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Abstract. Imperceptible watermarks are essential in safeguarding the
content authenticity and the rights of creators in imagery. Recently, sev-
eral leading approaches, notably zero-bit watermarking, have demon-
strated impressive imperceptibility and robustness in image watermark-
ing. However, these methods have security weaknesses, e.g., the risk of
counterfeiting and the ease of erasing an existing watermark with another
watermark, while also lacking a statistical guarantee regarding the detec-
tion performance. To address this issue, we propose a novel framework
to train a secret key network (SKN), which serves as a non-duplicable
safeguard for securing the embedded watermark. The SKN is trained
so that natural images’ output obeys a standard multi-variate normal
distribution. To embed a watermark, we apply an adversarial attack (a
modified PGD attack) on the image such that the SKN produces a secret
key signature (SKS) with a longer length. We then derive two hypothesis
tests to detect the presence of the watermark in an image via the SKN
response magnitude and the SKS angle, which offer a statistical guaran-
tee of the false positive rate. Our extensive empirical study demonstrates
that our framework maintains robustness comparable to existing meth-
ods and excels in security and imperceptibility.

Keywords: Zero-bit watermark · Adversarial attack · Hypothesis test

1 Introduction

With the advancement of image-editing [18,24] and generative models [30], wa-
termarking technology has garnered increasing attention from researchers as a
means to protect image rights and verify the authenticity of image sources [5,29].
Watermarking achieves this by embedding unique identifiers into images through
imperceptible modifications that do not compromise the aesthetics of images.

Most existing watermarking methods are based on either: 1) traditional meth-
ods [6, 11, 31, 43], which can provide nice theoretical guarantees on detector
performance but are less secure due to their usage of known linear embedding
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Fig. 1: Our secret-key watermarking framework. (a) the SKN is trained so that its
output follows a standard multi-variate normal (SMVN) distribution given an input
image distribution; (b) given an image, the watermark is generated using adversarial
attack that makes the SKN output the desired secret key signature (SKS) with ex-
tended length; (c) the signature is recovered by applying the SKN to the image, and
the watermark is detected using hypothesis tests derived from the assumed SMVN
distribution of the SKN.

functions; or 2) deep learning methods [1, 13, 17, 23, 25, 45] that use non-linear
embedding/detection functions (deep neural networks, DNNs) to improve de-
tection performance, but do not have any detection guarantees. Furthermore,
because these encoder/decoder frameworks are trained end-to-end, the mech-
anisms learned to embed and detect the watermark are obfuscated. However,
since such DNNs could be kept secret (i.e., not publicly available), the security
of the watermark is higher than traditional methods.

To simultaneously obtain a high detection rate, high invisibility, and high
secrecy, our paper proposes to combine traditional and deep-learning methods –
we propose a new watermarking framework that combines a statistical detection
framework with a secret-key DNN that generates zero-bit watermarks using ad-
versarial attack (see Fig. 1). Specifically, we train a DNN (a non-linear function
mapping from an image to a vector) to imbue its output with known statistical
properties. We denote this DNN as a secret key network (SKN). To watermark
an image, we then use adversarial attack [32] on the SKN so that the adversarial
image produces a desired secret key signature (SKS), a unique vector identi-
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fier. Watermark detection is achieved using hypothesis tests, which leverage the
statistical properties of the trained SKN, providing both statistical guarantees
and interpretability of the detector (as in traditional approaches). The trained
SKN is unique and kept secret, ensuring the security of the watermark, and its
non-linear mapping allows for a high detection rate.

Our experiments assess three key factors in watermarking performance: im-
perceptibility, robustness, and security. Tab. 1 compares our method with other
zero-bit DNN techniques, DNN0B [35] and SSLWM [10]. We address three po-
tential security threats to watermarking through targeted experiments, and the
results indicate that our method significantly enhances security. The security of
our framework stems from each SKN’s uniqueness, which enables watermarked
images generated by one SKN to be undetectable by another SKN with the same
architecture but different weights. Importantly, faking a private SKN is challeng-
ing because a well-trained model consists of a 100 million parameters, which are
randomly initialized, while the training objective is loose (only supervising the
output distribution, not specific input-output pairs), thus leading to significant
deviations between the learned functions of different SKNs. Meanwhile, attack-
ers would also need to know the specific structure of SKN. For imperceptibility,
we compare the quality of watermarked images to their originals. For the same
target PSNR of 32, our method surpasses others in image quality metrics, such
as SSIM. In terms of robustness, our method achieves comparable detection rates
to other methods when the watermarked images undergo different perturbations.
Despite using adversarial attack for embedding the watermark, our method runs
faster than other zero-bit DNN methods due to its smaller backbone and abil-
ity to be completely parallelized in GPU (see Tab. 1). Finally, our experiments
also verify that the well-trained SKN has obtained the required normality in
its output, which is important for the statistical guarantee (calibration) of the
hypothesis tests, while others [10,35] do not obtain such verification. 3

