
Image WaterMarking with SKS and SKN 1

A Secure Image Watermarking Framework with
Statistical Guarantees via Adversarial Attacks on Secret

Key Networks: Supplemental Material

The supplemental contains the following sections:
– §S1: Proof of Eq 2: Wasserstein distance calculation.
– §S2: Proof of Eq 6: P-value formula of HT4A derivation.
– §S3: Preliminaries on adversarial examples and hypothesis test.
– §S4: Properties of normal distributions for watermark hypothesis tests.
– §S5: Experiment setup details.
– §S6: Methods of verifying model output’s normality.
– §S8: Discussion on secure host implementation.
– §S9: Watermark imperceptibility and examples.
– §S10: Three different ways of defining signatures.
– §S11: Watermarking performance on two unseen datasets.
– §S12: Runtime about watermarking and detection.
– §S13: Choice of target length in adversarial loss.

S1 Proof of Eq. 2: Wasserstein Distance

When given two multivariate normal distributions q, p with mean vectors µq, µp

and covariance matrices Σq, Σp, the Wasserstein distance W from [8] is

W[q,p] = ∥µq − µp∥2 + tr (Σq) + tr (Σp)− 2 tr
(
(ΣqΣp)

1/2
)
, (8)

where tr(·) is the trace operator. This expression is also called Fréchet distance.
Another common expression for the W from [12,27] is written as

W[q,p] = ∥µq − µp∥2 + tr (Σq) + tr (Σp)− 2 tr

((
Σ1/2

q ΣpΣ
1/2
q

)1/2
)
. (9)

The equivalence between (8) and (9) can be proved by noting that:

tr

((
Σ1/2

p ΣqΣ
1/2
p

)1/2
)

= tr

((
Σ1/2

p ΣqΣ
1/2
p

)1/2

Σ−1/2
p Σ1/2

p

)
= tr

(
Σ1/2

p

(
Σ1/2

p ΣqΣ
1/2
p

)1/2

Σ−1/2
p

)
. (10)

Then we have (
Σ1/2

p

(
Σ1/2

p ΣqΣ
1/2
p

)1/2

Σ−1/2
p

)2

= ΣpΣq. (11)

Therefore, (8) and (9) are equivalent.
For the convenience of computation, we choose the form of (8). If we assume

a target distribution is a standard multivariate normal distribution N (0, Id) in
Rd, then (8) becomes,

Lc = µT
d µd + tr (Σd) + d− 2 tr

(
Σ

1
2

d

)
.

2 F.CHEN et al.

S2 Proof of Eq. 6: HT4A

Given that
X ∼ N (0, Id) , (12)

we have
X

∥X∥
∼ U(Sd−1), (13)

where

Sd−1 =
d · πd/2

Γ
(
d
2 + 1

) (14)

is the whole surface area in a unit sphere in the d dimensional space.

The p-value for the angle is given by

p =

∫
cos(w,x)⩽c

U(Sd−1) dx

= U(Sd−1)

∫
cos(w,x)⩽c

1 dx. (15)

From the geometric view, the part∫
cos(w,x)⩽c

1 dx (16)

represents a solid angle Ω in an d-dimensional sphere.

Because the d-dimensional sphere is a unit one, the p-value formula becomes:

p = 1− surface area of Ω
Sd−1

(17)

We have the relationship:

Sd−1 = g(r)×
∫ π

0

sin(d−2) (ϕ1) dϕ1

×
∫ π

0

sind−3 (ϕ2) dϕ2

· · ·

×
∫ π

0

sin (ϕd−2) dϕd−2

×
∫ 2π

0

dϕd−1 (18)

where g(r) is the part of computation about radius r.

Image WaterMarking with SKS and SKN 3

For the solid angle Ω, we have:

SΩ = g(r)×
∫ θ

0

sin(d−2) (ϕ1) dϕ1

×
∫ π

0

sind−3 (ϕ2) dϕ2

· · ·

×
∫ π

0

sin (ϕd−2) dϕd−2

×
∫ 2π

0

dϕd−1. (19)

Thus, the probability becomes:

P = 1−
∫ θ

0
sind−2 (ϕ1) dϕ1

2
∫ π

2

0
sind−2 (ϕ1) dϕ1

. (20)

For the numerator expression, given that the length of the output vector is
32, an even number, the formula for d being even is:∫ π

0

sind−2 (ϕ1) dϕ1 = 2

∫ π
2

0

sind−2 (ϕ1) dϕ1

=
(d− 3)!!

(d− 2)!!
· π. (21)

And for the denominator expression, we have

2

∫ θ
2

0

sind−2 (ϕ1) dϕ1 =
(d− 3)!!

(d− 2)!!
θ − (d− 3)!!

(d− 2)!!
cos θ

d−2
2∑

k=1

(2k − 2)!!

(2k − 1)!!
sin2k−1(θ). (22)

Substitute (21) and (22) into (17), and in the end, we obtain

P = 1−
θ − cos θ

∑ d−2
2

k=1
(2k−2)!!
(2k−1)!! sin

(2k−1)(θ)

π
. (23)

S3 Preliminaries

We present two techniques in our framework: generating adversarial examples
and conducting hypothesis testing, viewed from a comprehensive perspective.

S3.1 Adversarial Examples

We employ a typical adversarial attack, Projected Gradient Descent (PGD) [26],
for our watermarking backbone. The PGD attack generates adversarial examples
by iteratively tweaking the noise η and adding it to input data to maximize the
adversarial loss while keeping changes imperceptibly small. The perturbation η
is updated for each iteration t using gradient ascent,

ηt+1 = ηt + α · sign (∇IL (f(I), ytarget)) . (24)
Here L(f(I), ytarget) represents the adversarial loss, where f(·) is a specific DNN
model, I is the input image, and ytarget is the ground truth for a task. Mean-

4 F.CHEN et al.

while, ∇IL denotes the gradient computation based on the input image I. Sub-
sequently, ηt+1 is projected into an ϵ-bound to guarantee that the pixel values
of the image do not vary beyond the specified range, thus the adversarial noise
is imperceptible. Usually, L∞-normal is used as the metric to measure the mag-
nitude of this variation, i.e., ∥ηt+1∥∞ < ϵ. After completing all the iterations T ,
the perturbation ηT will be added to the image I to produce its corresponding
adversarial example.

