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Abstract. Precise image editing with text-to-image models has attracted
increasing interest due to their remarkable generative capabilities and
user-friendly nature. However, such attempts face the pivotal challenge
of misalignment between the intended precise editing target regions and
the broader area impacted by the guidance in practice. Despite excellent
methods leveraging attention mechanisms that have been developed to
refine the editing guidance, these approaches necessitate modifications
through complex network architecture and are limited to specific editing
tasks. In this work, we re-examine the diffusion process and misalign-
ment problem from a frequency perspective, revealing that, due to the
power law of natural images and the decaying noise schedule, the denois-
ing network primarily recovers low-frequency image components during
the earlier timesteps and thus brings excessive low-frequency signals for
editing. Leveraging this insight, we introduce a novel fine-tuning free
approach that employs progressive Frequency truncation to refine the
guidance of Diffusion models for universal editing tasks (FreeDiff). Our
method achieves comparable results with state-of-the-art methods across
a variety of editing tasks and on a diverse set of images, highlighting its
potential as a versatile tool in image editing applications.
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1 Introduction

In this work, we target the problem of text-driven image editing, which is a funda-
mental problem in computer vision and graphics. Although large-scale Text-to-
Image (T2I) models have attracted increasing attention for multiple downstream
vision tasks [1,2,6,14,22,23] due to their remarkable capacity for image genera-
tion and their user-friendly nature, leveraging T2I models for precise real-image
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editing tasks remains a significant challenge. As mentioned in several previous
works [1, 6], while these models often succeed in introducing the specified ele-
ments to the image given the guidance from the text prompt (e.g., “a hat”), they
simultaneously induce unintended alterations in non-target areas, resulting in
failed editing outcomes.

Recent approaches to using T2I models for image editing can be categorized
into two paradigms. The first paradigm is based on fine-tuning of pre-trained
T2I models based on a collection of text-image and image pairs to achieve an
image-to-image (I2I) model [5, 13, 24]. It is labor-intensive and time-consuming
and requires retraining according to the upgrade of the base T2I models, e.g.
from SD v1.5 [17] to SDXL [16]. The second paradigm is a tuning-free approach,
which purely relies on the feature manipulation of a pre-trained T2I model for
image editing. Due to their convenience of deployment with only a pre-trained
T2I model, a large number of works have emerged under this paradigm [1, 6,
21]. The current state-of-the-art approaches in this paradigm use an inversion-
reconstruction approach. First, inversion techniques [12,15,18] are applied to the
image to recover the noisy latents that align with the model’s prior distribution
and that can accurately reconstruct the image contents. Next, editing methods
are applied during the image re-generation process to refine the guidance encoded
from the target prompt. Previous editing methods (e.g., P2P [6], PNP [21],
MasaCtrl [1]) rely on manipulating the attention maps in the T2I model during
the generation process, to reach a balance between preserving the fidelity of the
non-target region and enabling editing capabilities.

However, a disadvantage of these attention manipulation methods is that
they are highly specific to the image and the editing type (e.g., style, posture,
identity replacement), and thus have limited versatility, since different images
require different hyperparameter settings, and limited generality, since each ma-
nipulation only applies to one editing type. Thus, their complexity hinders the
development of a unified approach that leverages their collective strengths si-
multaneously for universal editing and ease of use.

To address the aforementioned challenges, we propose FreeDiff, a universal
text-driven image editing approach, which is more compatible with various im-
age editing types. Our approach is based on the following key observations: 1)
when using a text prompt to guide image editing, the generated editing effects
are usually disrupted by various unwanted effects, while the desired editing ef-
fect only exists in the latent features of specific spatial frequency (SF) bands; 2)
During the denoising diffusion process for image generation, the image details
are gradually increased in each step, demonstrating the gradual incorporation
of higher frequency components into the image and latent space [1, 6]. 3) Dif-
ferent image editing types require different levels of image details, for example,
pose/shape edits correspond to low SF information, while identity replacement
or texture changes correspond to high SF information.

