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Abstract. Deep learning based multi-view crowd counting (MVCC) has
been proposed to handle scenes with large size, in irregular shape or with
severe occlusions. The current MVCC methods require camera calibra-
tions in both training and testing, limiting the real application scenarios
of MVCC. To extend and apply MVCC to more practical situations, in
this paper we propose calibration-free multi-view crowd counting (CF-
MVCC), which obtains the scene-level count directly from the density
map predictions for each camera view without needing the camera cal-
ibrations in the test. Specifically, the proposed CF-MVCC method first
estimates the homography matrix to align each pair of camera-views, and
then estimates a matching probability map for each camera-view pair.
Based on the matching maps of all camera-view pairs, a weight map for
each camera view is predicted, which represents how many cameras can
reliably see a given pixel in the camera view. Finally, using the weight
maps, the total scene-level count is obtained as a simple weighted sum
of the density maps for the camera views. Experiments are conducted
on several multi-view counting datasets, and promising performance is
achieved compared to calibrated MVCC methods that require camera
calibrations as input and use scene-level density maps as supervision.

1 Introduction

Crowd counting has many applications in real life, such as crowd control, traffic
scheduling or retail shop management, etc. In the past decade, with the strong
learning ability of deep learning models, single-view image counting methods
based on density map prediction have achieved good performance. However,
these single-view image methods may not perform well when the scene is too
large or too wide, in irregular shape, or with severe occlusions. Therefore, multi-
view crowd counting (MVCC) has been proposed to fuse multiple camera views
to mitigate these shortcomings of single-view image counting.

The current MVCC methods rely on camera calibrations (both intrinsic and
extrinsic camera parameters) to project features or density map predictions from
the single camera views to the common ground-plane for fusion (see Fig. 1
top). The camera calibration is also required to obtain the ground-truth people
locations on the ground-plane to build scene-level density maps for supervi-
sion. Although the latest MVCC method [55] handles the cross-view cross-scene
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Fig. 1. The proposed calibration-free multi-view crowd counting (CF-MVCC) com-
bines single-view predictions with learned weight maps to obtain the scene-level count.

(CVCS) setting, it still requires the camera calibrations during training and
testing, which limits its real application scenarios. Therefore, it is important to
explore calibration-free multi-view counting methods.

For calibration-free MVCC, the key issue is to align the camera views without
pre-provided camera calibrations. However, it is difficult to calibrate the cameras
online from the multi-view images in MVCC, since there are a relatively small
number of cameras (less than 5) that are typically on opposite sides of the scene
(i.e., large change in camera angle). It may also be inconvenient to perform multi-
view counting by calibrating the camera views first if the model is tested on many
different scenes. Besides, extra priors about the scenes are required to estimate
camera intrinsic or extrinsic, such as in [1,2,4]. We observe that the people’
heads are approximately on a plane in the 3D world, and thus the same person’s
image coordinates in different camera views can be roughly modeled with a
homography transformation matrix. Thus, instead of using a common ground-
plane for aligning all the camera views together like previous methods [55,53],
we propose to align pairs of camera views by estimating pairwise homography
transformations.

To extend and apply MVCC to more practical situations, in this paper,
we propose a calibration-free multi-view crowd counting (CF-MVCC) method,
which obtains the scene-level count as a weighted summation over the predicted
density maps from the camera-views (see Fig. 1). The weight maps applied to
each density map consider the number of cameras in which the given pixel is
visible (to avoid double counting) and the confidence of each pixel (to avoid
poorly predicted regions such as those far from the camera). The weight maps
are generated using estimated pairwise homographies in the testing stage, and
thus CF-MVCC can be applied to a novel scene without camera calibrations.