To make PGD attacks more applicable for watermarking in our proposed
framework, we make some modifications. Firstly, we modify it by utilizing the
gradient value directly, while (24) uses the gradient’s sign for updating η,

ηt+1 = ηt + α · ∇IL (f(I), ytarget) . (25)

Secondly, we expand ∥ηt+1∥∞ < ϵ into η′t+1 = β · ηt+1, where β is the scale
factor dependent on,

β = clip

(√
βtg/mean

(
η2t+1

)
, 0, 1

)
. (26)

Here, βtg is a given target and another form of α, but with the same meaning
and function, i.e., sets an upper bound on the range of η.

Thirdly, before being inputted into the specific network f(·), the input im-
age I is transformed by some data augmentation operations, like rotating and
cropping, to enhance the robustness of watermarking detection. Therefore, (25)
is changed to (27),

ηt+1 = ηt + α · ∇IL (f(da(I)), ytarget) , (27)
where da(·) is the data augmentation module.

S3.2 Hypothesis Testing

Hypothesis testing is a fundamental procedure in statistics used to determine
whether there is enough evidence in a sample of data to generalize a population
parameter It involves two main hypotheses: null hypothesis H0 and alternative
hypothesis H1. The outcome is to either reject H0 or fail to reject it based on
the evidence presented by the sample. For this purpose, a test statistic ξ, which
summarizes the sample data, must be calculated at first and assumed to follow
a specific distribution when H0 is true. The p-value is then determined as the
probability of obtaining the ξ at least as extreme as the one that was observed
under the H0. Finally, H0 is rejected in favor of H1 if this p-value is less than a
predetermined significance level α.

Note that the threshold α acts as a benchmark for decision-making and is
conventionally set at 0.05, and it delineates the boundary between the rejection
and acceptance regions for H0. Besides, the significance level is directly associ-
ated with the false positive error in hypothesis testing, which means the error
occurs when the H0 is true, but the test incorrectly rejects it.

Image WaterMarking with SKS and SKN 5

S4 Properties of Normal Distribution for Watermark
Hypothesis Tests

In §3, our method primarily employs two types of hypothesis testing for water-
mark detection, each founded on distinct properties of the normal distribution.
Specifically, the hypothesis test for SKN utilizes the characteristic outlined in
Prop. 1, and the one for SKS is aligned with Prop. 2.

Property 1. Suppose X is a d-dimensional standard normal random vector, i.e.,
x ∼ N (0d, Id), where Id is the k-dimensional identity matrix and all its compo-
nents are independent standard normal random variables. Under this assump-
tion, each x2

i (where i = 1, 2, ..., d) follows a standard chi-squared distribution
with 1 degree of freedom. Hence, their sum,

∑
i x

2
i = xTx, is chi-squared (χ2)

distributed with d degrees of freedom.

Property 2. Consider a Gaussian random vector x in Rd. Assume it has the dis-
tribution: x ∼ N (0d, Id). Under this assumption, the probability density func-
tion (PDF) for the transformation y = x

∥x∥ can be determined. Due to the
Gaussian distribution’s rotational symmetry, y is uniformly distributed on the
(d− 1)-dimensional unit hypersphere, denoted Sd−1 in Rd.

S5 Experiment Details

In this section, we present the details related to our experiment, including the
environment, model architecture, and the training and testing procedure setup.
Experimental Setup: We use PyTorch version 2.0 and Python 3.9, with the
RTX 3090 GPU for both the training and testing phases.
SKN Model Architecture: Resnet18 [14] is selected as the backbone for our
model. To adapt it to our approach, the input layer at the beginning of the model
is modified to a kernel size of 3, and the subsequent max-pooling is removed. Af-
ter processing through all residual blocks, the feature map goes through an adap-
tive average pooling, resulting in a 4× 4 output size. The final fully-connection
layer outputs 32 dimensions. The remainder of our model aligns with the stan-
dard Resnet18 architecture.
SKN Training Procedure: For SKN training, the MSCOCO [22] is utilized.
Images are initially resized to 160×160 and then randomly cropped to 128×128
before feeding into the model. The training batches consisted of 256 images each.
The model is trained for 15 epochs. The optimizer is Adam, with a learning rate
of 0.001 for the first 5 epochs and 0.0001 for the remaining 10. Initial weights
of the model are randomly assigned. The weights of two terms in the training
function Lgen in (1) are set to λ1 = 1 and λ2 = 2.5.
Testing Procedure: In the testing phase, individual images are processed one
at a time. The PGD [26] adversarial attack settings included a perturbation
bound of ϵ = 0.00063, with 100 iterations and a step size of 0.01. The weights
in the adversarial loss Ladv in (4) are set to λ3 = 0.1 and λ4 = 200.

6 F.CHEN et al.

S6 Hypothesis Tests for Normality

HT 1 is employed to determine if a dataset adheres to a normal distribution by
comparing the distribution of the sample data with the expected normal dis-
tribution. However, this test is limited to a single variable. In our experiment
Sec. 4.2 and Supp. S7, we examine each entry of the output vector separately and
then calculate the proportion of entries contributing to the acceptance of H0.
As defined in (28), ECDFm(·) represents the empirical cumulative distribution
function of the m samples, while CDF (·) signifies the target cumulative distri-
bution function. Our target distribution is the normal distribution characterized
by mean µ and variance σ2, expressed as CDF (i;µ, σ2) for the i-th sample.

While HT 1 assesses normality, it does not specifically evaluate standard
normality (i.e., zero mean, unit variance). To address this, we perform two ad-
ditional hypothesis tests: one to determine if the mean vector equals the zero
vector (outlined in HT 2), and another to check if the covariance matrix is the
identity matrix (described in HT 3). Specifically, the A in (33) is the sample
deviation matrix, derived from the sample covariance matrix S in (34). The test
dataset is segmented into 500 batches of 100 images each. Each batch serves as
a set of test samples for the hypothesis test, and we calculate the proportion of
batches that do not reject the null hypotheses H0.

Hypothesis Test 1 Testing xj ∼ N
(
µ, σ2

)
?

STEP 1: Define hypotheses,
H0: xj ∼ N

(
µ, σ2

)
;

H1: xj ̸∼ N
(
µ, σ2

)
.

