BUTTONTIPS: DESIGNING WEB BUTTONS WITH SUGGESTIONS

Dawei Liu Ying Cao

Rynson W.H. Lau

Antoni B. Chan

Department of Computer Science, City University of Hong Kong
daweiliu2-c@my.cityu.edu.hk caoying59 @gmail.com {rynson.lau, abchan} @cityu.edu.hk

ABSTRACT

Buttons are fundamental in web design. An effective button
is important for higher click-through and conversion rates.
However, designing effective buttons can be challenging for
novices. This paper presents a novel interactive method to aid
the button design process by making design suggestions. Our
method proceeds in three steps: 1) button presence prediction,
2) button layout suggestion and 3) button color selection. We
investigate two distinct but complementary interfaces for but-
ton design suggestion: 1) region selection interface, where
the button will appear in a user-specific region; 2) element se-
lection interface, where the button will be associated with a
user-selected element. We compare our method with an ex-
isting website building tool, and show that for novice design-
ers, both interfaces require significantly less manual efforts,
and produce significantly better button design, as evaluated
by professional web designers.

Index Terms— web design, data-driven method, button
layout

1. INTRODUCTION

Buttons are fundamental in web design as they often rep-
resent some call-to-action (CTA), which prompts visitors to
perform certain actions (e.g., sign up) to achieve the ultimate
goal of the webpage. An effective button is important for
higher click-through and conversion rates, e.g., it can direct
users to click it to subscribe services, order products or sign
up for an account. However, creating effective designs can be
challenging since designers need to balance numerous proper-
ties of the buttons including position, size and color [1]. Any
small changes in these factors may have significant influence
upon its functionality [2]. Existing tools range from simple
template-based interfaces like WIX [3], to complex systems
like Ilustrator. However, these tools do not provide sugges-
tions and users (novice designers in particular) have difficul-
ties to decide where to put a button, how large it should be
and what color should be used. Therefore, designing effec-
tive buttons can be frustrating for novice designers.

In this paper, we propose a novel interactive method to aid
the button design process by making button design sugges-
tions. In particular, we take a data-driven approach, wherein

we learn several regression models to capture how position,
size and color of buttons are determined by professional de-
signers. With these models, we investigate two interfaces for
button design suggestion. First, we develop the region selec-
tion interface , where the button suggestions appear inside the
user-specific region. Second, we develop the element selec-
tion interface, where button suggestions are associated with
the user-selected element.

Given a web design being edited, a user can use either
interface to indicate where to place a button. Our method
will then provide several button suggestions with size and
alignment determined. The user can select a preferred but-
ton suggestion. Finally, our method will automatically select
the color to fill the button. The data-driven strategy allows
us to learn implicit principles of button design from examples
and thus generate buttons that are visually and functionally
analogous to what professional web designers create.

To evaluate our method, we have conducted several user
studies to compare our method against a commercial web de-
sign tool. Results show that the proposed method significantly
reduces the time required for the button design process, while
remarkably improving the quality of the produced buttons.

2. RELATED WORK

To the best of our knowledge, there is little work automat-
ing button design on webpages. We first discuss prior works
on layout generation, and then review some recent efforts on
aiding web design.

2D Layout Problems. 2D layout problems have been re-
ceiving growing interests. Cao et al. [4, 5] introduced statis-
tical models for automating comic layout and content synthe-
sis. Reinert et al. [6] proposed a method for graphical prim-
itive packing. Jiang et al. [7] proposed a method for layout
regularization. O’Donovan et al. [8] presented a system for
suggesting single-page graphic design layout. However, all of
these models are using existing elements to optimize a current
design, and unable to create new elements to add to an exist-
ing design, and thus cannot be used to address our problem.
We follow this line of research, but focus on an unexplored
problem — aiding users to create professional-looking button
designs.

Personal Blog

PersORS Blog Section |

love my style love my family
nd my car_TeXt

and my cat

(b)

:;P\-...q

-
A ig
IN MY/
REALITY s
[= Q
(e)

Section 2

(a)

love my style love /&vfamily =)

Personal Blog Personal Blog

[outon |
love my style love my family ([N =)

and my cat

love my style love my family
and my cat

© (d)

-

TWIST 1
IN MY/
REALITY 5

P_...