In summary, our contributions are as follows:

1. We introduce a new framework using adversarial attack for watermarking,
integrating the advantages of traditional and deep learning techniques.

2. We propose to train a secret-key network (SKN) to serve as the non-linear
mapping function for watermarking images, whose outputs are imbued with
known statistical properties. In the detection phase, we propose two hypoth-
esis tests, on the length and on the angle, for detecting SKN and SKS in
watermarked images. The hypothesis tests offer a statistical guarantee, as
well as explainability of the detector.

3. The experiment shows that our method produces more secure and imper-
ceptible watermarks while maintaining robustness against image distortions.

3 Our code is available at https://github.com/FelixFeiyu/ECCV2024-AA-WM
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Property Test Case Metric DNN0B [36] SSLWM [10] Ours

Security
Random-fake False Rate ↓ 0.08% 12.84% 1.94%
Model-fake False Rate ↓ 100% 100% 4%

WM-Remove Resistance Level ↑ 2 3 >5

Imperceptibility Image Quality SSIM↑ 0.9103 0.9026 0.9768

Robustness

Gaussian noise

Avg DR↑

92.20% 40.88% 99.02%
Gaussian blur 81.88% 88.33% 99.40%

Rotation 84.36% 86.43% 85.89%
Cropping 97.90% 85.51% 90.58%

JPEG 95.65% 78.12% 99.22%

Runtime watermarking s/image 1.18 7.13 0.67
detecting 0.013 0.013 0.005

Table 1: Summary of comparisons with other zero-bit methods: assessing watermark-
ing on security, imperceptibility, robustness, and runtime. “False Rate” is the success
percentage of fake signatures (generated randomly or via the watermarking model) that
match true embedded signatures of watermarked images. “Resistance Level” denotes
the number of watermarks that can be recursively embedded before the detection rate
of the first watermark falls below 50%. “Avg DR” is the average detection rate for each
image distortion across various parameters.

2 Related Work

2.1 Watermarking Techniques

Imperceptible watermarking aims to embed unique identifiers into images and is
crucial in protecting image copyrights and verifying an image’s provenance [37].

Traditional methods. Most traditional methods are based in the frequency
domain, e.g., leveraging the Fourier-Mellin transform [28], discrete Wavelet trans-
form [19] or SVD-based transform [4]. Although frequency-based approaches of-
ten obtain better hiding ability and robustness, some works explore more direct
approaches in the spatial domain (e.g., [43]). Compared to traditional methods,
our work embeds watermarks in the spatial domain by subtly modifying the im-
age’s pixels using adversarial attacks (AA) on DNNs. The DNN essentially serves
as a non-linear embedding function for the watermark, and the imperceptibility
is guaranteed through AA’s perturbation constraint.

Deep learning methods. Recently, convolutional neural networks (CNNs)
have been applied to watermark images using end-to-end frameworks. HiD-
DeN [45] is an end-to-end trained CNN that uses encoder and decoder net-
works to embed and extract the watermark. Subsequent works enhanced robust-
ness through training with simulated image attacks [1, 25] and 2-stage train-
ing [23].Recent works also modify generative image models to produce water-
marked images [9, 38, 44]. Wen et al . [38] embeds a watermark by modifying
each denoising step of the diffusion model. A related area is steganography,
which aims to hide a secret message inside an image [2,13,17,39,42]. While these
works obtain good performance and secrecy, since the trained encoder/decoder
CNN pairs are unique, their watermark detectors lack statistical guarantees and
interpretability due to the black-box nature of end-to-end trained CNNs. In con-
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trast, our approach maintains high security due to the uniquely trained CNN,
while also offering detector interpretability and statistical guarantees due to our
hypothesis testing approach. In terms of architecture, previous deep learning
methods use encoder/decoder CNN pairs to embed and extract the watermark.
In contrast, our approach uses a single CNN as a non-linear extraction function
and an adversarial attack on the CNN as the embedding function.