Inspired by these observations and by examining the Fourier transform of
the denoising network’s intermediate features, we hypothesize that the network
indeed prioritizes the learning of frequency components in a manner that corre-
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“cat” → “tiger” “turning back” → “facing forwards” ”a man ” → “ raise right arm”

“horse” → “transparent icy horse” “birds” → “origami birds” “dog” → “dog”

Fig. 1: Editing results across different editing tasks using our proposed method FreeDiff
demonstrate the effectiveness of our progressive frequency truncation strategy.

lates with the noise level across timesteps. Thus, to edit a specific image, proper
guidance should mainly focus on specific frequency bands. Our analysis of the
diffusion model justifies the common empirical findings and practices for different
timesteps in image editing [1, 6, 21].

Building on this analysis, we propose a novel fine-tuning free approach to
image editing, which performs frequency truncation progressively to refine the
guidance towards the target region. Initial hyperparameter settings are provided
for different editing types, whereas better editing results can usually be obtained
by fine-tuning the hyperparameters based on the initial settings. Empirical re-
sults from extensive image experiments demonstrate that our frequency space
refinement of guidance facilitates versatile and universal editing capabilities.

The contributions of our work are summarized as follows:

1. Insights into the generation process from a spatial frequency per-
spective: We provide a detailed analysis of a commonly observed phe-
nomenon in the diffusion generation process, offering theoretical insights
that lend an intuitive understanding of how the diffusion model’s learned
prior conflicts with specific editing.

2. Innovation in Guidance Refinement: We propose guidance refinement
for real-image editing through spatial frequency techniques. This approach
not only underscores the feasibility and versatility of SF-based methods in
image editing but also introduces a novel alternative to attention map ma-
nipulation for guidance refinement.

2 Related Works

2.1 Text-guided image editing

Image editing with T2I diffusion models presents both an attractive opportunity
and a formidable challenge due to the user-friendly nature of natural language
input and the complex misalignment between guidance and the desired editing
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effects. Achieving a balance between fidelity in non-target regions and editing
capabilities has been the focus of numerous studies. In contrast to relying on
fine-tuning the T2I model [5,24] for each specific image to be edited, fine-tuning
free approaches [1, 6, 11, 21] have gained popularity for their convenience. P2P
[6] is the first to address the guidance misalignment issue through attention
injection, specifically by swapping and re-weighting partial cross-attention maps
between latent maps generated by the source and target prompts. PNP [21]
examines the generation process and guides the editing by swapping specific
self-attention maps at certain timesteps. MasaCtrl [1] is proposed to tackle non-
rigid editing tasks on which P2P and PNP fail (e.g., changing an object’s pose),
by substituting the query and key maps for certain layers and timesteps. While
these methods have succeeded in specific editing tasks, they struggle with others;
for example, MasaCtrl performs less satisfactorily in tasks involving changing an
object to another or adding a new object. Furthermore, the various attention
manipulation techniques proposed by these methods are difficult to unify into a
general editing framework.

In contrast to attention-based methods, our approach operates solely on the
denoising network’s output, without delving deep into the network structure,
and is able to handle both rigid and non-rigid editing tasks.

2.2 Inversion of diffusion

Editing real images requires a tractable path through diffusion, making inversion
techniques essential. DDIM inversion [18] with deterministic settings, employing
a small guidance scale, is a simple and representative technique that leads to
an acceptable image reconstruction with minor errors. However, the restriction
imposed by the small guidance scale often conflicts with the requirements of
many editing tasks. To address this issue, null-text inversion (NTI) [12] opti-
mizes null embeddings for different diffusion timesteps to capture specific image
information, leading to a better reconstruction result and overcoming the limi-
tations of small guidance scales. Meanwhile, AIDI [15] introduces an accelerated
fixed-point inversion method, enabling the application of larger guidance scales
in subsequent editing tasks. EFI [9] further enhances the editing capabilities by
adding noise of different scales to the image to obtain noisy latents, which are
then corrected with network inference, a process akin to virtual inversion. For
simplicity, we use DDIM Inversion with fixed-point iteration to invert latents.

