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ABSTRACT

In this paper, we consider representing a musical signal as a dynamic
texture, a model for both the timbral and rhythmical qualities of
sound. We apply the new representation to the task of automatic
song segmentation. In particular, we cluster sequences of audio
feature-vectors, extracted from the song, using a dynamic texture
mixture model (DTM). We show that the DTM model can both
detect transition boundaries and accurately cluster coherent segments.
The similarities between the dynamic textures which define these
segments are based on both timbral and rhythmic qualities of the
music, indicating that the DTM model simultaneously captures two
of the important aspects required for automatic music analysis.

Index Terms— Music modeling, dynamic texture model, auto-
matic segmentation, music similarity

1. INTRODUCTION

It is common practice in music information retrieval to represent a
song as a bag of audio feature-vectors (e.g., Mel-frequency cepstral
coefficients). While this has shown promise in many applications,
e.g. music annotation and retrieval [1], audio similarity [2] and song
segmentation [3], the bag-of-features representation is fundamentally
limited by its assumption that the feature-vectors are independent of
each other, i.e., the representation ignores the dependencies between
feature-vectors. As a result, the bag-of-features fails to represent
the rhythmic qualities (e.g., tempo and beat patterns) and temporal
structure (e.g. repeated riffs and arpeggios) of the audio signal. In this
paper, we consider simultaneously modeling both the spectral and
rhythmical qualities of a music clip as a dynamic texture [4], a gener-
ative probabilistic model that models both the timbre of the sound,
and its evolution over time. We apply this new audio representation
to the task of automatic song segmentation.

The goal of automatic song segmentation is to automatically di-
vide a song into self-coherent units such as the chorus, verse, bridge,
etc. Foote [5] segments music based on self-similarity between timbre
features. Goto adds high-level assumptions about repeated sections
to build a system for automatically detecting choruses [6]. Turnbull
et al. [7] present both an unsupervised (picking peaks of difference
features) and supervised (boosted decision stump) method for iden-
tifying musical segment boundaries (but not labeling the segments
themselves). Other methods attempt to explicitly model music and
then cast segmentation as a clustering problem. Gaussian mixture
models (GMMs) ignore temporal relations between features but have
worked well for segmentation and similarity [3] as well as classifica-
tion of a variety of semantic musical attributes [1]. Hidden Markov
models (HMMs) consider transitions between feature states and have
offered improvements for segmentation [8] and genre classification
[9]. Abdallah et al. [10] incorporate prior knowledge about segment

duration into an HMM clustering model to address the problem of
over-segmentation. Levy and Sandler [11] realize that feature-level
HMMs do not encode sufficient temporal information and constrain
their clustering based on the musical structure.

In contrast to these methods which do not explicitly model the
temporal qualities of the signal, we introduce a new segmentation
algorithm that accounts for both the rhythmic and timbral qualities of
the signal. In particular, we cluster sequences of audio feature-vectors,
extracted from the song, using a mixture of dynamic textures. The
new algorithm explicitly models the temporal dynamics of the musical
texture, capturing more of the information required to determine the
structure of music.

2. DYNAMIC TEXTURE MODELS

Although the dynamic texture (DT) and dynamic texture mixture
(DTM) models were originally proposed in the computer vision lit-
erature as generative models for video sequences, they are generic
models that can be applied to any time-series data. In this paper, we
will use the dynamic texture to model a sequence of audio feature
vectors extracted from a song (e.g., a sequence of Mel-frequency
cepstral coefficients). Because we are modeling sequences, we are
able to capture both the instantaneous audio content (e.g., instrumen-
tation and timbre), and the melodic and rhythmic content (e.g., guitar
riffs, drum patterns, and tempo), with a single probabilistic model.
Segmentation is performed by extracting a set of sequences from
a song using a sliding window, and clustering them with a mixture
of dynamic textures. This is analogous to clustering feature-vectors
using a Gaussian mixture model (GMM), but the DTM clusters time-
series (sequences of feature-vectors), whereas the GMM clusters only
feature-vectors. We begin the section with a review of DT and DTM
models, followed by a detailed description of the song segmentation
algorithm.