-
A ﬂg
IN MY
REALITY w

| =

(@

Fig. 1. Button Design Interface. Given a web design with some already-placed page elements (a), a user may add a button to it
by either selecting an element that the button is associated with (the text element outlined in red in (b)) or drawing a region to
indicate the spatial scope that the button should lie within (the orange rectangle in (e)). Our method will then provide multiple
layout suggestions, i.e., position and size of buttons (gray buttons in (c) and (f)). The user may select a desired button (outlined
in red in (c) and (f)). Finally, our method will automatically select the color to fill the button as shown in (d) and (g).

Web Design Analyses. There are some works for ana-
lyzing and assisting web designs. For example, Kumar et
al. [9] introduced a scalable platform for crawling a large-
scale repository of webpages. Lee et al. [10] presented an in-
teractive interface for navigating a large corpus of web design
examples. Doosti et al. [11] and Jahanian et al. [12] studied
styles of web design in history and Bylinskii et al. [13] pre-
dicted visual importance of graphic designs. Pang et al. [14]
optimized webpage elements to direct user attention. Zhao et
al. [15] proposed a model to predict web font properties.

3. INTERFACE OVERVIEW

We next provide a high-level view of the button design
interface (Fig. 1). See the Supplemental Video for demon-
strations. The key goal of our interfaces is to aid novices in
the button design process.

Region Selection Interface. In this mode, our method gen-
erates a set of button design suggestions in a user-specified
region. In particular, a user can draw a rectangle on a web
design being edited to indicate where to place a button. Our
method will analyze the region properties (e.g., width, height
and center position) to rank the button suggestions.

Element Selection Interface. Our method can also help
suggest button design for an existing element in an existing
web design. Particularly, a user can mouse-click to choose
which element a button should be associated with. This inter-
face is useful to generate element-associated buttons.

4. METHOD OVERVIEW

To provide button design suggestions, our method pro-
ceeds in three steps: 1) button presence prediction, in which
we predict button presence for a rough region; 2) button lay-
out suggestion, in which a button is automatically placed and
scaled; 3) button color selection, in which the button color is
automatically selected. We leverage professional web design
examples to train several machine learning models to perform
these steps.

Web design dataset. We collect 100 professionally de-
signed webpages as our training dataset. In particular, we ac-
cess these webpages from WIX [3], where professional web
designers provide their webpages for novice designers as ref-
erence. In addition, we choose webpages that contain buttons
as Call-To-Action buttons like “Subscribe”, which represent
the main task of the webpages.

5. BUTTON PRESENCE PREDICTION

Candidate Region Generation. Before designing a button
on a webpage, professional web designers often have a rough
idea about where to place the button. To mimic this process,
we define a “candidate region” by enforcing two properties:
1) Rectangular area, which is widely used in grid-based sys-
tem; 2) Snapping to other elements, which is easy to extract
local context for button presence analysis (see Fig. 2). Our
proposed “candidate region” is also inspired by the concept
of “object proposal” in computer vision area, where it is very
useful to detect a bounding box containing an object before
classifying the object types. Here, our strategy is to “detect”
a set of candidate regions that possibly contain a button before
predicting the button attributes. Based on the two properties,
we propose a seed expansion method to detect candidate re-
gions for a web design (see Algorithm 1 and Fig. 3). Please
check our supplemental materials for the detailed algorithm.

Button Presence Score. There can be some candidate re-
gions that are less likely to contain a button. Hence, we need
to estimate a button presence score. So, we train a one-class
SVM model [16] by using our hand-designed features: (1) the
candidate region’s location, size, area and aspect ratio; (2) the
k-th neighbor’s width, height, area and aspect ratio; (3) po-
sition differences of the upper-left, center, and bottom-right
points between the k-th neightbor and candidate region. k is
defined in the following order: top, left, bottom, right. This
results in a 48-dimensional feature vector.

Christmas Gifts

Our one-day shopping
event is on now.

(a)

Our one-day shopping

(b)

Our one-day shopping
event is on now.

event is on now.