3 Preliminaries

For simplicity, we provide a brief overview here while offering a detailed version in
the Appendix Sec.A, which explains all symbols and provides additional details.
Score-based diffusion models The diffusion process can be implemented as
different discretization formulations of Stochastic Differential Equation (SDEs)
[7, 18–20]. To avoid the introduction of random noise during the inversion and
generation processes and to make the analysis brief, in our study we adopt the
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deterministic DDIM formulation as in [18]. The marginal distribution of noise
perturbed latent is:

pσt(xt|x0) =
√
αtδ(x0) +N (0, (1− αt)I), σ2

t = 1− αt, t ∈ {1, · · · , T}, (1)

where δ(x0) is a Dirac delta function centered at x0 and αt is the noise schedule
coefficient. For brevity, we denote the score of the perturbed data as ∇xt

log pσt
(xt).

Guidance To control the generation, the guidance gt is commonly introduced
by Classifier free guidance (CFG) [8] as the difference between and conditional
score [3] ϵθ(xt, c) and unconditional score ϵθ(xt, ϕ) as:

∇xt log pσt(c|xt) = ∇xt log pσt(xt|c)−∇xt log pσt(xt) (2)
= ϵθ(xt, c)− ϵθ(xt, ϕ) = gt, (3)

The guidance gt is often enlarged by a factor γ > 1.
DDIM Inversion Deterministic DDIM [18] inversion sample xt from xt+1 by:

xt =

√
αt√

αt+1
xt+1 −

√
αt(1− αt+1)−

√
(1− αt)αt+1√

αt+1
ϵ̂θ(xt+1). (4)

and ϵ̂θ(xt+1) can be approximated by ϵ̂θ(xt):

xt+1 =

√
αt+1√
αt

xt +

√
αt(1− αt+1)−

√
(1− αt)αt+1√

αt
ϵ̂θ(xt). (5)

4 Method

In this section, we first give an analysis of the guidance provided by the denoising
network during the diffusion process and illustrate how the network’s learned
prior conflicts with editing a specific image in Sec. 4.1. Then, we detail the
accordingly designed progressive truncation method in Sec. 4.2.

4.1 Diffusion prior from a frequency perspective

Qualitative analysis To gain a deeper understanding of the generation pro-
cess, we visually inspect several intermediate results from the generation pro-
cess across all timesteps. Since the latent xt from different timesteps obeys the
marginal distribution in (1), given an intermediate noisy latent xt, we can obtain
a corresponding image latent x̃0|t with the trained network as:

x̃0|t =
1√
αt
xt −

√
1−αt√
αt

ϵ̂θ(xt) (6)

We then visualize in Fig. 2 the decoded noisy latent xt, the corresponding de-
coded intermediate image x̃0|t, and the guidance gt (Eq. 3) from the frequency
space using the 2D discrete Fourier transform (DFT). From the example, we
observe decreasing noise from the decoded x0 (first row), as expected from the
denoising process. However, when observing the intermediate images, a distinct
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Fig. 2: Visualized decoded intermediate features and Fourier transformed features from
a generation process with SD v1.5 [17], with the prompt “a lovely corgi running on a
city street”. The first, second, third, and fourth rows display the decoded noisy latents
xts, the decoded x̃t:0s, the guidance gt, and the power spectrum of x0 with the SNR
(signal-to-noise ratio) indicator (red box) at the corresponding timestep. The timestep
is shown at the bottom. The SNR box indicates where the signal (image) to latent
noise ratio is greater than 1, which suggests the frequency bands that the network has
higher probability to successfully recover x0 from xt. Note that to show lower frequency
components, the same power spectrum is normalized with lower truncated upper bound
as t decreases.