2.1. Dynamic textures

In computer vision, a dynamic texture (DT) [4] is a generative model
that treats a video sequence as a sample from a linear dynamical
system (LDS). Similarly for audio, we can model a sequence of
audio feature-vectors as a sample from an LDS. The model captures
both the sound and the dynamics of the sequence with two random
variables: an observed variable yt ∈ Rm, which encodes the sound
component (audio feature at time t), and a hidden state variable
xt ∈ Rn, which encodes the dynamics (evolution of the sound over
time), where n < m. The state and observed variables are related
through the linear dynamical system (LDS) defined by{

xt+1 = Axt + vt

yt = Cxt + wt
(1)



a) x

1


x

2


x

3


x

4


y

1


y

2


y

3


y

4


...


b) x

1


x

2


x

3


x

4


y

1


y

2


y

3


y

4


...


z


Fig. 1. a) Dynamic texture; b) Dynamic texture mixture. The hidden
variable z selects the parameters of the remaining nodes.

The parameter A ∈ Rn×n is a state transition matrix and C ∈
Rm×n is an observation matrix (e.g., containing the principal com-
ponents of the audio sequence when learned with [4]). The driving
noise process vt is normally distributed with zero mean and covari-
anceQ, i.e., vt ∼ N (0, Q) whereQ ∈ Sn

+ is a positive-definite n×n
matrix. The observation noise wt is also zero mean and Gaussian,
with covariance R, i.e., wt ∼ N (0, R) where R ∈ Sm

+ . Finally, the
initial state is also normally distributed with mean µ and covariance
S, i.e., x1 ∼ N (µ, S). The dynamic texture is completely specified
by the parameters Θ = {A,Q,C,R, µ, S}.

The graphical model of the dynamic texture is shown in Fig-
ure 1a. A number of methods are available to learn the param-
eters of the dynamic texture from a training sequence, including
maximum-likelihood methods (e.g., expectation-maximization [12]),
non-iterative subspace methods (e.g., N4SID [13]) or a suboptimal,
but computationally efficient, procedure [4]. The dynamic texture
model has been successfully applied to various computer vision prob-
lems, including video texture synthesis [4], video recognition [14, 15],
and motion segmentation [16, 17].

2.2. Mixture of Dynamic Textures

While the DT models a single observed sequence, the mixture of
dynamic textures (DTM) [17] models a collection of sequences as
samples from a set of K dynamic textures. This is a useful extension
of the DT for clustering time-series. In computer vision, the model
has been used to cluster video sequences, and to segment motion in
video by clustering patches of video. In this paper, we will use the
DTM to segment a song into sections (e.g., verse, chorus, and bridge)
in a similar way by clustering sequences of audio feature vectors
extracted from the song.

Formally, the DTM is a mixture model where each mixture com-
ponent is a dynamic texture, and is defined by the system of equations{

xt+1 = Azxt + vt

yt = Czxt + wt
(2)

where the random variable z ∼ multinomial(α1, · · · , αK), with∑K
j=1 αj = 1, signals the mixture component from which

each sequence is drawn. The remaining variables yt and xt

form a standard dynamic texture, but with parameters Θz =
{Az, Qz, Cz, Rz, µz, Sz} that are dependent on the active mixture
component. The graphical model for the dynamic texture mixture is
presented in Figure 1b. Given a set of observed sequences {y(i)}Ni=1,

the maximum-likelihood parameters of the DTM can be learned using
the EM algorithm [17].

2.3. Song Segmentation

Song segmentation is performed with the DTM using a coarse-to-fine
approach. First, audio features-vectors are extracted from the audio
signal (e.g., Mel-frequency cepstral coefficients). To produce a coarse
segmentation, short sequences are extracted from the full sequence
of audio feature-vectors using a sliding window (∼5 sec) with a
large step-size (∼0.5 sec). A DTM is learned from the collection of
windowed sequences using EM, and the coarse song segmentation is
formed by assigning each windowed sequence to the component with
largest posterior probability, i.e.,

j∗ = argmax
j

αjp(y
(i); Θj)∑K

j=1 αjp(y(i); Θj)
(3)

where p(y(i); Θj) is the likelihood of sequence y(i) under the j-th
mixture component Θj . This first segmentation is relatively coarse
(at best within 0.25 sec), due to the large step-size and the poor-
localization properties of using a large window. Next, we refine the
boundaries of the coarse segmentation. Sequences are extracted from
the song using a smaller sliding window (∼1.75 sec) and a finer step-
size (∼0.05 sec). A fine-grain segmentation is formed by assigning
these sequences to the most-likely components of the DTM learned
in the coarse-segmentation. Finally, the boundaries of the coarse
segmentation are refined by searching for the closest boundaries
in the fine-grain segmentation, producing the final segmentation.
Note that using a large 5 second window for the coarse segmentation
allows the DTM to model musical characteristics with long temporal
durations (e.g., beat patterns, riffs, sustained notes, etc.). This is not
possible when using a shorter window.

