFC-w/o-Graph [0.788]
MGA-SiamFC-w/o-Target [0.771]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

Success plots of OPE

MGA-SiamFC [0.617]
MGA-SiamFC-w/o-Grad [0.600]
MGA-SiamFC-w/o-Graph [0.595]
MGA-SiamFC-w/o-Target [0.584]

Fig. 4. Distance precision and overlap success plots obtained
by the variants of our MGA-SiamFC on OTB-2015 [11].

Offline MGA-Net learning. For DCFNet, the overall
meta loss of MGA-Net in (7) is

Lall = Lcf (z, x, θ̂) + Lcf (z, q, θ̂). (12)

Online MGA-Net tracking. We first collect tracking
samples in the first 10 frames. In the 10-th frame, the sam-
ple with the highest response value is selected for adaptation,
resulting in the updated backbone θ̂. We use θ̂ for further cor-
relation tracking, which follows the same step as described in
the original DCFNet paper.

5. EXPERIMENTS

5.1. Implementation Details

Offline Learning. GEM is implemented as a 5-layer GNN,
where each layer consists of a two-layer MLP and the num-
ber of neurons in each layer is 128. For FAM, the encoder En
and the decoder De are three-layer MLPs with a single hid-
den layer of 256 units. The outputs of En and De are 128-D
feature vectors and the adapted gradients respectively. Ex-
cept for the output layers in the above modules, each layer is
followed by a batch normalization and ReLU activation func-
tions. We use VID-2015 [8] to train all MGA-trackers. We
sample various triplet training samples abcn(z, x, q) in each
video. The cropping strategy is the same as original trackers.
The MGA-Net is trained for 20 epochs with a mini-batch of
8 triplets, using the Adam optimizer with a learning rate of
1× 10−4 and decay rate of 0.866 every 5 epochs.
Online Tracking. MGA-Net performs adaptation on the last
two layers of SiamFC, and adapts the tracker in every T = 25
frames. For DCFNet, since its backbone feature extractor
only contains two convolutional layers, we adapt both lay-
ers for online tracking. For SiamRPN++, we focus on the
variant using ResNet-50 as the backbone. We use MGA-Net
to adapt the filters in the second layer of ResNet-50, which
contains 3 bottlenecks and 10 convolutional layers in total.
The other tracking parameters in MGA-trackers are set as the
same as their original trackers. Note that for SiamRPN++, we
use the offline-learned ResNet-50 backbone1 for evaluation
on all datasets.

5.2. Ablation Study

We choose the basic MGA-SiamFC for ablation study on the
OTB-2015 [11] dataset.

1The model is siamrpn r50 l234 dwxcorr, which can be found in PySOT
zoo (https://github.com/STVIR/pysot/).

4

Table 1. Performance comparison between the proposed MGA-trackers and their baseline trackers on 4 tracking benchmarks.
For the OTB datasets, we report DPR/AUC scores, and for VOT datasets, the expected accuracy overlap (EAO) score is reported.
Our MGA improves perfomance over the baselines (highlighted in bold), while maintaining similar tracking speed.

Trackers MGA-SiamFC MGA-SiamRPN++ MGA-DCFNet SiamFC SiamRPN++ DCFNet
OTB-2013 85.5/63.7 91.2/69.2 88.5/66.5 80.9/60.7 89.5/67.1 85.4/64.7
OTB-2015 82.3/61.7 87.6/67.1 82.6/62.4 77.1/58.2 87.9/66.6 81.2/62.1
VOT-2016 0.263 0.475 0.244 0.235 0.461 0.233
VOT-2018 0.237 0.425 0.181 0.188 0.410 0.170
Avg. FPS 77.0 65.0 255.9 86.0 71.4 266.3