pattern emerges from x̃0|t (second row), revealing a process where finer details
are progressively added across timesteps, which means higher frequency compo-
nents are gradually incorporated. The difference between xt and x̃0|t is consistent
with the nature of both x0 and x̃0|t being the weighted sum of the noisy latent
xt and the semantically guided ϵ̂θ(xt), with gt having a larger weight in x̃0|t.
The frequency distribution of gt aligns with the visual transformations observed
in x̃0|t. Similar observations are obtained when inspecting other examples (see
the Appendix Sec.B).
Analysis in frequency space As pointed out in previous work by Field [4],
examining the amplitude spectrum of a natural image reveals that it reaches
a peak at low frequencies and decreases unevenly across all directions that fre-
quency increases, following the power law 1/fβ . Although the constant β = 1.1
is not precisely defined, with the falloffs potentially being steeper or shallower,
it is observed that most pictures exhibit the highest energy at the lowest fre-
quencies. This law extends to images generated by diffusion models (which are
predominantly trained on natural images), as evidenced by the power spectrum
of such an image presented in the fourth row of Fig. 2.
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In the diffusion model training process, the noise introduced at timestep
t by (1) is additive white Gaussian noise (AWGN), characterized by uniform
power across the frequency spectrum. Consider the image ultimately generated
and displayed in Fig. 2, serving as one of the training samples with an energy
spectrum following the power law. AWGN, with a constant energy spectrum of
σ2
t = 1− α across all frequencies, is added to the encoded latent x0. This sum-

mation results in varying signal-to-noise ratios (SNRs) across different frequency
bands, with higher frequencies possibly being obfuscated by noise. The denoising
network is tasked with learning to predict the original x0 from the perturbed
xt as accurately as possible. Yet, confined by the SNRs, the denoising network
must primarily recover the low-frequency components at earlier timesteps (when
the noise power is large), and progressively higher frequency components as the
power of the AWGN decreases. In the fourth row of Fig. 2, the region with SNR
≥ 1 is roughly outlined with a red box, serving as an indicator of which frequency
bands the network could recover from the image at timestep t.
Misalignment with editing a specific image When it comes to editing a
specific image, a significant conflict arises from the denoising network’s inherent
preference for low-frequency components. This preference is generally consistent
between small enough steps [18]. In addition to the network’s learned prior, the
common weighting schedule [18] also amplifies the low-frequency components.
For timestep t, the weight coefficient wgt for gt in the final output x0 is:

wgt = −γ

√
αt−1(1−αt)−

√
(1−αt−1)αt√

αt
×

√
αt−2√
αt−1

×
√
αt−3√
αt−2

× · · ·
√
α1√
α2

(7)

= −γ
√
α1(

√
1
αt

− 1−
√

1
αt−1

− 1). (8)

This sequence generally decreases (except for the last few steps) during the gen-
eration process. For instance, in a typical 50-step DDIM generation process, the
weights wg981 = 1.25, wg681 = 0.23, wg181 = 0.046 demonstrate a decreasing
trend. Consequently, this bias towards low frequencies contradicts the require-
ments of specific image editing tasks, where modifications of specific frequency
bands are necessary.

Define the frequency difference between two encoded images, I1 and I2, as

Fdiff (I1, I2) =

C∑
i=1

abs[F{x0:I1}(ω)−F{x0:I2)}(ω)], (9)

x0:I1 = E(I1), x0:I2 = E(I2) (10)

where E denotes the encoder that transforms an image into its latent represen-
tation, and the summation performs channel-wise sum, with C as the number
of channels in the latent. F{x}(ω) is the 2D frequency transform (2D DFT)
of image x, and ω is the spatial frequency variable. In Fig. 3 we visualize
Fdiff (Isrc, Idirc−ed) and Fdiff (Isrc, Iattn−ed) for the source image Isrc and edited
images based on direct editing Idirc−ed and attention-based editing Iattn−ed,
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𝑃!"#: “”
𝑃$%$: “a tiger sitting 

next to a mirror”