Fig. 2. Overview of our method. Given a web design being edited without buttons (a), the button presence prediction step
proposes a set of candidate regions (orange boxes) that roughly contains buttons, and the button layout prediction step will then
provide a button layout (blue box) for each candidate region. After the user selects a button layout, the color selection step will
automatically select suitable color for it (c). Best viewed in color.

Algorithm 1 Seed expansion algorithm. Please check our
supplementals for detailed description.
1: procedure EXPANDSEED(Seed;)
Queue Q « Seed;
3 List £ < null
4 while Q # null do
5: Smew «— Q.pop()
6: SH + HorizontalExpand(S™e%)
7
8
9

»

SV« VerticalExpand(S™*®)

R« ({SV,sH}UL)o L > new regions

: Q.append(R)
10: L+~ LUR
11: end while
12: return rs > candidate regions for Seed;

13: end procedure

6. BUTTON LAYOUT PREDICTION

Width and Height. The feature vector aforementioned is
also useful to predict width and height of a button by using
Gaussian process regression [17]. We find that this method is
not able to capture the following two design principles: 1) set
button height equal to its left input box, if it exists; and 2) set
button height equal to its left/right button, if it exists. Thus,
we simply predefine them in our model.

Position. In web design, visual alignment is more impor-
tant than precise position, which can also be extremely com-
plicated to predict. Inspired by [18, 19], we create a set of
customized alignment types to place a button (see Fig. 4), We
then use random forests [20] to predict one of the 9 align-
ment types with respect to its neighboring elements in both
horizontal and vertical directions.

7. INCORPORATING USER CONSTRAINTS

To incorporate the user-specified constraints, i.e., region
selection interface and element selection interface, we build
an intention map on the input web design to capture the
user behavior. For the region selection interface, our method
uses the user-specific region structures (i.e., width, height and

Left-horizontal Right-horizontal Down-vertical ~ Up-vertical
expansion expansion expansion expansion
5
® h- ﬁ. - Not allowed
2
5 ey L] [=
%F Not allowed F Not allowed
Q
el
] = -
T Exists Not allowed
g
<
§
o
2 . -
% Exists Not allowed ﬂ Not allowed
9]

Fig. 3. Seed expansion method. We define a set of small
squares (green) as seeds and attach them to the four edges
of an element. Each row shows the generated regions result-
ing from an iteration of expanding one specified seed (red).
A newly generated region will be ignored if it already exists
(“Exists") or it cannot be expanded anymore (“Not allowed").
For example, the blue cell in iteration 3 is the same as the blue
cell iteration 2. Thus, we mark it “Exists”.

center position) to parameterize a Gaussian-weighted map
M(z,y) = N([z,y]; u,X) as the intention map. For the el-
ement selection interface, our method uses the selected ele-
ment structures instead. The final score of the button centered
at («',y’) is defined as a weighted sum of its button presence
score and its corresponding value at the intention map:

Sy = asS, + BN([#, 9] 1, X)), 6]

where S), is computed by multiplying the confidence scores
output by the models for button presence and layout predic-
tion. « and 3 are both set to 0.5 in our implementation. We
present the top 5 button suggestions to the user, and translate
the normalized score of each button to the degree of trans-
parency of the button.

8. BUTTON COLOR SELECTION

After predicting the layout of the button, we next aim to
select the button color. Our method suggests a color based on

Vertical alignment

Top w.r.t left neighbor

Top w.rt candidate region

Top w.r.t right neighbor

Center w.r.t left neighbor

Center w.r.t candidate region]

Center w.r.t right neighbor

Bottom w.r.t left neighbor]

Bottom w.r.t candidate region

Bottom w.r. right neighbor

L3

Horizontal alignment

Left w.r.t top neighbor

Left w.r.t candidate region

Left w.r.t bottom neighbor|

Center w.r.t top neighbor

Center w.r.t candidate region

Center w.r.t bottom neighbo

Right w.r.t top neighbor

Right w.r.t candidate region

[Right w.r.t bottom neighbor

[’ i
IButton!
L 1

L

=

.