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

Precision plots of OPE

MGA-SiamRPN++[65fps] [0.912]
CREST[2fps] [0.908]
MetaSDNet[2fps] [0.905]
CF2[10fps] [0.891]
HDT[11fps] [0.889]
MGA-DCFNet[256fps] [0.885]
SiamRPN[200fps] [0.884]
MetaCREST[3fps] [0.869]
MGA-SiamFC[77fps] [0.855]
BACF[35fps] [0.849]
MemTrack[50fps] [0.849]
CFNet[75fps] [0.822]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE

MGA-SiamRPN++[65fps] [0.692]
MetaSDNet[2fps] [0.684]
CREST[2fps] [0.673]
MGA-DCFNet[256fps] [0.665]
MetaCREST[3fps] [0.658]
SiamRPN[200fps] [0.658]
BACF[35fps] [0.645]
MemTrack[50fps] [0.642]
MGA-SiamFC[77fps] [0.637]
SiamFCTri[86fps] [0.615]
CFNet[75fps] [0.610]
CF2[10fps] [0.605]

Fig. 5. Precision and success plots on the OTB-2013 dataset
using one-pass evaluation.

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

Precision plots of OPE

MetaSDNet[2fps] [0.880]
MGA-SiamRPN++[65fps] [0.876]
SiamRPN[200fps] [0.851]
MetaCREST[3fps] [0.848]
HDT[11fps] [0.848]
CREST[2fps] [0.838]
CF2[10fps] [0.837]
MGA-DCFNet[256fps] [0.826]
MGA-SiamFC[77fps] [0.823]
MemTrack[50fps] [0.820]
BACF[35fps] [0.817]
CSR-DCF[25fps] [0.802]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE

MGA-SiamRPN++[65fps] [0.670]
MetaSDNet[2fps] [0.658]
SiamRPN[200fps] [0.637]
MetaCREST[3fps] [0.632]
MemTrack[50fps] [0.626]
MGA-DCFNet[256fps] [0.624]
CREST[2fps] [0.623]
MGA-SiamFC[77fps] [0.617]
BACF[35fps] [0.616]
SiamFCTri[86fps] [0.590]
CFNet[75fps] [0.589]
CSR-DCF[25fps] [0.587]

Fig. 6. Precision and success plots on the OTB-2015 dataset
using one-pass evaluation.

Impact of graph learning. To show the impact of
graph learning in GEM, we replace GNN with a fully-
connected network with the same architecture. As shown
in Fig. 4, MGA-SiamFC-w/o-Graph achieves inferior re-
sults (78.8%/59.5%) to our MGA-SiamFC (82.3%/61.7%),
The main reason is that graph message propagation can ef-
fectively regularize the raw gradient by aggregating gradients
of similar filters, which is better than learning separately.
Impact of target input. In Fig. 4, without using the target in-
put, we can find that MGA-SiamFC-w/o-Target significantly
degrades the performance. This shows the importance of us-
ing the target input, which facilitates the gradient embedding
to better reconstruct the weight update.
Impact of gradient input. We remove GEM and only use
FAM inputing with the target exemplar for filter adaptation.
In Fig. 4, the corresponding tracker MGA-SiamFC-w/o-
Grad can still achieve better results than its baseline tracker
SiamFC, which demonstrates that the image-level target in-
formation can provide rich information for adaptation.
5.3. Comparison with Baseline Trackers

We compare our MGA-SiamFC, MGA-DCFNet and MGA-
SiamRPN++ trackers with their baseline trackers (i.e.,
SiamFC, DCFNet and SiamRPN++) on OTB-13/15 [25, 11]
and VOT-16/18 [12, 13]. For OTB, we report both the dis-
tance precision rates (DPR) and the area under the curve

Table 2. Results on VOT-2016 based on EAO, accuracy
(Acc.) and robustness (Rob.). The best results are highlighted
by bold.