Zero-bit watermarking. Most of the aforementioned methods assume the
hidden watermark as a message composed of words or bits. In contrast, “zero-
bit” (ZB) watermarking is only concerned with detecting a watermark’s presence
or absence without message recovery [6,11,31]. Traditional methods for ZB wa-
termarking embed a real vector (a key signature) into the image using a linear
embedding function (e.g., frequency-domain transformations) and then derive
theoretically optimal methods for detecting the presence/absence of the water-
mark, contrasting with other methods [1, 25, 45] that use a binary vector to
represent a message and use a decoder to recover it. Recent works [10, 35, 36]
replace the linear extracting function for ZB watermarking with a CNN pre-
trained on the ImageNet image classification task, where the feature vector in
the penultimate layer serves as the embedding space for the vector signature.

Similar to our approach, [10, 35, 36] use an adversarial attack to embed the
signature into the image. However, there are three crucial differences regard-
ing security, capability, and detector guarantees. First, other ZB methods are
based on known embedding functions (either linear frequency transforms or pre-
trained CNNs), which leaves them vulnerable to signature stealing or signature
overwriting (since the embedding function and its inverse are known), and thus
lack security (see §4.6). In contrast, we regard the DNN itself as a secret key (i.e.,
SKN), which enhances our framework’s security. We can generate distinct SKNs
based on different random seeds, and the signatures embedded with one SKN
are unrecognizable by another SKN, maintaining the detectability of the original
watermark even after multiple overlaps (see §4.6).4 Second, our approach em-
ploys two signatures, the network SKN and the vector SKS, which provide two
complementary methods to secretly embed information into the image via the
SKN’s output length and output direction. Correspondingly, we use two comple-
mentary hypothesis tests, based on length and angle, to detect the watermark. In
contrast, other ZB methods only use a single vector signature and an angle hy-
pothesis test. Third, because we train our SKN’s output to adhere to a Gaussian
distribution, we obtain better-calibrated detector guarantees (see §4.2) than the
pre-trained CNN approaches [10,35,36], which can only approximate a Gaussian
distribution by matching the 1st and 2nd moments via feature whitening.

4 Here all discussions on security are under the assumption that the keys/identifiers
for decoding watermarked images will be securely stored and processed by a host-
ing platform (see Supp. S8). If the platform were to leak the keys/identifiers to
adversaries, then all existing methods (including ours) would lose their security.
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2.2 Adversarial Attacks (AA)

AAs aim to inject subtle noise into an image in order to alter the prediction of
a DNN, e.g., to produce a misclassification [21, 26, 41]. The concept of an ad-
versary can be extended to improving the robustness of watermarks. Improving
on [45], [25] used adversarial samples in the DNN’s training stage to enhance
the watermark’s robustness against a set of image distortions. Adversarial noise
is also employed defensively [15,34], safeguarding images against malicious edits
by generative models. [16] leveraged adversarial training to find the optimal po-
sition and transparency of visible watermarks for copy protection. In contrast to
these methods, which use AA for model training, our approach directly leverages
AA to generate the watermark as adversarial noise.

3 Watermarking Framework

In this section, we propose a new watermarking framework that combines a sta-
tistical detection framework with a secret-key DNN and adversarial attack. As
summarized in Fig. 1, our framework is composed of three stages: 1) secret key
network generation; 2) watermark embedding; 3) watermark detection. In the
first stage (Fig. 1a), we train a DNN as a secret key network (SKN) so that
its output distribution is a standard multivariate normal (SMVN) distribution
when given an input distribution of clean images. In the watermark embedding
stage (Fig. 1b), we apply an image as the input to the SKN and use an adversar-
ial attack on the image to create the watermarked image. We generate a secret
key signature (SKS) as a unit vector, which serves as a unique identifier for the
watermark. The goal of the adversarial attack is to make the SKN output in the
same direction as the SKS, with the length extended such that it is unlikely to
be a sample from the SMVN. In the watermark detection stage (Fig. 1c), we
apply the SKN to the image to obtain the recovered signature, and then use two
complementary hypothesis tests to detect the presence of the watermark. The
first hypothesis test works on the length of the recovered signature (denoted as
HT4L), testing if the vector is unlikely to be a sample from the assumed SMVN
for typical images. The second hypothesis test works on the angle (HT4A), test-
ing if the direction of the recovered signature matches the original SKS.