—

=

| iy

Fig. 4. Horizontal and vertical alignment types. For vertical alignment types (the first two rows), green/black/blue boxes

represent left neighbor/candidate region/right neighbor to a button.

For horizontal alignment types (the last two rows),

green/black/blue boxes represent top neighbor/candidate region/bottom neighbor to a button.

balancing the compatibility, where button color is harmonious
to its surrounding elements, and contrast, where the button
is standing out from its local context. For compatibility, we
apply the approach from [21]. In particular, we compose a
color theme (5 colors) as input for [21], by extracting 4 col-
ors from a 400300 region centered around the button using
K-means clustering, the predicted button color ¢, as the 5-
th color, then we can obtain a color compatibility score. For
contrast, we compute the Euclidean distance as the evaluation
metric. Then the button color generation amounts to finding a
color that maximizes a score composed of compatibility and
contrast scores:

c; = argmaxyC(cp) + AT (cp), 2
e

where C(c;) is the compatibility score between ¢, and the
4 extracted colors, T'(cp) is the euclidean distance between ¢
and the average of the 4 extracted colors,y = 0.7and A = 4.5
are the weight factors. Rather than searching over the whole
color space, consider a list of 7 web-friendly colors from the
colormap theme “lines” in MATLAB'.

9. EVALUATION

To evaluate the effectiveness of our method, we have con-
ducted several user studies where participants are asked to de-
sign buttons using our interfaces and an existing web design
tool without suggestions. We then evaluate the quality of the
generated button designs using both quantitative metrics and
subjective ratings from professional designers.

9.1. User Study Procedure

For our study, we recruited 12 novice users. We divided
them into 3 groups to design buttons for a given web design.
Each group used one of the three design interfaces: the el-
ement selection interface, the region selection interface, and
the traditional drag-and-drop interface (either Photoshop or
Powerpoint as their preference). Note that for the traditional
interface, the participants needed to manually position and re-
size a rectangle button and used a color wheel for color se-
lection. A total of 32 test webpages were used in our study.

Uhttps://www.mathworks.com/help/matlab/ref/colormap.html

We removed some of the existing buttons from the webpages,
and asked the participants to provide new button designs for
the webpages. Those removed buttons were used to serve as
the ground-truth for further comparison.

During the study, each participant was assigned to design
buttons for 8 webpages, which were randomly selected from
the 32 webpages. For each webpage, a participant was given
the elements or regions that the buttons should be associated
with, and was asked to design the buttons using one of the
three interfaces.

9.2. Evaluation Metrics

Quantitative Metrics. We use the original buttons as
ground-truth to evaluate the quality of the buttons generated
by the participants. We use the following quantitative met-
rics: 1) Position - the root-mean-square-error (RMSE) be-
tween upper-left corner coordinates of the ground-truth and
the generated button. 2) Size - the RMSE of the button size
between the ground-truth and generated button. 3) Color -
the RMSE of the button color in the Lab color space, between
the ground-truth and the generated button. 4) Jaccard index -
the ratio of the intersection area to the union area between the
ground-truth and generated button.

Ratings from Professional Web Designers. We recruited
21 professional web designers to rate the button designs gen-
erated in the user study, by using a scale of 1 (worst) to 5
(best). As we found that our region selection interface and
element selection interface perform statistically equal (Sec-
tion 9.3), we only ask web designers to rate our region selec-
tion interface. Then, for each webpage, we asked the design-
ers to rate 4 versions of it: button by our tool (with the region
selection interface), button by the traditional tool, the ground-
truth button, and the “best fitting” button. The “best fitting”
button is the one suggested by our tool that is most similar
to the ground-truth button in terms of button Jaccard index
value. This is to provide an upper bound performance of our
method, without being influenced by users’ preferences.

9.3. Results and Analysis

Fig. 6 shows some button designs created by participants
using our tool and the traditional tool. Fig. 5 shows the aver-
age time for our participants to complete an 8-button-design

Score
Time (min)

5
4 12
3 £ g
2 o
(S
: o
0 0

Traditional Region Best Fitting Ground
selection Truth

Traditional Component Region

Selection Selection

Fig. 5. Left: the rating from professional web designers on
different types of button designs. Right: the average time used
by participants to complete one design session using each of
the three interfaces.

session using each of the three interfaces. In particular, we
note that participants using our interfaces completed the de-
sign task approximately three times faster than those using the
traditional interface.