Trackers
MGA-

SiamFC

MGA-

SiamRPN++

MGA-

DCFNet
MemTrack MDNet MetaSDNet SiamMask SiamRPN++

EAO↑ 0.263 0.475 0.244 0.273 0.257 0.310 0.442 0.461

Acc.↑ 0.55 0.64 0.54 0.53 0.54 0.54 0.67 0.64

Rob.↓ 0.440 0.196 0.41 0.38 0.34 0.26 0.23 0.20

Avg. FPS 77 65 256 50 1 1 11 71

(AUC). For VOT, the expected average overlap (EAO) is used.
The results are presented in Table 1. By applying our

MGA method, the performances of the three baseline trackers
are improved, which is because the adapted backbones in our
MGA-trackers provide more rich target-specific information,
which enables the trackers to gain more discriminative fea-
tures of target objects, thus enabling robust online tracking.

5.4. Comparison with State-of-the-Art Trackers

In this subsection, we extensively compare the proposed
MGA-trackers with state-of-the-art trackers.
OTB: We select two groups of trackers to compare with our
MGA-trackers on OTB-2013 [25] and OTB-2015 [11]: 1) 8
real-time trackers including SiamRPN [14], MemTrack [4],
SiamFC-tri [15], BACF [18], CSR-DCF [26], CFNet [17],
Staple [27] and KCF [24], and 2) 5 state-of-the-art deep track-
ers that are not real-time, including MetaCREST [6], CF2
[16], HDT [28], MetaSDNet [6] and CREST [29].

Fig. 5 shows the overall performance achieved by our
MGA-trackers and the 11 top-performing tested trackers
on OTB-2013. MGA-SiamRPN++ achieves the best DPR
(91.2%) and AUC (69.2%) scores, while running at the high
speed of 65 FPS. Compared with CF-based meta tracker (i.e.,
MetaCREST) that aims to learn an initial model, our MGA-
DCFNet learns to adapt the model in an online manner, and
achieves better performance than MetaCREST.

Figs. 6 shows the overall comparison on OTB-2015. Our
MGA-SiamRPN++ achieves the best AUC scores (67.0%).
Without time-consuming online optimization steps, MGA-
SiamRPN++ runs significantly faster than MetaSDNet (i.e.,
about 32 times faster). Compared with the CFNet that uses
a CF layer for adaptation, MGA-SiamFC achieves the better
results, showing the effectiveness of our method.
VOT-2016: We evaluate the proposed three MGA-trackers on
the VOT-2016 [12] dataset with the comparison to five recent
trackers, including SiamRPN++ [9], SiamMask [30], MetaS-
DNet [6], MemTrack [4] and MDNet [3]. The overall per-
formance of each tracker is shown in Table 2. Our MGA-

5

SiamRPN++ outperforms SiamRPN++ and SiamMask, as
well as other adaptive-based (MemTrack and MDNet) or meta
learning-based trackers (MetaSDNet).

6. CONCLUSIONS

This paper addresses the online adaptation problem of how
to effectively and efficiently adapt backbone feature extrac-
tors used in existing deep trackers to a specific online track-
ing task. To achieve this, we propose a general meta-
graph adaptation (MGA) method and demonstrate its effec-
tiveness on two deep tracking frameworks, i.e., the template-
matching framework based on Siamese network and the end-
to-end trainable correlation filter framework. By apply-
ing the proposed method to these two frameworks, we pro-
pose three MGA trackers, i.e., MGA-SiamFC, MGA-DCFNet
and MGA-SiamRPN++. We show that the proposed MGA-
trackers can both keep very close running speed with their
baseline trackers, while also achieving better performance.
Acknowledgements. This work was supported by a grant
from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. CityU 11212518).

7. REFERENCES

[1] L. Bertinetto, J. Valmadre, J.F. Henriques, A. Vedaldi,
and P.H.S. Vedaldi, “Fully-convolutional siamese net-
works for object tracking,” in ECCVW, 2016.

[2] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg,
“Eco: Efficient convolution operators for tracking,” in
CVPR, 2017, pp. 21–26.

[3] H. Nam and B. Han, “Learning multi-domain convo-
lutional neural networks for visual tracking,” in CVPR,
2016, pp. 4293–4302.