Specifically, the proposed CF-MVCC method estimates the total crowd count
in the scene via 4 modules. 1) Single-view counting module (SVC) consists of fea-
ture extraction and density map prediction submodules. 2) View-pair matching
module (VPM) estimates the homography between pairs of camera views. For
each camera pair, the features from one camera view are then projected to the
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Fig. 2. Pipeline of CF-MVCC. The single-view counting (SVC) module predicts den-
sity maps Di for each camera-view. Given a pair of camera-views (i, j), the view-pair
matching (VPM) module estimates the homography Hij and a matching probability
map Mij between them. The weight map prediction (WMP) module calculates the
weight map Wi for each camera using the matching probability maps Mij and con-
fidence maps Ci, where the confidence maps are estimated from image features Fh

i

and distance features Ti. Finally, the total count calculation (TCC) is obtained as a
weighted sum between the density maps Di and the weight maps Wi.

other view, concatenated, and used to estimate a matching probability map be-
tween the two camera view. 3) Weight map prediction module (WMP) calculates
a weight map for each view using all the matching probability maps. In addition,
image content and distance information are used when calculating the weight
maps to adjust for the confidence from each camera view. 4) Total count calcu-
lation module (TCC) obtains the total count as a weighted sum of the predicted
single-view density maps using the estimated weight maps. In summary, the
contributions of the paper are three-fold:
1. We propose a calibration-free multi-view counting model (CF-MVCC) to

further extend the application of MVCC methods to more unconstrained
scenarios, which can be applied to new scenes without camera calibrations.
As far as we know, this is the first work to extend multi-view counting to
the calibration-free camera setting.

2. The proposed method uses single-view density map predictions to directly
estimate the scene crowd count without pixel-level supervision, via a weight-
ing map with confidence score that is guided by camera-view content and
distance information.

3. We conduct extensive experiments on multi-view counting datasets and
achieve better performance than calibration-free baselines, and promising
performance compared to well-calibrated MVCC methods. Furthermore, our
model trained on a large synthetic dataset can be applied to real novel scenes
with domain adaptation.

2 Related Work

In this section, we review single-image and multi-view counting, followed by
DNN-based homography estimation.
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Single-image counting Early research works on single-image counting rely
on hand-crafted features [41,13], including detection-based [35], regression-based
[6] or density map based methods [16]. Deep-learning based methods have been
proposed for single image counting via estimating density maps [51,37,29,3].
Among them, many have focused on handling the scale variation and perspective
change issues [14,17,40,20,12]. Unlike [38] and [47], [49] corrected the perspec-
tive distortions by uniformly warping the input images guided by a predicted
perspective factor. Recent research explore different forms of supervision (e.g.,
regression methods or loss functions) [45,43]. [22] introduced local counting maps
and an adaptive mixture regression framework to improve the crowd estimation
precision in a coarse-to-fine manner. [25] proposed Bayesian loss, which adopts
a more reliable supervision on the count expectation at each annotated point.

To extend the application scenarios of crowd counting, weakly supervised
[21,5,50,57] or semi-supervised methods [36,42,23] have also been proposed. Syn-
thetic data and domain adaptation have been incorporated for better perfor-
mance [46]. Other modalities are also fused with RGB images for improving the
counting performance under certain conditions, such as RGBD [18] or RGBT
[19]. In contrast to category-specific counting methods (e.g., people), general
object counting has also been proposed recently [24,48,31]. [31] proposed a gen-
eral object counting dataset and a model that predicts counting maps from the
similarity of the reference patches and the testing image.

Generally, all these methods aim at counting objects in single views, while
seldom have targeted at the counting for whole scenes where a single camera view
is not enough to cover a large or a wide scene with severe occlusions. Therefore,
multi-view counting is required to enhance the counting performance for large
and wide scenes.

Multi-view counting Multi-view counting fuses multiple camera views for
better counting performance for the whole scene. Traditional multi-view count-
ing methods consist of detection-based [26,8], regression-based [34,44] and 3D
cylinder-based methods [10]. These methods are frequently trained on a small
dataset like PETS2009 [9]. Since they rely on hand-crafted features and fore-
ground extraction techniques, their performance is limited.

Recently, deep-learning multi-view counting methods have been proposed to
better fuse single views and improve the counting performance. A multi-view
multi-scale (MVMS) model [53] is the first DNNs based multi-view counting
method. MVMS is based on 2D projection of the camera-view feature maps to
a common ground-plane for predicting ground-plane scene-level density maps.
However, the projection operation requires that camera calibrations are provided
for training and testing. Follow-up work [54] proposed to use 3D density maps
and 3D projection to improve counting performance. [55] proposed a cross-view
cross-scene (CSCV) multi-view counting model by camera selection and noise
injection training. [58] enhanced the performance of the late fusion model in
MVMS by modeling the correlation between each pair of views.