STEP 2: Sample from the dataset,
Samples m = 5000;

STEP 3: Construct statistic

D = sup
i∈{mj}

|ECDFm(i)− CDF (i;µ, σ2)|. (28)

STEP 4: Because D follows Kolmogorov distribution,
P-value p can be computed by

p = 2

∞∑
k=1

(−1)k−1e−2k2D2

. (29)

STEP 5: Set the confidence α and get conclusion.
If the p < α, reject the H0 and accept H1; Otherwise accept the H0.

Image WaterMarking with SKS and SKN 7

Hypothesis Test 2 Testing µd = 0 ?
STEP 1: Define hypotheses,

H0: µd = 0d;
H1: µd ̸= 0d.

STEP 2: Sample from testing dataset;
Samples m = 100, variables d = 32.

STEP 3: Construct statistic

ξ =
m(m− d)

d(m− 1)
µT

d S−1
d µd. (30)

STEP 4: Because ξ ∼ F (d,m− d),
P-value p can be computed by

p = 1−
∫ ξ′

0

td/2−1(1− t)(m−d)/2−1dt, (31)

ξ′ =
d · ξ

d · ξ +m− d
. (32)

STEP 5: Set the confidence α and get conclusion.
If the p < α, reject the H0 and accept H1; Otherwise accept the H0.

Hypothesis Test 3 Testing Σd = Id ?
STEP 1: Define hypotheses,

H0: Σd = Id;
H1: Σd ̸= Id.

STEP 2: Sample from testing dataset;
Samples m = 100, variables d = 32.

STEP 3: Construct statistic

ξ = tr(A)−m · ln |A| −m · d · (1− lnm) , (33)
A = m · Sd . (34)

STEP 4: Because ξ ∼ χ2(d′) with d′ = d(d+1)
2

,
P-value p can be computed by

p = 1−
∫ ξ2

0

1

2d
′/2Γ (d′/2)

td
′/2−1e−t/2dt. (35)

STEP 5: Set the confidence α and get conclusion.
If the p < α, reject the H0 and accept H1;Otherwise accept the H0.

S7 Normality of Secret Key Network

We first assess the normality of the SKN’s output after training by examining the
covariance matrix and mean vector of the outputs. The test dataset is divided
into 50 batches, each with 100 images, and the covariance matrix and mean vec-
tor of the SKN outputs for each batch are calculated. The average covariance
matrix over all batches is visualized in Fig. 6a and resembles an identity ma-
trix. We used kernel density estimation (KDE) to approximate the PDF of each

8 F.CHEN et al.

0.95 -0.01 -0.0 0.01 0.01 0.0 -0.01 -0.01 -0.0 -0.0 0.0 -0.01 -0.01 -0.0 -0.03 0.03 0.0 -0.02 0.01 -0.01 0.04 0.01 -0.0 0.03 0.02 0.01 0.01 0.01 0.02 0.01 -0.02 -0.01

-0.01 0.96 0.01 -0.03 -0.01 0.01 -0.02 -0.01 0.02 -0.01 0.01 0.02 0.0 -0.01 0.01 -0.02 -0.0 0.0 -0.02 0.01 -0.04 0.02 -0.03 0.0 -0.03 0.02 -0.01 -0.01 -0.03 0.0 0.0 0.02

-0.0 0.01 0.96 -0.01 0.01 -0.02 -0.0 0.01 0.03 -0.05 -0.02 0.02 -0.01 -0.0 0.01 0.02 -0.01 0.01 -0.01 0.01 -0.01 -0.0 -0.0 0.02 -0.01 -0.0 -0.02 0.01 -0.01 0.0 0.02 0.02

0.01 -0.03 -0.01 0.96 0.03 -0.0 0.01 0.02 0.01 -0.01 0.02 0.01 -0.03 0.01 -0.02 -0.02 0.05 0.02 -0.01 -0.02 0.02 0.0 -0.01 0.01 -0.03 -0.02 -0.01 0.02 0.03 -0.02 -0.01 -0.02

0.01 -0.01 0.01 0.03 0.97 -0.01 -0.0 0.01 -0.01 -0.02 0.01 0.01 -0.02 0.02 -0.01 0.03 0.02 -0.02 -0.0 0.01 -0.03 -0.01 0.01 0.0 0.0 0.01 -0.01 -0.04 -0.01 0.04 -0.03 0.01

0.0 0.01 -0.02 -0.0 -0.01 0.97 -0.0 -0.01 -0.03 0.01 0.03 -0.01 -0.02 -0.0 0.03 -0.01 -0.0 -0.0 -0.02 -0.01 -0.02 0.01 -0.01 0.0 0.01 0.0 -0.01 -0.01 0.0 0.01 0.01 -0.02

-0.01 -0.02 -0.0 0.01 -0.0 -0.0 0.97 -0.01 0.01 0.01 -0.01 0.01 0.01 0.01 0.01 -0.03 0.01 -0.01 -0.0 0.02 0.02 0.02 0.0 0.01 0.0 -0.03 -0.01 -0.01 -0.0 0.02 -0.01 -0.01

-0.01 -0.01 0.01 0.02 0.01 -0.01 -0.01 0.98 0.01 0.01 0.01 -0.03 -0.0 0.0 -0.02 -0.0 -0.0 -0.0 0.04 -0.01 0.02 -0.03 0.03 -0.0 -0.0 -0.01 -0.0 -0.05 -0.01 0.02 -0.01 0.0

-0.0 0.02 0.03 0.01 -0.01 -0.03 0.01 0.01 0.98 -0.01 -0.02 0.02 -0.01 0.02 0.01 -0.01 0.0 0.02 0.01 -0.02 0.01 0.02 -0.0 0.01 0.01 0.03 -0.0 0.01 -0.01 -0.01 0.02 -0.02

-0.0 -0.01 -0.05 -0.01 -0.02 0.01 0.01 0.01 -0.01 0.98 -0.01 0.02 -0.02 0.01 -0.02 -0.02 0.0 0.04 0.01 0.02 -0.02 -0.01 0.01 -0.01 -0.05 -0.0 0.01 0.02 0.01 0.02 0.01 -0.04