Note that in our framework, we have two secret keys: a well-trained CNN
whose output vector should follow an SMVN distribution (SKN) and a real
vector (SKS). We next describe each stage in detail.

3.1 Secret Key Network Generation

For the SKN architecture, we select ResNet18 [14] and modify its final fully-
connected layer to use linear activation, thus enabling a mapping from an input
image y ∈ Rn to a real vector x ∈ Rd. Here, d represents the dimension of
the watermark space (e.g., 32), and n is the size of the image. Given an input
distribution of images Y, we require that the SKN output follows an SMVN
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distribution, i.e., x = k(y) ∼ N (0, Id) ,y ∼ Y. To achieve this, the parameters
θ of SKN k(·) are trained to minimize the loss,

Lgen = λ1Lw + λ2Lv, (1)
where Lw is the Wasserstein loss between the output distribution and the SMVN,
Lv is a loss on the output variances, and λ1, λ2 are weighting hyperparameters.

Loss Lw steers the output vector x to follow the desired SMVN, and is based
on the Wasserstein distance [8,12,27] between two distributions (see Supp. S1),

Lw = µT
d µd + tr(Σd) + d− 2 tr(Σ

1
2

d ), (2)
where (µd,Σd) are the mean and covariance of k(y) for a mini-batch {y} ⊂ Y.
The loss Lv improves the convergence of each dimension of x to unit variance,

Lv = ||diag(Σd)− 1d||1, (3)
where diag(·) extracts the matrix diagonal, 1d is a vector of d ones, and || · ||1 is
the L1-norm.

We use large image datasets (e.g., MSCOCO [22]) for training the SKN. Note
that k(·) defines a secret non-linear manifold space in which the watermark is
embedded. SKNs generated with different architectures or initial seeds will result
in different non-linear manifold spaces. We select ResNet18 for the SKN since it
is an efficient and uncomplicated CNN (other architectures could also be used).

3.2 Watermark Embedding

With the well-trained SKN, we use AA to create the watermark by adding
imperceptible noise into an image. In our framework, the watermarking should
achieve two goals simultaneously. First, the AA watermark should make the SKN
produce an output vector that is unlikely to be drawn from its assumed SMVN
(for clean images) - the longer the output vector, the more unlikely it is, and
thus the stronger the watermark. Second, the AA should make the SKN output
vector in the same direction as the SKS.

Specifically, given an image y, the watermark is embedded using AA on k(y),
resulting in the watermarked image ỹ = y+ η, where η is the adversarial noise.
To achieve the two design goals on the SKN output m̂ = k(ỹ) for the adversarial
image, we devise a specific adversarial loss,

Ladv = λ3(∥m̂∥22 − tl)
2 + λ4 (ta − cos(m̂,m))

2
, (4)

where the 1st term (denoted as Llen) controls the length of m̂ to match a target
length tl, and the 2nd term (denoted as Lagl) controls the angle between m̂
and SKS m to be a target cosine value ta, and λ3, λ4 are the loss weights. In
practice, we set the target length as tl = 63 (equivalent to p = 10−4 in the length
hypothesis test), and ta = 1 so that the angle between m̂ and m is shrunk to 0.

We use a modified version of PGD [26] as our AA for watermarking images,
where the gradient value (instead of its sign) is used to update the adversarial
noise. The perturbation ϵ-bound is measured with L2-norm, which is equivalent
to mean-squared error and related to PSNR. Thus, ϵ directly controls the PSNR
of the watermarked image. In addition, to further improve the robustness of the
watermark to image transformations, a data augmentation module (DA) from
[10,35,36] is adapted into our watermarking process. See details in Supp. S3.1.
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3.3 Watermark Detection

To detect the watermark in an image ỹ, the SKN is applied to the image to obtain
the recovered signature m̂ = k(ỹ). We propose two hypothesis tests focusing on
length and angle metrics (denoted as HT4L and HT4A) to confirm that the
watermark was generated by the SKN-SKS pair.