For previous works, the single camera views (feature maps or density maps)
are projected on the ground plane for fusion to predict the scene-level density
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maps, and thus camera calibrations are needed in the testing stage, which limits
their applicability on novel scenes where camera calibrations are unavailable. In
contrast, we propose a calibration-free multi-view counting method that does
not require camera calibrations during testing. Our calibration-free setting is
more difficult compared to previous multi-view counting methods.

Deep homography estimation Our work is also related to homography
estimation works [30,27], especially DNNs-based methods[7,52]. [7] proposed to
estimate the 8 degree-of-freedom homography from an image pair with CNNs.
[28] proposed an unsupervised method that minimizes the pixel-wise intensity
error between the corresponding regions, but their unsupervised loss is not ap-
plicable when the change in camera view angle is large. [52] proposed to learn
an outlier mask to select reliable regions for homography estimation. [15] pro-
posed a multi-task learning framework for dynamic scenes by jointly estimating
dynamics masks and homographies.

Our proposed model estimates the homography matrix between the people
head locations in the two views of each camera pair. Note that the change in view
angle for camera-view pairs in the multi-view counting datasets (e.g., CityStreet)
is quite large, which is in contrast to the typical setting for previous DNN-based
homography estimation works where the change in angle is small. Therefore,
the priors for unsupervised methods (e.g., [28]) are not applicable. Furthermore,
the homography matrix in the proposed model is constructed based on the cor-
respondence of people heads in the camera view pair, which are more difficult
to observe compared to the objects in typical homography estimation datasets.
Instead, we use a supervised approach to predict the homography matrix.

3 Calibration-free Multi-view Crowd Counting

In this section we propose our model for calibration-free multi-view crowd count-
ing (CF-MVCC). In order to avoid using the projection operation, which requires
camera calibration, we could obtain the total count by summing the density
maps predicted from each camera view. However, just summing all the single-
view density maps would cause double counting on pixels that are also visible
from other cameras. Therefore, we apply a weight map to discount the contribu-
tion of pixels that are visible from other camera views (see Fig. 1). The weight
map is computed from a matching score map, which estimates the pixel-to-pixel
correspondence between a pair of camera-views, and a confidence score map,
which estimates the reliability of a given pixel (e.g., since predictions on faraway
regions are less reliable). Specifically, our proposed CF-MVCC model consists
of following 4 modules: single-image counting, view-pair matching, weight map
prediction, and total count calculation. The pipeline is illustrated in Fig. 2. Fur-
thermore, to validate the proposed method’s effectiveness on novel scenes, we
also train our model on a large synthetic dataset, and then apply it to real
scenes via domain adaptation.
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3.1 Single-view counting module (SVC)

The SVC module predicts the counting density map Di for each camera-view
i, based on an extracted feature map F c

i . For fair comparison with the SOTA
calibrated MVCC method CVCS [55], in our implementation, we follow CVCS
[55] and use the first 7 layers of VGG-net [39] as the feature extraction subnet,
and the remaining layers of CSR-net [17] as the decoder for predicting Di. Other
single-view counting models are also tested in the ablation study of the exper-

iments and Supp. The loss used for training SVC is ld =
∑V

i=1 ||Di −Dgt
i ||22 ,

where Di and Dgt
i are the predicted and ground-truth density maps, the sum-

mation i is over cameras, and V is the number of camera-views.

3.2 View-pair matching module (VPM)

The VPM module estimates the matching score Mij between any 2 camera views
i and j. First, we use a CNN to estimate the homography transformation matrix
from camera view i to j, denoted as Hij . This CNN extracts the 2 camera views’
feature maps Fh

i and Fh
j . Next, the correlation map is computed between Fh

i and

Fh
j , and a decoder is applied to predict the homography transformation matrix

Hij . For supervision, the homography matrix ground-truth Hgt
ij is calculated

based on the corresponding people head locations in the 2 camera views. In
the case that the camera view pair have no overlapping field-of-view, then a
dummy homography matrix is used as ground-truth to indicate the 2 camera
views are non-overlapped. The loss used to train the homography estimation

CNN is lh =
∑V

i=1

∑
j ̸=i ||Hij −Hgt

ij ||
2

2
.

Next a subnetwork is used to predict the matching score map Mij , whose
elements indicate the probability of whether the given pixel in view i has a match
anywhere in view j. The input into the subnet is the concatenation of features
F c
i from view i, and the aligned features from view j, P (F c

j , Hij), where P is
the projection layer adopted from STN [11].