0.0 0.01 -0.02 0.02 0.01 0.03 -0.01 0.01 -0.02 -0.01 0.98 0.01 -0.0 -0.01 0.03 0.0 -0.03 -0.0 -0.01 0.0 -0.03 -0.0 0.0 0.0 0.01 0.02 -0.01 -0.02 -0.0 0.03 0.0 0.02

-0.01 0.02 0.02 0.01 0.01 -0.01 0.01 -0.03 0.02 0.02 0.01 0.99 0.01 -0.0 0.04 0.0 -0.0 0.03 -0.01 0.03 0.01 -0.01 0.0 0.02 0.0 0.01 0.0 -0.02 0.02 0.01 0.02 -0.03

-0.01 0.0 -0.01 -0.03 -0.02 -0.02 0.01 -0.0 -0.01 -0.02 -0.0 0.01 0.99 -0.01 -0.03 -0.01 0.03 -0.01 -0.02 -0.01 0.02 -0.05 -0.01 -0.02 0.0 0.0 0.02 0.02 -0.01 -0.02 0.01 0.01

-0.0 -0.01 -0.0 0.01 0.02 -0.0 0.01 0.0 0.02 0.01 -0.01 -0.0 -0.01 0.99 -0.01 -0.0 -0.01 0.03 0.03 -0.03 -0.02 0.02 -0.0 -0.02 -0.0 0.01 0.02 -0.0 0.01 -0.03 -0.01 -0.02

-0.03 0.01 0.01 -0.02 -0.01 0.03 0.01 -0.02 0.01 -0.02 0.03 0.04 -0.03 -0.01 0.99 0.01 -0.03 0.0 -0.03 0.02 0.01 -0.0 0.0 0.0 0.02 -0.02 -0.0 -0.01 -0.01 0.03 0.01 0.01

0.03 -0.02 0.02 -0.02 0.03 -0.01 -0.03 -0.0 -0.01 -0.02 0.0 0.0 -0.01 -0.0 0.01 1.0 0.03 -0.0 0.01 0.05 -0.02 -0.0 0.01 0.02 0.01 0.02 0.02 0.01 -0.02 0.03 0.0 -0.01

0.0 -0.0 -0.01 0.05 0.02 -0.0 0.01 -0.0 0.0 0.0 -0.03 -0.0 0.03 -0.01 -0.03 0.03 1.0 0.05 0.0 0.02 -0.01 0.01 -0.03 0.02 -0.01 -0.03 0.02 0.03 0.0 0.01 -0.01 -0.02

-0.02 0.0 0.01 0.02 -0.02 -0.0 -0.01 -0.0 0.02 0.04 -0.0 0.03 -0.01 0.03 0.0 -0.0 0.05 1.0 -0.03 -0.02 0.01 0.03 -0.03 0.03 -0.01 0.0 0.01 -0.0 -0.0 -0.04 0.02 -0.03

0.01 -0.02 -0.01 -0.01 -0.0 -0.02 -0.0 0.04 0.01 0.01 -0.01 -0.01 -0.02 0.03 -0.03 0.01 0.0 -0.03 1.0 0.0 0.02 -0.03 0.06 0.0 -0.01 0.01 0.02 -0.04 0.01 0.05 -0.05 0.02

-0.01 0.01 0.01 -0.02 0.01 -0.01 0.02 -0.01 -0.02 0.02 0.0 0.03 -0.01 -0.03 0.02 0.05 0.02 -0.02 0.0 1.0 -0.01 -0.0 0.03 -0.01 -0.01 0.01 -0.01 0.03 0.02 -0.0 -0.03 0.03

0.04 -0.04 -0.01 0.02 -0.03 -0.02 0.02 0.02 0.01 -0.02 -0.03 0.01 0.02 -0.02 0.01 -0.02 -0.01 0.01 0.02 -0.01 1.0 -0.01 0.04 0.03 0.01 -0.01 0.02 0.01 0.0 0.01 -0.02 -0.0

0.01 0.02 -0.0 0.0 -0.01 0.01 0.02 -0.03 0.02 -0.01 -0.0 -0.01 -0.05 0.02 -0.0 -0.0 0.01 0.03 -0.03 -0.0 -0.01 1.0 -0.01 0.03 -0.02 0.0 -0.01 0.01 0.01 -0.02 0.01 0.0

-0.0 -0.03 -0.0 -0.01 0.01 -0.01 0.0 0.03 -0.0 0.01 0.0 0.0 -0.01 -0.0 0.0 0.01 -0.03 -0.03 0.06 0.03 0.04 -0.01 1.01 -0.01 0.02 0.02 -0.0 -0.02 0.02 0.01 -0.01 -0.01

0.03 0.0 0.02 0.01 0.0 0.0 0.01 -0.0 0.01 -0.01 0.0 0.02 -0.02 -0.02 0.0 0.02 0.02 0.03 0.0 -0.01 0.03 0.03 -0.01 1.01 -0.0 -0.02 -0.01 0.02 -0.01 -0.02 -0.02 -0.01

0.02 -0.03 -0.01 -0.03 0.0 0.01 0.0 -0.0 0.01 -0.05 0.01 0.0 0.0 -0.0 0.02 0.01 -0.01 -0.01 -0.01 -0.01 0.01 -0.02 0.02 -0.0 1.01 0.01 0.01 -0.0 -0.0 0.02 0.01 0.02

0.01 0.02 -0.0 -0.02 0.01 0.0 -0.03 -0.01 0.03 -0.0 0.02 0.01 0.0 0.01 -0.02 0.02 -0.03 0.0 0.01 0.01 -0.01 0.0 0.02 -0.02 0.01 1.01 0.0 -0.0 -0.01 0.01 0.01 0.02

0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.0 -0.0 0.01 -0.01 0.0 0.02 0.02 -0.0 0.02 0.02 0.01 0.02 -0.01 0.02 -0.01 -0.0 -0.01 0.01 0.0 1.02 -0.01 0.04 -0.02 0.0 0.03

0.01 -0.01 0.01 0.02 -0.04 -0.01 -0.01 -0.05 0.01 0.02 -0.02 -0.02 0.02 -0.0 -0.01 0.01 0.03 -0.0 -0.04 0.03 0.01 0.01 -0.02 0.02 -0.0 -0.0 -0.01 1.02 -0.03 -0.03 0.01 -0.02