HT4L. Since the SKN output for clean images follows an SMVN, we devise
a hypothesis test to detect the presence of a watermark produced by the SKN.
The null hypothesis H0 is that the image does not contain a watermark (the m̂ is
a sample from the SMVN), and the alternative hypothesis H1 is that the image
contains a watermark (m̂ is unlikely to be a sample from the SMVN). Since x is
distributed as an SMVN, the test statistic is ||x||2 and follows a χ2 distribution
with d degrees of freedom, and the p-value of observing a test statistic as extreme
as ||m̂||2, i.e., pl = Pr(||x||2 ≥ ||m̂||2), can be calculated as [40]

pl = 1− ∫ ||m̂||2
0

1
2d/2Γ (d/2)

td/2−1e−t/2 dt, (5)
where the Γ (d/2) is the gamma function [20].

HT4A. We devise a hypothesis test that the recovered signature vector m̂
matches the pre-defined SKS m. Here, the null hypothesis H0 is that m̂ and m
do not match directions (as they are randomly sampled from the SMVN), while
the alternative hypothesis H1 is that they have the same direction. The test
statistic is the normalized vector ⟨x⟩ = x/||x||, which ideally follows a uniform
distribution on the unit hypersphere Sd−1, and thus the p-value of observing
⟨m̂⟩ or better can be derived, pa = Pr (cos (⟨x⟩, ⟨m⟩) ≥ cos (⟨x⟩, ⟨m⟩)) . By using
multifold integration and the geometry of high-dimensional spheres, the p-value
can be derived (see Supp. S2),

pa = 1− 1
π

[
θ − cos θ

∑ d−2
2

k=1

(2k−2)!!
(2k−1)!! sin

(2k−1)(θ)
]
, (6)

where θ = arccos(⟨m⟩, ⟨m̂⟩) is the angle between m, m̂.
Combined hypothesis test. Combining the p-values pl, pa can test whether

the image is watermarked by SKN k with SKS m. Using the combination method
from [33], the p-value for the combined hypothesis test is

pc = pl · pa · (1− ln ((pl · pa)) . (7)
Statistical guarantees. If the calculated p-value (e.g., pc) is less than a pre-

determined significance level α (usually 0.05), then we reject the null hypothesis
H0 (watermark absent) in favor of the alternative hypothesis H1 (watermark
present). The significance level α acts as a benchmark for decision-making and
is equal to the false positive (Type I) error rate, i.e., detecting the watermark
even though none is actually present. Thus by selecting α, we can obtain a
watermark detector with a certain false positive rate.

4 Experiments

In this section, we demonstrate the effectiveness of the proposed approach through
experiments on: SKN normality (§4.2), detection performance (§4.3), impercep-
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tibility (§4.4), robustness (§4.5), and security (§4.6). We also conduct ablation
studies in §4.7. A summary of our important results is presented in Tab. 1.

4.1 Experimental Setup

We use MSCOCO [22] as our training and test dataset, which is also adopted by
our baselines [10, 36, 45]. MSCOCO comprises 118k training images and 5k test
images. We adopt ResNet18 [14] as our SKN while changing its output layer to
contain 32 neurons with linear activations. The SKN is trained on the MSCOCO
training set. Training details are presented in Supp. S5.

The SKS is generated to be in the same semi-hemispherical domain in the
32-dim space as the natural response of the SKN on the given image, i.e., their
angle is less than 180°. This way ensures that the AA does not need to perform
drastic changes to the image, improving watermark invisibility and maintaining
image corruption within the specified range. A single SKS could also be used for
all images with minimal effect on detection accuracy (see Supp. S10).

For the AA, we use the modified PGD with perturbation bound with ϵ =
6.3 × 10−4, corresponding to an average PSNR of 32 for the watermarked im-
ages. We measure the success detection rate (SDR) by computing the percentage
of successfully detected watermarked images over all the test images (each test
image is watermarked). A successful detection refers to a watermark image that
obtains a p-value from the hypothesis test that is lower than the specified con-
fidence level. We measure image quality via PSNR, SSIM, MAE, and RMSE.