3. EXPERIMENTS

3.1. Data

We experiment on 100 pop songs from the RWC music database
(RWCMDB- P-2001) [18] where each song has been segmented into
coherent parts by a human listener [19]. The segments are accurate
to 10ms and are labeled with great detail. For this work we group the
labeled segments into 4 possible classes: “verse” (i.e., including verse
A, verse B, etc.), “chorus”, “bridge” and “other” (“other” includes
labels such as “intro”, “ending”, “pre-chorus”, etc. and is also used
to model any silent parts of the song). This results in a “ground truth”
segmentation of each song with 4 possible segments classes. On
average, each song contains 11.1 segments.

3.2. Features

The content of each 22050Hz-sampled, monaural waveform is repre-
sented using two types of music information features:

3.2.1. Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs), developed for speech
analysis [20], describe the timbre or spectral shape of a short time
piece of audio and are a popular feature for a number of MIR tasks,
including segmentation [5, 3, 7]. We compute the first 13 MFCCs
for half-overlapping frames of 256 samples (one feature vector every
∼ 6 msec). In music information retrieval, it is common to augment
the MFCC feature vector with its instantaneous first and second



Model Error Rate Rand # Segments
DTM-MFCC 0.20 0.79 16.9
GMM-MFCC 0.42 0.66 58.7
Constant 0.59 0.35 1
Random 0.64 0.54 279.0
Truth 0.00 1.00 11.1

Table 1. Song segmentation using MFCC features.

derivatives, in order to capture some information about the temporal
evolution of the feature. When using the DT, this is unnecessary since
the temporal evolution is modeled explicitly by the DT.

3.2.2. Chroma

Chroma features have also been successfully applied for song seg-
mentation [6]. They represent the harmonic content of a short-time
window of audio by computing the spectral energy present at frequen-
cies that correspond to each of the 12 notes in a standard chromatic
scale. We compute a 12-dimensional chroma feature vector from
three-quarter overlapping frames of 2048 samples (one feature vector
every ∼ 23 msec).

3.3. Segmentation

The songs in the RWC database were segmented into K = 4
segments using the DTM method described in Section 2.3 on the
MFCC or Chroma features, which we denote DTM-MFCC and DTM-
Chroma, respectively. For DTM-MFCC, we use a window size of 900
MFCC frames and a step-size of 100 frames, while for DTM-Chroma,
we use a window size of 600 Chroma frames and a step-size of 20
frames. The dimension of the hidden state-space of the DTM was
n = 7 for MFCC, and n = 6 for Chroma.

For comparison, we also segment the songs using a Gaussian
mixture model (GMM) trained on the same feature data [3]. We learn
a K = 4 component GMM for each song, and segment by assigning
features to the most likely Gaussian component. Since segmentation
decisions are now made at the short time-scale of individual features,
we smooth the GMM segmentation with a length-1000 maximum-
vote filter. We compare the models against two baselines: “constant”
assigns all windows to a single segment, “random” selects segment
labels for each window at random.

We quantitatively measure the correctness of a segmentations
by comparing with the ground-truth using two metrics: 1) the error
rate, which is the proportion of the entire song that is assigned to an
incorrect segment; 2), the Rand index [21], a clustering metric that
intuitively corresponds to the probability that any pair of items will
be clustered correctly, with respect to each other (i.e, in the same
cluster, or in different clusters). We also report the average number
of segments per song. The results are averaged over 100 songs.

Tables 1 and 2 report the segmentation results for the MFCC and
Chroma features, respectively. DTM-MFCC outperforms all other
models, with an error rate of 0.20 and Rand index of 0.79. GMM
performs significantly worse than DTM, e.g., the error rate increases
to 0.42 on the MFCC features. Both models tend to over-segment
songs although this problem is less severe for DTM. This suggests
that there is indeed a benefit in modeling the temporal dynamics with
the DTM.