0.02 -0.03 -0.01 0.03 -0.01 0.0 -0.0 -0.01 -0.01 0.01 -0.0 0.02 -0.01 0.01 -0.01 -0.02 0.0 -0.0 0.01 0.02 0.0 0.01 0.02 -0.01 -0.0 -0.01 0.04 -0.03 1.02 0.03 -0.01 -0.03

0.01 0.0 0.0 -0.02 0.04 0.01 0.02 0.02 -0.01 0.02 0.03 0.01 -0.02 -0.03 0.03 0.03 0.01 -0.04 0.05 -0.0 0.01 -0.02 0.01 -0.02 0.02 0.01 -0.02 -0.03 0.03 1.02 -0.02 0.01

-0.02 0.0 0.02 -0.01 -0.03 0.01 -0.01 -0.01 0.02 0.01 0.0 0.02 0.01 -0.01 0.01 0.0 -0.01 0.02 -0.05 -0.03 -0.02 0.01 -0.01 -0.02 0.01 0.01 0.0 0.01 -0.01 -0.02 1.02 -0.01

-0.01 0.02 0.02 -0.02 0.01 -0.02 -0.01 0.0 -0.02 -0.04 0.02 -0.03 0.01 -0.02 0.01 -0.01 -0.02 -0.03 0.02 0.03 -0.0 0.0 -0.01 -0.01 0.02 0.02 0.03 -0.02 -0.03 0.01 -0.01 1.03

(a)

0.86 -0.0 -0.02 -0.01 0.02 0.02 -0.02 0.02 0.01 0.0 -0.01 0.03 0.02 0.03 0.0 -0.03 0.03 -0.03 0.01 -0.03 -0.04 -0.02 -0.01 -0.03 0.04 0.01 0.03 0.01 -0.01 -0.06 0.02 0.12

-0.0 0.87 0.02 0.0 -0.01 -0.01 0.01 -0.0 -0.01 0.01 0.0 -0.0 -0.01 -0.03 -0.02 0.02 0.02 0.0 -0.02 0.01 -0.0 0.02 -0.03 0.01 -0.01 0.02 -0.02 0.01 -0.01 0.01 0.0 -0.04

-0.02 0.02 0.88 0.0 -0.01 0.02 0.02 -0.05 0.01 -0.01 0.04 -0.03 -0.04 -0.02 -0.04 0.06 -0.02 0.03 -0.04 0.03 0.0 0.03 0.0 0.04 -0.03 0.01 -0.04 -0.02 0.05 0.03 -0.04 -0.13

-0.01 0.0 0.0 0.89 -0.04 0.01 0.03 -0.01 -0.02 0.0 0.03 -0.06 -0.01 0.02 -0.06 0.05 -0.02 0.01 -0.02 0.02 -0.0 0.03 0.0 0.04 0.02 0.01 -0.04 -0.02 0.04 0.07 -0.02 -0.1

0.02 -0.01 -0.01 -0.04 0.9 -0.02 -0.04 0.03 0.03 0.01 -0.03 0.03 0.02 0.02 0.02 -0.04 0.0 -0.04 0.04 -0.01 -0.01 -0.05 0.0 -0.06 0.01 0.01 0.03 0.02 -0.02 -0.03 0.02 0.1

0.02 -0.01 0.02 0.01 -0.02 0.9 -0.01 -0.01 0.01 -0.02 0.01 -0.04 0.0 0.03 -0.01 0.0 0.01 0.02 0.02 0.01 -0.01 0.02 0.02 0.01 -0.01 0.0 -0.03 -0.01 0.02 0.02 -0.02 -0.05

-0.02 0.01 0.02 0.03 -0.04 -0.01 0.91 -0.04 -0.0 -0.01 0.05 -0.05 0.01 0.0 -0.06 0.06 -0.01 0.05 -0.03 -0.0 -0.0 0.03 -0.0 0.05 -0.01 -0.0 -0.03 -0.05 0.03 0.08 -0.04 -0.14

0.02 -0.0 -0.05 -0.01 0.03 -0.01 -0.04 0.91 0.01 0.0 -0.02 0.04 0.0 0.01 0.03 -0.0 0.0 -0.04 0.05 -0.01 -0.03 -0.03 -0.0 -0.04 -0.01 -0.02 0.04 0.01 -0.06 -0.05 0.03 0.07

0.01 -0.01 0.01 -0.02 0.03 0.01 -0.0 0.01 0.91 0.03 0.01 0.02 -0.03 -0.02 0.03 -0.01 -0.02 -0.01 -0.0 -0.0 -0.01 -0.02 0.0 -0.02 -0.01 -0.0 -0.02 0.02 0.02 -0.01 -0.02 0.01

0.0 0.01 -0.01 0.0 0.01 -0.02 -0.01 0.0 0.03 0.92 0.01 -0.0 -0.01 -0.0 0.05 -0.03 0.0 -0.01 -0.01 -0.01 -0.02 -0.0 -0.01 -0.02 0.01 0.02 0.01 0.01 -0.04 -0.01 0.01 0.08

-0.01 0.0 0.04 0.03 -0.03 0.01 0.05 -0.02 0.01 0.01 0.92 -0.02 -0.01 0.01 -0.04 0.04 -0.04 0.03 0.0 0.05 0.0 0.04 0.03 0.03 -0.03 -0.01 -0.03 -0.06 0.04 0.04 -0.04 -0.15

0.03 -0.0 -0.03 -0.06 0.03 -0.04 -0.05 0.04 0.02 -0.0 -0.02 0.94 -0.03 -0.0 0.06 -0.04 0.04 -0.03 0.03 -0.04 -0.02 -0.06 0.02 -0.06 -0.01 -0.02 0.03 0.03 -0.04 -0.07 0.02 0.16

0.02 -0.01 -0.04 -0.01 0.02 0.0 0.01 0.0 -0.03 -0.01 -0.01 -0.03 0.95 0.0 -0.0 -0.02 -0.02 -0.02 0.04 -0.02 -0.0 -0.01 0.01 0.0 0.0 -0.01 -0.02 0.03 -0.01 -0.02 0.03 0.01