PNP, default 
hyperparameters

𝑃!"#: “a horse”
𝑃$%$: “a robot horse”

P2P+NTI, (0.8,0.8)

b) Successful case w/ 
attn-based method

a) Source image d) ℱ&'(((𝐼!"#, 𝐼)$$*+,&)c) Fail case w/ direct 
editing

e) ℱ&'(((𝐼!"#, 𝐼&'"#+,&)

Fig. 3: Editing results from attention-based refining methods P2P [6]+NTI [12], PNP
[21]+fixed-point inversion in Section 4.2 and directly applying guidance. Column d) and
e) shows Fdiff (Isrc, Iedit) between <source image, attention-based editing>, <source
image, direct editing>, respectively. The Fdiff (Isrc, Iedit) is normalized to the same
numerical scale in each row. The results suggest that direct editing introduces low-
frequency components with higher amplitudes.

which supports our hypothesis that a successful editing introduces less power
in low-frequency components. More examples of different editing types with dif-
ferent attention-based methods supporting the hypothesis are provided in the
Appendix Sec.C.

4.2 Progressive frequency truncation

Based on the analysis and observations, we propose performing progressive trun-
cation on guidance in the frequency space to achieve universal guidance refine-
ment, allowing for both rigid and non-rigid editing within the same framework.
Fixed-point DDIM Inversion Similar to other fine-tuning free methods, our
approach to editing begins by obtaining a suitable inverted latent xT from the
encoded image x0. Note that without approximation in (4), the inversion process
is represented by an implicit function xt+1 = f(xt+1):

xt+1 =
√
αt+1√
αt

xt +

√
αt(1−αt+1)−

√
(1−αt)αt+1√

αt
ϵ̂θ(xt+1), (11)

which usually can be solved numerically through the iterations:

xi+1
t+1 = f(xi

t+1), x0
t+1 = f(xt), i ∈ {0, · · · , N}, (12)

where a small number of iterations, such as N = 3 or N = 5, on each inverting
step, is sufficient to achieve nearly perfect reconstruction in most situations. It
is worth noting that although fixed-point DDIM Inversion works in most cases,
there is no guarantee of absolute correctness. If it fails to reconstruct the input
image correctly, our method will be affected.
Frequency truncation with effective frequency band Once we have the
inverted latent x̂T , we apply frequency truncation to the guidance during the
generation process. This approach is predicated on two key assumptions:
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𝑔!:

In the response periodBefore the response period Leave the response period

Empty guidance Empty guidanceApplied frequency truncation

Fig. 4: The pipeline of our proposed method. The progressive frequency truncation is
only applied in the response period according to Alg. 1, while guidance outside the
response period is set to zero.

1. The generation process encompasses guidance through a single, continuous
period associated with an atomic editing command (denoted as the response
period), while the guidance outside this period is less relevant. An atomic
editing command may involve changing, adding, or removing a single object,
etc.

2. Throughout the response period, an Effective Frequency Band (EFB) is es-
sential for introducing modifications accurately without extra alterations in
non-target regions.

Assuming the current timestep t is within the response period and the EFB
is known at the current step, we can refine our guidance gt by:

ĝt = IFFT(FFT(gt) ◦MH
t (r) ◦ML

t (r)), (13)

MH
t (r) = I(r > rHt ), ML

t (r) = I(r < rLt ), (14)

where I is an indicator function that gives 1 and 0. MH
t (r) and ML

t (r) are
high-pass and low-pass filters at timestep t and rHt and rLt are the threshold
radii for the corresponding 2D frequency filter. ◦ denotes element-wise multipli-
cation. FFT(·) and IFFT(·) are the 2D Fourier transform and inverse 2D Fourier
transform, respectively. In practice, we empirically select the response period and
rHt s, rLt s according to each editing type (see the next section).