An example of the DTM segmentation of one song is compared
to the ground truth in Figure 2 where we see that, while most of the
DTM segments are accurate, there are some errors due to imprecise
borders, and some cases where the model over-segments.

Model Error Rate Rand # Segments
DTM-Chroma 0.26 0.76 13.5
GMM-Chroma 0.46 0.60 24.1
Constant 0.58 0.32 1
Random 0.67 0.56 329.3
Truth 0.00 1.00 11.1

Table 2. Song segmentation using Chroma features.
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Fig. 2. Example of the true segmentation of a song compared to the
automatic GMM (top) and DTM (bottom) segmentations.

3.4. Boundary Detection

In addition to evaluating the segmentation performance of the DTM
model, we can consider its accuracy in simply detecting the bound-
aries between segments (without trying to label the segment classes).
The song boundaries are computed by segmenting the song using
DTM-MFCC with K = 5, and then finding the time instances where
the segmentation changes. We compare results with Turnbull et. al
[7], which tackles the boundary detection problem, using the same
RWC data set, by learning a supervised classifier that is optimized for
boundary detection. We also compare with the music analysis com-
pany EchoNest [22], which offers an online service for automatically
detecting music boundaries.

The evaluation criteria are two median time metrics: true-to-
guess and guess-to-true, respectively measure the median time from
each true boundary to the closest estimate, and the median time
from each estimate to the closest true boundary. The results are
averaged over 100 songs and are presented in Table 3. DTM-MFCC
achieves both lower guess-to-true and true-to-guess times, indicating
that DTM-MFCC is more accurate at finding the song boundaries.
Note that DTM-MFCC is an unsupervised method, whereas the next
best performer [7] is a supervised algorithm.

Model Guess-to-True (sec) True-to-Guess (sec)
DTM-MFCC 4.06 1.76
Turnbull et. al [7] 4.29 1.82
EchoNest [22] 5.09 1.84

Table 3. Boundary detection using MFCC features.



Fig. 3. 2-D visualization of the distribution of song segments. Each
black dot is a song segment. Seven songs are highlighted in different
colors, with segments marked as ◦ (verse), � (chorus), ♦ (bridge),
and4 (“other”).

3.5. Song Segment Similarity

Given the automatic segmentation of a song, we can retrieve other
similar song clips in the database, answering questions like “what
song sounds similar to the verse of this song?” We represent each
song segment by its corresponding dynamic texture component in
the DTM-MFCC, and measure similarities between dynamic textures
with the Kullback-Leibler (KL) divergence [15]. The five closest
segments were retrieved for each song segment, and the results are
presented online1. Qualitatively, the system finds segments that are
similar in both audio texture and temporal characteristics. For exam-
ple, a segment with slow piano will retrieve other slow piano songs,
whereas a rock song with piano will retrieve more upbeat segments.
This indicates the dynamic texture model is capturing both the “tex-
ture” of the audio content (e.g., timbre and instrumentation), along
with temporal characteristics (e.g. tempo, beat structures, style).

In order to visualize the distribution of songs in the database, the
song segments were embedded into a 3-d manifold using local-linear
embedding (LLE) [23] and the KL similarity matrix computed above.
Two dimensions of the embedding are shown in Figure 3. We ob-
served that these two axes of the embedding correspond to the tempo
and beat of the segment (e.g., dance beat, hip-hop, rock, or mellow),
and the instrumentation of the segment (e.g., piano, synthesizers, or
distorted guitar). Again, this demonstrates that the dynamic texture
model is successfully modeling both the audio texture and the tempo-
ral characteristics of the songs. Finally, we selected seven songs that
are stylistically different, and highlight them in Figure 3. While most
songs are concentrated in specific regions of the manifold (e.g. the
sections of the hip-hop song are similar sounding), some songs span
multiple regions (e.g., the song highlighted in red contains piano in
the verse, and fast upbeat rock in the chorus and bridge).

4. CONCLUSIONS

We have presented the Dynamic Texture Mixture (DTM) model and
applied it to analysis of music time series. By describing music
as a mixture of coherent textures, we demonstrate that the DTM
model can accurately segment music and detects boundaries between
segments as accurately as leading research and commercial systems.

1http://cosmal.ucsd.edu/cal/projects/segment/

Examining a low-dimensional representation of the DTM-derived
similarity between musical segments illustrates that the model is
capturing both timbral and dynamical elements of the music and it
shows promise as a new tool for automatic music analysis.
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