We compare our model with two recent zero-bit deep-learning methods,
DNN0B [36] and its self-supervised variant (SSLWM) [10]. [10] proposes both
zero-bit and multi-bit methods, and here we only consider the zero-bit version
for fair comparison. To calculate the SDR for DNN0B and SSLWM, we set the
significance level at 0.05, aligning with commonly used statistical thresholds. We
also compare with the recent DNN-based method, HiDDeN [45]5. We follow [45]
and define a successful watermark detection as having a bit error rate lower than
0.05 (a level deemed correctable in communication transmissions).

4.2 Normality of Secret Key Network

We first evaluate the normality of the SKN’s output by analyzing the covariance
matrix and mean vector of a batch of outputs. Quantitative and qualitative
results indicate that the SKN output closely follows the desired SMVN distribu-
tion. We further verify the effectiveness of the proposed variance loss term Lv.
Lastly, using three hypothesis tests for normality, we demonstrate that the SKN
achieves normality, unlike DNN0B and SSLWM. See the results in Supp. S7.

5 Note that [16] improves the robustness of [45] to unknown distortions. Since [16] is
a closed-source project, we can only compare with its original version [45].
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watermarked images clean images
mean std < 0.05 < 0.01 mean std < 0.05 < 0.01

Length 0.0123 0.0277 95.74% 73.02% 0.5227 0.2804 4.28% 1.18%
Angle 0.0109 0.0376 93.60% 85.08% 0.4958 0.2285 5.06% 0.96%
Combined 0.0011 0.0091 99.48% 98.28% 0.5140 0.2286 4.96% 1.28%

Table 2: Watermark detection performance. For both watermarked and clean images,
the mean and standard deviation (std) of the detector’s p-values are shown, as well as
the percentage of p-values below significance level α = 0.05 and α = 0.01.

PSNR ↑ SSIM ↑ MAE ↓ RMSE ↓

HiDDeN [45] 31.66 0.9531 0.0204 0.0267
DNN0B-32 [36] 32.06 0.9103 0.0195 0.0250
SSLWM-32 [10] 32.11 0.9026 0.0192 0.0248
Ours-32 32.56 0.9768 0.0134 0.0237

DNN0B-42 [36] 41.81 0.9859 0.0057 0.0081
SSLWM-42 [10] 41.81 0.9878 0.0061 0.0081
Ours-42 42.00 0.9972 0.0038 0.0079

Table 3: Comparison of watermark imperceptibility at target PSNRs of 32 and 42.

4.3 Detection Performance

We next analyze the performance of the detector’s hypothesis tests. We calculate
the mean and standard deviation of the three p-values (pl, pa, and pc) across
all watermarked images and record the percentage of p-values below significance
levels of 0.05 and 0.01. Additionally, we compare these results with those from
clean images to highlight the detection performance and verify our false positive
error rate. The results are presented in Tab. 2, revealing successful watermarking,
which is evident from the low mean p-values and nearly 100% detection rate on
watermarked images. The results on clean images confirm a false positive rate
that matches the desired significance level, showing the soundness of our method.

4.4 Imperceptibility Analysis

We evaluate the watermark invisibility by measuring the image quality of water-
marked images against the original images. Our method can control the image
quality by setting the ϵ-bound of the perturbation, while DNN0B and SSLWM
can target specific PSNR/SSIM values. In contrast, HiDDeN encourages imper-
ceptibility using a discriminator network without a preset quality target. The
trained HiDDeN model obtains a PSNR of 32, and thus, for a fair comparison,
we set ours, DNN0B, and SSLWM to produce the same PSNR of 32. We also
evaluate at a higher PSNR of 42.

Quantitative and qualitative comparisons are presented in Tab. 3 and Supp.S9.
At PSNR 32, our model achieves higher SSIM scores than other methods, even
without SSIM optimization as in SSLWM. Visually, our method minimizes textu-
ral distortions, which are produced by SSLWM and DNN0B, while maintaining
nearly 100% watermark detection accuracy at a significance level of 0.05. Even
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Fig. 2: Robustness of watermarking methods to various distortions: (a) Gaussian noise,
(b) Gaussian blur, (c) cropping, (d) rotation, and (e) JPEG compression. For each type
of distortion, we vary its parameters and calculate the success detection rate.

at the higher PSNR of 42, our method’s image quality SSIM remains superior,
with results visually indistinguishable from the original images.