0.03 -0.03 -0.02 0.02 0.02 0.03 0.0 0.01 -0.02 -0.0 0.01 -0.0 0.0 0.96 0.01 -0.01 -0.03 -0.01 0.0 -0.0 0.01 0.0 -0.03 -0.02 -0.0 0.01 -0.02 -0.0 -0.02 -0.01 -0.0 0.02

0.0 -0.02 -0.04 -0.06 0.02 -0.01 -0.06 0.03 0.03 0.05 -0.04 0.06 -0.0 0.01 0.96 -0.09 0.04 -0.05 0.02 -0.05 -0.05 -0.02 -0.03 -0.08 -0.01 -0.0 0.07 0.05 -0.04 -0.11 0.04 0.22

-0.03 0.02 0.06 0.05 -0.04 0.0 0.06 -0.0 -0.01 -0.03 0.04 -0.04 -0.02 -0.01 -0.09 0.96 -0.03 0.05 -0.06 0.04 0.04 0.01 0.03 0.04 -0.02 -0.02 -0.09 -0.05 0.05 0.11 -0.05 -0.26

0.03 0.02 -0.02 -0.02 0.0 0.01 -0.01 0.0 -0.02 0.0 -0.04 0.04 -0.02 -0.03 0.04 -0.03 0.96 -0.0 0.03 -0.01 -0.03 -0.03 0.01 -0.04 0.01 0.0 0.01 0.04 -0.02 -0.04 0.02 0.11

-0.03 0.0 0.03 0.01 -0.04 0.02 0.05 -0.04 -0.01 -0.01 0.03 -0.03 -0.02 -0.01 -0.05 0.05 -0.0 0.97 -0.02 0.05 0.02 0.04 0.01 0.06 -0.02 -0.01 -0.05 -0.02 0.04 0.04 -0.05 -0.15

0.01 -0.02 -0.04 -0.02 0.04 0.02 -0.03 0.05 -0.0 -0.01 0.0 0.03 0.04 0.0 0.02 -0.06 0.03 -0.02 0.97 -0.02 -0.01 0.01 0.01 -0.04 -0.01 -0.03 -0.01 0.03 -0.04 -0.04 0.03 0.09

-0.03 0.01 0.03 0.02 -0.01 0.01 -0.0 -0.01 -0.0 -0.01 0.05 -0.04 -0.02 -0.0 -0.05 0.04 -0.01 0.05 -0.02 0.98 0.0 0.03 0.03 0.04 -0.03 0.01 -0.05 -0.03 0.03 0.07 -0.01 -0.14

-0.04 -0.0 0.0 -0.0 -0.01 -0.01 -0.0 -0.03 -0.01 -0.02 0.0 -0.02 -0.0 0.01 -0.05 0.04 -0.03 0.02 -0.01 0.0 0.98 0.02 0.0 0.02 -0.01 0.01 -0.02 -0.02 0.02 0.04 -0.01 -0.11

-0.02 0.02 0.03 0.03 -0.05 0.02 0.03 -0.03 -0.02 -0.0 0.04 -0.06 -0.01 0.0 -0.02 0.01 -0.03 0.04 0.01 0.03 0.02 0.98 0.01 0.03 0.01 -0.0 -0.02 -0.05 0.01 0.06 -0.0 -0.09

-0.01 -0.03 0.0 0.0 0.0 0.02 -0.0 -0.0 0.0 -0.01 0.03 0.02 0.01 -0.03 -0.03 0.03 0.01 0.01 0.01 0.03 0.0 0.01 0.99 0.0 0.01 0.02 -0.03 -0.02 0.02 0.0 -0.01 -0.07

-0.03 0.01 0.04 0.04 -0.06 0.01 0.05 -0.04 -0.02 -0.02 0.03 -0.06 0.0 -0.02 -0.08 0.04 -0.04 0.06 -0.04 0.04 0.02 0.03 0.0 0.99 -0.04 -0.0 -0.06 -0.04 0.05 0.1 -0.04 -0.16

0.04 -0.01 -0.03 0.02 0.01 -0.01 -0.01 -0.01 -0.01 0.01 -0.03 -0.01 0.0 -0.0 -0.01 -0.02 0.01 -0.02 -0.01 -0.03 -0.01 0.01 0.01 -0.04 0.99 -0.03 0.01 -0.0 -0.04 -0.04 0.04 0.04

0.01 0.02 0.01 0.01 0.01 0.0 -0.0 -0.02 -0.0 0.02 -0.01 -0.02 -0.01 0.01 -0.0 -0.02 0.0 -0.01 -0.03 0.01 0.01 -0.0 0.02 -0.0 -0.03 0.99 0.0 -0.01 0.0 0.02 -0.02 -0.02

0.03 -0.02 -0.04 -0.04 0.03 -0.03 -0.03 0.04 -0.02 0.01 -0.03 0.03 -0.02 -0.02 0.07 -0.09 0.01 -0.05 -0.01 -0.05 -0.02 -0.02 -0.03 -0.06 0.01 0.0 1.0 0.01 -0.03 -0.08 0.06 0.16

0.01 0.01 -0.02 -0.02 0.02 -0.01 -0.05 0.01 0.02 0.01 -0.06 0.03 0.03 -0.0 0.05 -0.05 0.04 -0.02 0.03 -0.03 -0.02 -0.05 -0.02 -0.04 -0.0 -0.01 0.01 1.0 -0.04 -0.04 0.02 0.18

-0.01 -0.01 0.05 0.04 -0.02 0.02 0.03 -0.06 0.02 -0.04 0.04 -0.04 -0.01 -0.02 -0.04 0.05 -0.02 0.04 -0.04 0.03 0.02 0.01 0.02 0.05 -0.04 0.0 -0.03 -0.04 1.01 0.04 -0.04 -0.14

-0.06 0.01 0.03 0.07 -0.03 0.02 0.08 -0.05 -0.01 -0.01 0.04 -0.07 -0.02 -0.01 -0.11 0.11 -0.04 0.04 -0.04 0.07 0.04 0.06 0.0 0.1 -0.04 0.02 -0.08 -0.04 0.04 1.03 -0.06 -0.32