Quantitative results. Fig. 7 shows the comparison of
the button designs from the ground-truth, the traditional tool,
our tool, and “best fitting” buttons, using different quantita-
tive metrics aforementioned. Our tool has smaller position
and size errors, and a larger Jaccard index value than the tra-
ditional tool. This means that our tool enables users to design
buttons similar to the professional ones than the traditional
tool. On the other hand, the traditional tool has a slightly
lower color error than ours. This is probably because we only
consider 7 discrete candidate colors in predicting button col-
ors, for computational efficiency. We believe that this can be
improved by increasing the number of candidate colors, at the
cost of a higher computational time.

Among the buttons of our tool (region selection interface
or element selection interface), the traditional and the “best-
fitting”, there is a significant difference in the position error,
color error and Jaccard index (Kruskal-Wallis test, p < 0.05).
In addition, there are no significant differences in the size er-
ror (Kruskal-Wallis test, p > 0.05). For the position error and
Jaccard index, our upper-bound performance (“Best fitting”)
is much better than the traditional tool (Wilcoxon signed-rank
test, p < 0.001 for position; p < 0.001 for Jaccard index).
Also, there are no significant differences between our region
selection interface and element selection interface by posi-
tion, size and color errors and Jaccard index (Kruskal-Wallis
test, p > 0.05, respectively).

Designer ratings. We show the ratings from the web de-
signers on button designs produced using the four approaches
as shown in Fig. 5. Overall, there are significant differences
in ratings among the four types of button designs (Kruskal-
Wallis test: p < 0.001). In particular, while the ground-truth
was rated significantly higher than the best-fitting and our tool
(region selection), the best-fitting and our tool (region selec-
tion) were rated significantly higher than the traditional tool
(Wilcoxon signed-rank test: p < 0.001; p < 0.001). This
result suggests that our method can significantly reduce the
quality gap between buttons generated by novices and those
generated by professional web designers.

Blind test for button scores. Finally, we evaluate the
scores used for the button transparency by comparing with the
“Best Fitting” button, which is most similar to the ground-
truth. In particular, we record the frequency that the top-1
and top-2 scoring buttons contain the “Best Fitting” button.
We also record the frequency of the top-scoring buttons that
are selected by users during the user study (with button trans-
parency disabled).

The top-scoring button matched the “Best Fitting” button
(closest to the ground-truth) 74% of the time, while one of
the top-2 scoring buttons matched the best-fitting button 87%
of the time. This suggests that the score used for the trans-
parency is accurate, and accepting the suggestion can lead to
the best button design. With button transparency disabled,
users selected the highest-scoring button 66% of the time, or
one of the top-2 buttons 79% of the time.

10. CONCLUSION AND DISCUSSION

In this paper, we propose a novel method to aid novices
in the button design process, by providing design suggestions.
Our method can automatically predict button layout and select
button color, allowing the users to design high-quality buttons
with ease. We envision that our tool can be easily integrated
into existing commercial web design tools (e.g., [3]) to make
web design more accessible to the general population.

As a future work, we would like to incorporate global in-
formation into our button layout prediction method and use
more complicated CSS properties to generate more nuanced
button styles. In this paper, we only address button design.
However, our framework is generic and can be adapted to help
design other webpage elements (e.g., input field), which is left
as a future work.

Acknowledgements. This work was supported by the Research
Grants Council of the Hong Kong SAR, China (CityU 11200314).

11. REFERENCES

[1] Rakesh Soni, “Why the cta button is the most important
part of your site,” http://blog.loginradius.
com/2015/05/cta-button-site/, 52015.

[2] VWO, https://vwo.com/, 2010.
[3] WIX, http://www.wix.com/, 2006.

[4] Cao, Y., Chan, A.B. and Lau, R.W., “Automatic stylistic
manga layout,” ACM TOG, 2012.