In addition to performing filtering on guidance in frequency space, we also
zero out the guidance pixels whose alteration is above a threshold after inverse
Fourier transform, since the power of these pixels mainly consists of low frequen-
cies. And we further zero out the 80% smallest values, most of which are already
0s after the previous truncation:

MS
t = I

(abs(ĝt − gt)

abs(gt)
< κ

)
, g̃t = ĝt ◦MS

t , (15)

MV
t = I

(
g̃t > η0.8(g̃t)

)
, g∗t = g̃t ◦MV

t , (16)
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where κ = 0.6 is the threshold, and η0.8(g̃t) denotes the 80% percentile of g̃t.
We term this as η truncation, as opposed to the main spatial frequency trunca-
tion technique. Given these assumptions, the implementation of the progressive
frequency truncation algorithm is detailed in Alg. 1 and visualized in Fig. 4.

Algorithm 1 Progressive Frequency truncation
Input: Inverted x̂T , Start and end timestep of response period Tst, Ted, Low-pass and

high-pass filter pairs and their upperbound timestep {(rHt , rLt , τi)}
Output: Refined guidance sequence {g∗t }
1: i = 1
2: for t = T, T − 1, . . . , 1 do
3: if t > Tst or t < Ted then
4: gt = 0
5: continue
6: else
7: if t >= τi then
8: i = i+ 1
9: MH

t (r) = I(r > rHt ), ML
t (r) = I(r < rLt )

10: ĝt = IFFT(FFT(gt) ◦MH
t (r) ◦ML

t (r))

11: MS
t = I( abs(ĝt−gt)

abs(gt)
< 0.6)

12: g̃t = ĝt ◦MS
t

13: MV
t = I(g̃t > η0.8(g̃t))

14: g∗t = g̃t ◦MV
t

15: Return {g∗t }

4.3 Application to editing

The categorization of editing types, when viewed from the perspective of fre-
quency, varies significantly. Identity replacement, such as transforming a dog
into a lion, is akin to object removal, with both focusing on modifications of
image textures, i.e., high spatial frequency (SF) information. In contrast, alter-
ations in shape and pose correspond to adjustments in lower SF information.
Changes in color and environmental (color) adjustments are associated with the
lowest SF components, requiring specialized handling.

Given that the guidance amplitude for color in diffusion models is relatively
low compared to that for objects, and since color information typically aligns
with the lowest frequency components, merely applying frequency truncation
proves ineffective for color editing. Instead, we propose a two-step process for
color changes: first, generating a coarse mask for the object whose color is to be
altered through frequency truncation on the guidance describing it at specific
timesteps, for instance, "a white hat". Then, utilizing this mask solely to perform
a guidance truncation for the edit. The approach for changing the environment
surrounding an object follows a similar methodology.



FreeDiff 11

Empirically, we define hyperpermeter sets (Tst, Ted, r
H
t , τi) for each editing

type. In practical applications, rLt is rarely employed due to its minimal impact
in most scenarios. Detailed values for these hyperparameters are provided in the
Appendix Sec.D.

In summary, we propose a novel approach that refines editing guidance
through progressive frequency truncation. Our method offers an effective guid-
ance refinement strategy and default hyperparameters, with the fine-tuning of
hyperparameters for a better editing result left to the users’s aesthetic judgment,
consistent with P2P [6], PNP [1], and MasaCtrl [21] that have adjustable edit-
ing hyperparameters. However, in contrast to previous methods that work well
on certain editing types, our method can be used for a wider variety of editing
types. Our method’s effectiveness is validated through successful edits across a
diverse set of images and editing types (see Fig. 1 and Fig. 5).