4.5 Robustness Analysis

We selected image perturbations commonly used for testing watermark robust-
ness in [1, 2, 10, 25, 36]: Gaussian noise, Gaussian blur, rotation, cropping, and
JPEG compression. For each perturbation, we measure the robustness of the
model using SDR. Fig. 2 presents the comparative results, which are also sum-
marized in Tab. 1. Our method achieves comparable performance to other ap-
proaches and is more effective than others against Gaussian noise, Gaussian blur,
and JPEG compression. However, for rotation and cropping perturbation, our
method exhibits a declining trend in performance as the distortion factor in-
tensifies. We attribute this to differences in the spatial distribution of modified
pixels in the watermarked images. We hypothesize that methods like SSLWM
and DNN0B distribute the content distortion across the entire image, which
leads to advantages when rotating or cropping the watermarked image. In con-
trast, our method focuses on specific areas, which reduces its robustness if key
parts are cropped out or repositioned. This advantage of SSLWM and DNN0B
likely comes from the rotation and cropping data-augmentation used when pre-
training their DNNs on ImageNet image classification, which could possibly be
adopted for training our SKNs.

Finally, we use InstructPix2Pix [3] to edit watermarked images. Compared
with DNN0B and SSLWM whose detection accuracies drop to 0%, our method
is more robust, maintaining a detection accuracy of 40% after image editing.

4.6 Security Analysis

In this section, we test the security of our watermarking framework against other
zero-bit methods. We imagine a scenario involving two users: Alice, the owner of
an image, and Bob, a would-be thief, attempting to claim ownership of Alice’s
image. In this scenario, Bob tries the following three methods. We assume that
a host platform can store and process the keys/identifiers securely (see Supp. S8
for discussion), and Bob cannot attack the platform and steal them directly.
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DNN0B [36] SSLWM [10] Ours

Case 1: randomly generated 0.08% 12.84% 1.94%
Case 2: fake model generated 100.00% 100.00% 4.00%

Table 4: Comparison of the security of signature vector generation. The percentage
of fake signatures that incorrectly pass the authority check.

Case 1: Bob generates a fake SKS randomly in hopes of matching the SKS
in Alice’s watermarked image. To determine the viability of this case, we ran-
domly produced two sets of signatures, one for watermarking test images and
the other as fake signatures to match these watermarked images. The results
in Tab. 4 (1st row) indicate that our method is more secure than SSLWM. Al-
though DNN0B almost approaches a zero false detection rate, it performs the
worst in the watermark removal test of Case 3 below.
Case 2: Bob attempts to steal Alice’s signature by examining the DNN’s output
on a watermarked image (assuming that Bob knows the watermarking frame-
work). Since DNN0B and SSLWM use models pre-trained from other tasks, Bob
can easily obtain their DNNs and thus recover the signature vector m̂ embed-
ded by DNN0B/SSLWM by running the pre-trained DNN on the watermarked
image. Bob can then use the recovered m̂ as his own signature, easily passing
the authority check. However, in our framework, Alice’s SKN is kept secret from
Bob, and thus he cannot use it to recover the signature from Alice’s watermarked
image. He can only resort to training a new SKN, which will likely be different
from Alice’s SKN due to different random initial seeds. The experimental results
in Tab. 4 (2nd row) also support this conclusion: watermarked images produced
using DNN0B and SSLWM methods are easily matched with fake signatures ex-
tracted using the pre-trained DNN, whereas our method exhibits high security
in this scenario since Alice’s SKN cannot be replicated by Bob.

An extreme case, only applicable to our proposed framework, is that Bob
has Alice’s SKS, and he tries to train a new SKN to steal the ownership of
Alice’s watermarked images. After training the new SKN, he uses it to detect
watermarks from those images watermarked by Alice’s SKN. In this case, the
SDR of Bob’s SKN drops to 5% when using the combined p-value, and drops to
4.14% and 4.92% when using HT4A and HT4L.