0.02 0.0 -0.04 -0.02 0.02 -0.02 -0.04 0.03 -0.02 0.01 -0.04 0.02 0.03 -0.0 0.04 -0.05 0.02 -0.05 0.03 -0.01 -0.01 -0.0 -0.01 -0.04 0.04 -0.02 0.06 0.02 -0.04 -0.06 1.04 0.15

0.12 -0.04 -0.13 -0.1 0.1 -0.05 -0.14 0.07 0.01 0.08 -0.15 0.16 0.01 0.02 0.22 -0.26 0.11 -0.15 0.09 -0.14 -0.11 -0.09 -0.07 -0.16 0.04 -0.02 0.16 0.18 -0.14 -0.32 0.15 1.67

(b)

−4 −3 −2 −1 0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Mean
Range

−4 −3 −2 −1 0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Mean
Range

−4 −3 −2 −1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5 Mean
Range

(c)

−4 −3 −2 −1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5 Mean
Range

−4 −3 −2 −1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5 Mean
Range

(d)

Fig. 6: Qualitative results for assessing normality. The top row shows the average
covariance matrix; the bottom row shows the estimated PDF using KDE. (a) and (c)
are the results of training w/ Lv, while (b) and (d) are trained w/o Lv.

w/ Lv w/o Lv
mean std mean std

diagonal entries of covariance matrix (variance terms) 0.9984 0.0200 1.4181 0.2687
off-diagonal entries of covariance matrix (covariance terms) -0.0002 0.0017 0.0022 0.1103
entries of mean vector -0.0019 0.0186 -0.0015 0.0471

Table 6: Results on assessing normality of the SKN’s output on clean images. Across
all batches and output dimensions, we compute the mean and standard deviation (std)
of the entries of the output’s mean vector and covariance matrix.

dimension of x, and then plot the average, minimum, and maximum of the 32
estimated PDFs in Fig. 6c. The plots show that the individual output dimensions
will follow a standard normal distribution. Tab. 6 (left) presents the statistics of
the mean vector entries and covariance matrix entries. The diagonal (variance)
of the covariance matrix is close to 1, and the off-diagonal (covariance) is close
to 0, while the entries of the mean vector are close to zero, indicating that the
SKN output closely follows the desired SMVN distribution.

We also evaluated the effect of the proposed variance loss term Lv by using
a similar analysis on an SKN trained without Lv. The results are denoted by
“w/o Lv”, and are presented in Fig. 6b, Fig. 6d, and Tab. 6 (right). The absence
of Lv during SKN training led to a noticeable deviation from normality in the
output vector, as seen by a covariance matrix not resembling an identity matrix,
and PDFs significantly deviating from standard normal distributions.

Finally, we conduct three hypothesis tests on a batch of images to examine
whether: a) every entry in the output vector follows a normal distribution; b)
the mean vector is zero; c) the covariance matrix is identity (see Supp. S6 for
details). The results in Tab. 7 (left) show that our SKNs obtain normality in
each dimension, and the loss term Lv is required to achieve this. Furthermore,
we conduct similar tests on the output features of DNN0B [36] and SSLWM [10]
(Tab. 7 right) and find that they cannot achieve normality since they only use a
whitening matrix to transform the feature space of the pre-trained CNN linearly.

Image WaterMarking with SKS and SKN 9

Hypo. Test Ours Ours w/o Lv DNN0B [36] SSLWM [10]

(a) normality 96.88% 71.88% 10.16% 3.71%
(b) zero mean 100% 100% 84% 0%
(c) identity cov. 67% 27% 0% 0%

Table 7: Hypothesis testing on the SKN output distribution. (a) the percentage of en-
tries in the output vector that exhibit normality according to the Kolmogorov-Smirnov
test. (b) the acceptance rate of the null hypothesis that the mean vector is zero, and
(c) that the covariance matrix is identity.

S8 Discussions about Secure Implementation

We assume that the SKN and SKS are always kept secret, both during wa-
termarking and detection. In practice, our watermark detector could be imple-
mented using a trusted execution environment (TEE), e.g., SGX, or by trusted
3rd party hosts, where the SKN/SKS are not made public.

– For a TEE implementation, the watermarking application would be akin to
a biometric authentication application, where the user’s data (i.e., SKN and
SKS) is stored and compared to a target image (i.e., watermarked image)
in the TEE. Thus the SKN and SKS are kept secret, while the verification
can be performed by the public within their own TEE. Note that the water-
marking application would have to be trusted, e.g., developed and verified
by a trusted 3rd party.

– For the implementation with a trusted 3rd party host, both the SKS and
SKN would be stored on the 3rd party system. Images would be uploaded
to the host’s system and the watermark check would be performed by the
host, and the results sent back to the uploader.

Even though the SKN and SKS are kept private, an adversary cannot use a
fake SKN/SKS to claim ownership of a watermarked image for two reasons. First,
it is unlikely that an adversary’s newly-generated SKN will match the original
SKN (see Case 2 of the §4.6), and thus the adversary cannot pass the ownership
verification. Second, our watermark method is robust to attempts to overwrite
it with another SKN/SKS. Thus if the adversary adds their own watermark on
top of the original watermarked image, then the original watermark will still be
present. The original owner can then produce their original watermarked image
(without the adversary’s watermark) to demonstrate that the chain of processing
was from the original watermarked image to the double watermarked image.

Finally, the SKN itself cannot be reverse-engineered from a set of water-
marked images (the inputs) without knowing the corresponding SKS (the out-
puts), which is also kept secret. Also, §4.6 Case 2 shows that for two SKNs trained
from different random seeds, one SKN cannot be used to detect the watermark
of the other SKN. Thus our framework is secure from reverse engineering by the
public.

10 F.CHEN et al.

S9 Watermark Imperceptiblity

Fig. 7 shows a qualitative comparison of the watermarked images by our method
and the three comparison models: HiDDeN [25], DNN0B [36], and SSLWM [10].
Both DNN0B and SSLWM, along with our proposed method, are tested under
two distinct PSNR values: 32 and 42. The observations from Fig. 7 reveal that
at a PSNR of 32, watermarked images generated by HiDDeN exhibit a slight
blur yet remain largely identical to their original counterparts. Images processed
by DNN0B display minimal noise, whereas SSLWM treated with the ResNet50
approach shows faint line noise. In contrast, our method introduces minor color
discrepancies in certain small image areas. Notably, when the PSNR is elevated
from 32 to 42, these anomalies are significantly reduced, leading to our method
producing images virtually indistinguishable from their originals. Additionally,
Fig. 8 shows a broader range of watermarked images generated by our method.