5 Experiments

We evaluate our method on on a variety of editing tasks and on a diverse set of
images, most of which are sourced from the PIE benchmark [10]. For a fair com-
parison, all methods use the same SD v1.4 or SD v1.5 [17] checkpoint, following
the corresponding official implementations. Fixed-point iteration with N = 5
is used for PNP, MasaCtrl and Our method to factor out the effect of inver-
sion, except in cases where reconstruction fails with N = 5. Null-text inversion
is employed for P2P as it requires word-aligned source and target prompts to
refine guidance with prompt-based attention operations. For inversion and re-
generation with the target prompt, we perform the DDIM deterministic forward
and backward sampling for 50 steps for all methods. The guidance scale is set to
7.5 and the editing prompt remains the same across all methods unless specified
otherwise.

5.1 Qualitative results

We present typical qualitative results that demonstrate the comparative perfor-
mance of our method against attention-based methods, including P2P, PNP, and
MasaCtrl, as illustrated in Fig. 5. All showcased images are sourced from the PIE
dataset. As evinced in Fig. 5, our method succeeds in performing precise edit-
ing across both rigid and non-rigid tasks, whereas P2P and PNP fail to handle
non-rigid tasks, such as pose changes in row 3 and row 5. Our method achieves
a satisfying balance between fulfilling the editing purpose and preserving the
structure of the image. Moreover, our method is typically good at exerting sub-
tle modifications, such as closing eyes and opening mouths, by leveraging our
capability to adjust the SF truncation to suit the editing task.

5.2 Quantitative results

We evaluate the CLIP score between the entire image and corresponding caption,
and the LPIPS of the background region on the PIE dataset to assess semantic
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Source Image
Ours +

Fixed-point Inv P2P + NTI
PNP +

Fixed-point Inv
MasaCtrl + 

Fixed-point Inv
Direct editing + 
Fixed-point Inv

silver

“a cat sitting 
next to a mirror”

sculpture
v v

“a cup of coffee 
with drawing of 
tulip putted on 

the wooden table”

“an opened eyes 
cat sitting on 
wooden floor”

“photo of a goat 
and a cat 

standing on rocks 
near the ocean”

“a woman”

“rusty car by 
Jill Kaufman”

lion

closed

horse

shiny

raise her arm

v

“a cat sitting on 
a wooden chair”

dog

“an Asian woman 
with blue thick-lashed 
eyes and black hair”

flowers on her

v

Fig. 5: Qualitative results comparing with 3 typical attention-based editing methods:
P2P, PNP, MasaCtrl on images from the PIE dataset [10]. Direct editing results with
fixed-point inversion are also shown as a baseline.

consistency and background preservation, respectively. However, we have iden-
tified two main issues within the PIE dataset, including incorrect categorization
of image-editing type pairs and an ill-defined category, which hinders evaluation
accuracy. To mitigate these issues, we selected a subset of approximately 200 im-
ages from PIE for a comprehensive evaluation, with the result shown in Tab. 1.
Additionally, to illustrate the editing effect across subcategories, quantitative
results are provided in Tab. 2. It is important to note that while the CLIP score
serves as a metric for semantic consistency, it is not without limitations. Specif-
ically, while the PNP method yields a higher CLIP score, its editing results are
not comparable to those of the P2P method. For a detailed discussion of these
issues and the rationale behind subset selection, please refer to the Appendix
Sec.D.
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Table 1: Quantitative results from partial dataset of PIE [10]

Ours P2P PNP MasaCtrl

CLIP Score (whole image) ↑ 25.5140 24.7521 25.4717 24.6614
Background LPIPS ↓ 11.14 11.83 15.01 13.97

Table 2: Quantitative results for corrected semantic categories, ’Cat’ denotes category
and the number is consistent with the original PIE dataset.