This result suggests that the SKN plays a critical role in watermarking se-
curity because it is both a secret key for the length metric and guarantees the
uniqueness of the angle metric.
Case 3: Bob tries to remove Alice’s watermark from an image by adding his own
watermark to the image. For each watermarking method, we embed a watermark
signature into an image, acting as Alice’s watermark. Then, we generate four
different signatures and recursively embed them into the watermarked image,
acting as Bob’s attack. The final image contains 5 watermarks, one for Alice
and 4 for Bob. In each iteration, we check whether Alice’s watermark can still
be detected. For DNN0B and SSLWM, the same pre-trained DNN is used, and
different signatures are embedded. For our method, we test two versions: 1) the
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No. Watermarks 1 2 3 4 5

DNN0B [36] 98.50% 0.00% 0.00% 0.00% 0.00%
SSLWM [10] 92.62% 60.50% 27.00% 19.50% 12.00%
Ours(S) 99.50% 99.00% 98.00% 99.70% 99.60%
Ours(S+N) 99.50% 98.60% 96.10% 89.70% 89.70%

Table 5: Robustness test against embedding of multiple overlapping signatures. The
detection rate of the original watermark (1) after recursively embedding new water-
marks (2 to 5) to the image. Ours(S) means the SKS varies in each iteration and the
SKN is the same, and Ours(S+N) means both the SKS and SKN vary in each iteration.

SKN remains the same, and different SKS are used in each iteration (equivalent
to Alice overwriting her own watermark with her secret SKN); and 2) both
the SKN and SKS are changed in each iteration (equivalent to Bob overwriting
Alice’s watermark with new SKNs).

The results are presented in Tab. 5. Initially, when the first signature is intro-
duced to the original image, it is nearly 100% detectable by all three methods.
However, adding a second signature led DNN0B to eliminate the first watermark
entirely, dropping its detectability to 0%. While SSLWM’s method partially pre-
serves the first signature after the second signature is added, the detectability
drops significantly in subsequent iterations. In contrast, our method consistently
sustains a high detection rate for a watermark, even after 4 additional water-
marks are embedded. Moreover, our method demonstrates robust performance
even when altering both the SKN and SKS.

4.7 Ablation Studies

We conduct ablation studies on a few key components of our framework. See
Supp. S10-S13 for additional ablation studies on SKS generation, generalization
to unseen datasets [3, 7], runtime, and target length.
Effect of adversarial attack. Here we consider different versions of AA for
embedding the watermark, with results in Fig. 3. The common PGD attack uses
the sign of the gradient and the L∞ norm (denoted as LinfPGD-S). To enhance
robustness for watermarking, we replaced the sign of the gradient with its actual
value (LinfPGD-G). Furthermore, employing the L2 norm for the perturbation
constraint further improves performance (L2PGD-G). In contrast to these multi-
ple iteration adversarial attacks like PGD, the single-step attack FGSM, modified
to use the gradient value (FGSM-G), exhibits the poorest performance.
Effect of adversarial loss. Our adversarial loss Ladv uses target values of
tl = 63 and ta = 1 for the length and cosine terms. We can also define an
adversarial loss without a length target value, which aims to increase the length
of the output vector. The robustness comparing with and without the target
length are shown in Fig. 4. Using the target length has better performance. We
hypothesize that the competition between length and angle terms for modifying
pixel values within the limited ϵ-bound necessitates setting target values so that
once the target length is reached, the remaining capacity is used for adjusting the
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Fig. 3: Effect of using different AA on watermark robustness to image distortions. “G”
and “S” indicate using the direct gradient value or its sign, respectively.
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Fig. 4: Effect of watermarking with and without target length values in adversarial
loss Ladv, and only using the angle metric.
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Fig. 5: Effect of data augmentation module on watermarking.

output direction. Furthermore, experiments using only the angle metric in Ladv
(corresponding HT4A) show relying solely on angle is marginally less effective.
Effect of data augmentation. To enhance the robustness of the watermark,
we also introduce data augmentation operations on the image during the wa-
termarking process, as used in [10, 36]. Specifically, in the iterative process of
watermarking, we randomly perform data augmentation (rotation and cropping)
on the image and then recalculate Ladv. Fig. 5 shows that data augmentation
can significantly improve the detection rate of watermarks.

5 Conclusion

In this paper, we propose a novel watermarking framework that leverages secret
key networks with specific statistical properties. We employ adversarial attacks
to embed watermarks into images and deploy hypothesis tests to detect these
watermarks with statistical guarantees. To ensure a higher level of watermark
security, in addition to using a secret key signature (SKS), we also introduce a
secret key network (SKN), which effectively makes the DNN as a watermarking
key. We hypothesize three potential scenarios that could threaten watermark se-
curity and confirm that our methodology exceeds our baseline security measures.
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