[4] T. Yang and A. B. Chan, “Learning dynamic memory
networks for object tracking,” in ECCV, 2018.

[5] T. Zhang, C. Xu, and M.-H. Yang, “Multi-task correla-
tion particle filter for robust object tracking,” in CVPR,
2017, pp. 4335–4343.

[6] E. Park and A. C. Berg, “Meta-tracker: Fast and robust
online adaptation for visual object trackers,” in ECCV,
2018, pp. 569–585.

[7] L. Huang, X. Zhao, and K. Huang, “Got-10k: A large
high-diversity benchmark for generic object tracking in
the wild,” PAMI, 2019.

[8] O. Russakovsky, J. Deng, and et al, “Imagenet large
scale visual recognition challenge,” IJCV, vol. 115, no.
3, pp. 211–252, 2015.

[9] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan,
“Siamrpn++: Evolution of siamese visual tracking with
very deep networks,” in CVPR, 2019.

[10] Q. Wang, J. Gao, and J. Xing, “Dcfnet: Discrimi-
nant correlation filters network for visual tracking,” in
arXiv:1704.04057, 2017.

[11] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking bench-
mark,” PAMI, vol. 37, no. 9, pp. 1834–1848, 2015.

[12] M. Kristan, A. Leonardis, and J. Metas, “The visual ob-
ject tracking vot2016 challenge results,” in ICCV Work-
shop, 2016, pp. 777–823.

[13] M. Kristan, A. Leonardis, and M. Felsberg, “The sixth
visual object tracking vot2018 challenge results,” in EC-
CVW, 2018.

[14] B. Li, W. Wu, Z. Zhu, and J. Yan, “High performance
visual tracking with siamese region proposal network,”
in CVPR, 2018.

[15] X. Dong and J. Shen, “Triplet loss in siamese network
for object tracking,” in ECCV, 2018.

[16] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hier-
archical convolutional features for visual tracking,” in
ICCV, 2015, pp. 3074–3082.

[17] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and
P. H. S. Torr, “End-to-end representation learning for
correlation filter based tracking,” in CVPR, 2017.

[18] H. Galoogahi, A. Fagg, and S. Lucey, “Learning
background-aware correlation filters for visual track-
ing,” in ICCV, 2017.

[19] P. Li, B. Chen, and W. Ouyang, “Gradnet: Gradient-
guided network for visual object tracking,” in ICCV,
2019.

[20] L. Zhang, A. G.-Garcia, and F. Khan, “Learning the
model update for siamese trackers,” in ICCV, 2019.

[21] J. Choi, J. Kwon, and K. Lee, “Deep meta learning for
real-time target-aware visual tracking,” in ICCV, 2019.

[22] K. Xu, W. Hu, J. Leskovec, and S. jegelka, “How pow-
erful are graph neural networks,” in arXiv:1810.00826,
2018.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
Towards real-time onject detection with region proposal
network,” in NIPS, 2015.

[24] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista,
“High-speed tracking with kernelized correlation fil-
ters,” PAMI, vol. 37, no. 3, pp. 583–596, 2015.

[25] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking:
A benchmark,” in CVPR, 2013, pp. 2411–2418.

[26] A. Lukezic and T. Vojir, “Discriminative correlation fil-
ter with channel and spatial reliability,” in CVPR, 2017.

[27] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and
P. Torr, “Staple: Complementary learners for real-time
tracking,” in CVPR, 2016.

[28] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and
M.-H. Yang, “Hedged deep tracking,” in CVPR, 2016.

[29] Y. Song, C. Ma, L. Gong, J. Zhang, R. W.H. Lau, and
M.-H. Yang, “Crest: Convolutional residual learning for
visual tracking,” in ICCV, 2017.

[30] Q. Wang, L. Zhang, and L. Bertinetto, “Fast online ob-
ject tracking and segmentation: A unifying approach,”
in CVPR, 2019.

6