Methods
(Clip Score↑/LPIPS↓) Cat:1(n:77) Cat:2(n:50) Cat:3(n:27) Cat:5(n:11) Cat:7(n:38)

MasaCtrl 24.57/.1661 24.83/.1001 25.58/.1810 26.92/.1043 25.01/.1190
PNP 25.30/.1733 26.03/.1053 25.77/.1997 26.92/.1293 26.45/.1328
P2P 24.78/.1340 25.11/.0889 24.02/.1768 27.14/.0835 25.76/.0941
Ours 24.97/.1253 26.49/.0798 24.17/.1428 27.47/.1341 25.74/.0972

original image direct editing Truncation 
𝑟! = 4

Truncation
𝑟! = 8

Truncation
𝑟! = 12

Truncation
𝑟! = 16

Truncation
𝑟! = 20

a) prompt: “a glasses”

original image “a pizza” “white plate with 
pizza on it”b)

with 𝜂".$ original image without 𝜂".$
c)

Fig. 6: a) shows the editing results with consistent truncating rHt ∈ {0, 4, 8, 12, 16, 20}x
for all t, and a prompt "a glasses". The woman gradually becomes more akin to Mona
Lisa and the “glasses” become less significant. b) shows the editing results with the
same progressive frequency truncation hyperparameter sets but with different editing
prompts. Our method prefers editing prompt that describes less editing-irrelevant con-
tent. c) shows how the editing results subtly changed when using η truncation, which
helps to preserve details. Note the difference in face shape and light on the hair.

5.3 Ablation study

Effect of SF truncation without FreeDiff Applying SF truncation directly
throughout the whole generation process without FreeDiff yields outcomes that
corroborate our hypothesis. For instance, by applying SF truncation within a
smaller range for the first generation and larger ones for other generation for
the same editing prompt, we can see in Fig. 6a that progressively enlarging
the SF truncation range causes the edited image to more closely resemble the
source image, while causing the intended edits (the glasses) gradually become less
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significant. This observation supports our assumptions, as detailed in Sec. 4.2,
regarding the existence of specific response periods and effective frequency bands.
Sensitivity to editing prompt FreeDiff, by applying SF truncation on the
guidance, is highly affected by the guidance text. This effect is demonstrated in
Fig. 6b, where under the same goal to turn the fruits on the plate into a pizza,
a simple target prompt “a pizza” results in less background alteration compared
with the PIE-provided target prompt "white plate with pizza on it". Generally,
for editing we should avoid describing the objects and regions unrelated to the
editing target.
Effect of zero-out η0.8 values We demonstrate the effect of implementing η
truncation within FreeDiff. While η truncation is not the primary mechanism
driving precise editing outcomes, it helps with preserving the structure of non-
editing regions. This subtle preservation effect is demonstrated in Fig. 6c, where
using η truncation preserves the light reflected on the girl’s hair, as well as the
shape of her face.

6 Limitations and Discussion

In addition to being affected by erroneous reconstructions, our method is also
constrained by the SD model’s prior. Similar to MasaCtrl [1], our editing fails if
the denoising network fails to generate a desired layout when changing an ob-
ject’s pose or color, or exactly locating on one of the multiple objects of the same
kind. Our method is also sensitive to the description of the target prompt – gen-
erally, a description with full contents that contain non-editing targets/regions
hinders the structure preservation of our method, as demonstrated in the abla-
tion study. To further improve our method, we will try to apply our two-step
methods to other editing types for a better result and combine our methods with
attention manipulation techniques for a better control ability on image editing.

7 Conclusion

To the best of our knowledge, we are the first to explore frequency truncation
with diffusion models for image editing by proposing FreeDiff, a novel tuning-free
guidance refinement method without using attention-based manipulations. Our
investigations reveal that applying guidance directly from a denoising network
for editing a specific image leads to an unsatisfying result, primarily because
the denoising network’s learned prior tends to introduce excessive low-frequency
components and affect the non-target regions. However, with the implementation
of sophisticated spatial frequency truncation techniques, we demonstrate that it
is entirely feasible to achieve precise editing with the guidance. FreeDiff does
not depend on complex attention map manipulations and successfully tackles
both rigid and non-rigid editing tasks within the same framework, marking a
significant step towards a versatile and unified editing solution.
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