[5] Cao, Y., Lau, R.W. and Chan, A.B., “Look over here:
Attention-directing composition of manga elements,”
ACM TOG, 2014.

[6] Reinert, B., Ritschel, T. and Seidel, H.P., “Interactive
by-example design of artistic packing layouts,” ACM
TOG, 2013.

Input Traditional

Ours Ground truth

TREND EDITOR TREND EDITOR

TREND EDITOR TREND EDITOR

132 i3 2%

? Q}

L

"

3.6 3.7

Fig. 6. Button design comparison based on using the traditional tool (Traditional), our tool (Ours) and from the ground truth.
We show the average rating score by professional designers below each webpage. Best viewed in color. Please also check our

supplemental materials for more results with higher resolution.

Traditional
200 Rectangle Selection
I } Element Selection

Best Fitting

40 I I - I
0 Position Size Color Jaccard index (%)
Traditional 170.6 100.9 76.6 20.00
Rectangle Selection 141.3 89.0 85.9 24.70
Element Selection 164.2 86.1 88.8 25.2
Best Fitting 113.2 85.1 84.7 32.0

Fig. 7. Comparison of the traditional tool and our tool using
different metrics. For position, size, and color, a smaller value
indicates a smaller error. For the Jaccard Index, a higher value
indicates a larger overlap with the ground-truth.

[7] Jiang, H., Nan, L., Yan, D.M., Dong, W., Zhang, X. and
Wonka, P., “Automatic constraint detection for 2d layout
regularization,” IEEE TVCG, 2016.

[8] O’Donovan, P., Agarwala, A. and Hertzmann, A., “De-
signscape: Design with interactive layout suggestions,”
in Proc. ACM SIGCHI, 2015.

[9] Kumar, R., Satyanarayan, A., Torres, C., Lim, M., Ah-
mad, S., Klemmer, S.R. and Talton, J.O., “Webzeitgeist:
Design mining the web,” in Proc. ACM SIGCHI, 2013.

[10] Lee, B., Srivastava, S., Kumar, R., Brafman, R. and
Klemmer, S.R., “Designing with interactive example
galleries,” in Proc. ACM SIGCHI, 2010.

[11] Doosti, B., Crandall D.J. and N.M. Su, “A deep study
into the history of web design,” in Proc. ACM on Web
Science Conference, 2017.

[12] Jahanian, A., Isola, P. and Wei, D., “Mining visual

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

evolution in 21 years of web design,” in Proc. ACM
SIGCHI, 2017, pp. 2676-2682.

Bylinskii, Z., Kim, N.W., O’Donovan, P., Alsheikh, S.,
Madan, S., Pfister, H., Durand, F., Russell, B. and Hertz-
mann, A., “Learning visual importance for graphic de-
signs and data visualizations,” ACM UIST, 2017.

Pang, X., Cao, Y., Lau, R.W. and Chan, A.B., “Directing
user attention via visual flow on web designs,” ACM
TOG, 2016.

Zhao, N., Cao, Y. and Lau, R.W., “Modeling fonts in
context: Font prediction on web designs,” in Proc. Pa-
cific Graphics, 2018.

SchAl’ilkopf, B., Platt, J.C., Shawe-Taylor, J., Smola,
A.J. and Williamson, R.C., “Estimating the support of
a high-dimensional distribution,” Neural Computation,
2001.

Rasmussen, C.E., “Gaussian processes in machine
learning,” Summer School on Machine Learning.
Springer, Berlin, Heidelberg, 2003.

Xu, P., Fu, H., Igarashi, T. and Tai, C.L., “Global beau-
tification of layouts with interactive ambiguity resolu-
tion,” in Proc. ACM UIST, 2014.

Xu, P, Fu, H., Tai, C.L. and Igarashi, T., “Gaca:
Group-aware command-based arrangement of graphic
elements,” in Proc. ACM SIGCHI, 2015.

Liaw, A. and Wiener, M., “Classification and regression
by randomforest,” R News, 2002.

O’Donovan, P., Agarwala, A. and Hertzmann, A.,
“Color compatibility from large datasets,” in ACM TOG,
2011.