S10 Signatures Generation

We utilize three distinct approaches to create signatures. The first approach is
to sample a 32-dimensional vector from the SMVN distribution directly, and we
call this as the “naïve signature”. In the second approach, the generated signature
must adhere to a normal distribution and be orthogonal in any direction to the
output vector of SKN on the original image, thereby ensuring the initial non-
correlation between SKS and the output vector. We refer to signatures produced
in this way as “orthogonal signatures”. The third approach also demands that the
signature follows the normal distribution properties, but it must have a cosine
value greater than 0 with the angle formed with the output vector of the SKN
on the original image. We denote these as “aligned signatures”.

In our experiment, we evaluate the watermark detection performance of dif-
ferent signature generation methods via their p-values for length, angle, and
their combined measures. As detailed in Tab. 8, we present the mean and stan-
dard deviation, as well as the percentages of p-values falling below 0.05 and 0.01
thresholds. The detection rates when α = 0.05 of the three signature generation
methods are similar (all 99%). For a slightly stricter detection using α = 0.01,
the aligned signatures obtain slightly better performance (98% vs 96%) than
the naive or orthogonal signatures. This is attributed to the aligned signatures
obtaining generally lower p-values overall.

Furthermore, in practice, some owners may prefer to generate only one SKS
and apply it to various images instead of generating multiple SKSs (one SKS
for each image). This could result in a decrease in accuracy, due to potential
misalignment between the fixed SKS and natural SKN output for the given
image. The accuracy can be improved by aligning the given SKS for each image
(by possibly flipping the sign of the vector), and then using a 2-sided angle
hypothesis test (HT) for either a positive or negative direction (see Tab. 9(c)).
Therefore, our model can also meet the needs of owners who desire a single SKS
for all of their images.

Image WaterMarking with SKS and SKN 11

(a) Original (b) HiDDeN-32 (d) SSLWM-32(c) DNN0B-32 (e) Ours-32 (g) SSLWM-42(f) DDN0B-42 (h) Ours-42

Fig. 7: Qualitative comparison of watermark imperceptibility at two PSNR levels, 32
and 42, with HiDDeN, DNN0B and SSLWM

12 F.CHEN et al.

(a) Original (b) Watermarked-32 (c) Watermark-32 (d) Watermarked-42 (e) Watermark-42

Fig. 8: Examples of watermarking using our proposed method. Watermarking is per-
formed with two specified PSNR target values: PSNR = 32 and PSNR = 42, respec-
tively.

Image WaterMarking with SKS and SKN 13

naïve signatures

mean std < 0.05 < 0.01

Length 0.0139 0.0277 0.9468 0.6778
Angle 0.0305 0.0953 0.8724 0.7634
Combine 0.0020 0.0119 0.9918 0.9660

orthogonal signatures

mean std < 0.05 < 0.01

Length 0.0074 0.0184 0.9788 0.8454
Angle 0.0284 0.0709 0.8536 0.7034
Combine 0.0024 0.0172 0.9914 0.9632

aligned signatures

mean std < 0.05 < 0.01

Length 0.0124 0.0291 0.9568 0.7308
Angle 0.0109 0.0376 0.9358 0.8514
Combine 0.0011 0.0091 0.9948 0.9828

Table 8: Watermark detection performance for different signature generation methods.
The mean and standard deviation (std) of the detector’s p-values are shown, as well
as the percentage of p-values below significance level α = 0.05 and α = 0.01.

alignment per image SKS storage < 0.05 < 0.01

(a) one SKS for each image Yes 1 SKS per image 99.5% 98.3%
(b) single SKS for all images Yes 1 bit per image 98.3% 95.2%
(c) w/ two-sided HT No None 98.6% 96.4%
Table 9: Comparison between one-side and two-sides tail hypothesis testing of angle
metric when only a single SKS is used for multiple images. The table shows the per-
centage of p-values below significance level α= 0.05 and α = 0.01.

S11 Generalization Ability

To claim that our model has a good generalization ability, we train it on MSCOCO [22],
and then use it to embed watermarks into unseen real images (ImageNet [7]) and
AI-generated images (InstructPix2Pix [3]). Tab. 10 shows that our method can
achieve a high-level detection accuracy, meaning that it has good generalization.

S12 Runtime Comparison

Tab. 11 shows the average runtime for watermarking and detection over 100
images. Our method is faster than DNN0B [35] and SSLWM [10] because we
use a smaller backbone to map images into vectors and watermarking is per-
formed completely in GPU, while DNN0B requires a CPU-based iteration for its
proposed “RMAC” module.

14 F.CHEN et al.

Dataset < 0.05 < 0.01

ImageNet 99.1% 97.0%
InstructPix2Pix 99.4% 99.6%

Table 10: The detection rate of our method for watermarking images from 2 unseen
datasets: ImageNet and InstructPix2Pix. The table shows the percentage of p-values
below significance level α= 0.05 and α = 0.01.

method backbone watermarking (s) detection (s)
DNN0B [35] VGG19 1.18 0.013
SSLWM [10] ResNet50 7.13 0.013
Ours ResNet18 0.67 0.005
Table 11: Runtime comparisons (average over 100 images).

S13 Target Length Analysis

In this experiment, we discuss how different target lengths tl in Eq. (4) would
affect the detection of watermarks. In Tab. 12, decreasing tl will result in failed
Hypothesis testing for length (HT4L), while increasing tl will make the water-
mark generation biased towards smaller p-values for the HT4L. Therefore, we
choose and fix tl = 63 in other all experiments to generate watermarks. Impor-
tantly, the length value 63 is corresponding to the significance of p=0.01 from
the HT4L.

tl
p < 0.05 p < 0.01

Length Angle Combined Length Angle Combined
20 0.0% 98.8% 97.0% 0.0% 97.0% 94.2%
63 95.7% 93.6% 99.5% 73.0% 85.1% 98.3%
100 99.7% 49.6% 99.9% 98.7% 22.9% 98.7%

Table 12: Detection accuracy for different target lengths tl in Eq. (4).