3.3 Weight map prediction module (WMP)

The WMP module calculates the weight Wi for each view i based on the match-
ing score maps {Mij}j ̸=i with other camera views. Specifically, the weight map
Wi is:

Wi = 1/(1 +
∑
j ̸=i

Mij). (1)

Note that for pixel p, the denominator 1+
∑

j ̸=i Mij(p) is the number of camera-
views that see pixel p in camera-view i (including camera-view i itself). Thus the
weight Wi(p) will average the density map values of corresponding pixels across
visible views, thus preventing double-counting of camera-view density maps with
overlapping fields-of-view.
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Fig. 3. Example of distance map (1 − ∆i). Usually, in surveillance cameras, the top
and side areas on the image plane are faraway regions and the bottom areas are the
nearer regions.

In (1), the contribution of each camera-view is equal. However, single-view
density map prediction may not always be reliable. Generally, the confidence
(reliability) for regions with occlusions is lower than regions without occlusions,
and the confidence of regions far from the camera is lower than near-camera
regions. Therefore, to factor in these issues, we estimate a confidence score map
Ci for each camera view i, based on the image content features and pixel-wise
distance information. The confidence maps are then incorporated into (1),

Wi = Ci/(Ci +
∑
j ̸=i

Ci
j ⊙Mij), (2)

where Ci
j = P (Cj , Hij) is the projection of confidence map Cj to camera view i.

Note that in (2), the views with higher confidence will have higher contribution
to the count of a given pixel.

The confidence map Ci is estimated with a CNN whose inputs are the image
feature map Fh

i and distance feature map Ti. Ideally, Ti should be computed
by feeding a distance map ∆i, where each pixel is the distance-to-camera in
the 3D scene, into a small CNN. We note the surveillance cameras are usually
angled downward to cover the scene, where the top and side areas on the image
plane are faraway regions and the bottom areas are the nearer regions. Since
we do not have camera calibration to compute 3D distances, we use a simple
approximation for ∆i where the bottom-middle pixel is considered as the pixel
nearest to the current camera (the value is 0), and values of other pixels are the
Euclidean distance to the bottom-middle pixel (See Fig. 3). The distance map
∆i is then normalized to [0, 1], and (1 − ∆i) is fed into a CNN to output the
distance feature Ti.

Related work The weight map of our proposed method is different from
the comparison method Dmap weighted from [53]. Specifically, Dmap weighted
uses the camera calibrations and assumes each image pixel’s height in 3D world
is the average person height to calculate how many cameras can see a given
pixel. Dmap weighted also does not consider occlusion handling and prediction
confidence. In contrast, our method does not use camera calibrations, but instead
estimates matching scores based on estimated homographies between camera
views, image contents and geometry constraints (see Eq. 1). Furthermore, we
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incorporate confidence scores to adjust each view’s contribution, due to occlusion
and distance (see Eq. 2).

3.4 Total count calculation module (TCC)

With the estimated weight mapWi for each camera view i, the final count S is the
weighted summation of the density map predictionsDi: S =

∑V
i=1 sum(Wi⊙Di),

where ⊙ is element-wise multiplication, and sum is the summation over the
map. For training, the total count loss is the MSE of the count prediction:
ls = ||S − Sgt||22 , where Sgt is the ground-truth count. Finally, the loss for
training the whole model is l = ls + ld + lh.

3.5 Adaptation to novel real scenes

To apply our model to new scenes with novel camera views, we need a large num-
ber of multi-view counting scenes for training. Therefore, we train the proposed
model on a large multi-view counting dataset [55]. However, directly applying
the trained model to real scenes might not achieve satisfying performance due
to the domain gap between the synthetic and real data in terms of single-view
counting, view-pair homography estimation and matching. To reduce the do-
main gap, we first fine-tune the model trained on synthetic data on each real
test scene with an unsupervised domain adaptation (UDA) technique [55], where
only the test images are used without counting annotations or camera calibra-
tions. To further improve the performance, we use one image with density map
annotations from the training set of the target scenes, and only fine-tune the
SVC module of the proposed model with the one labeled frame. Compared to
[46], we only use synthetic labels and one labeled frame from the target scene,
and do not require large amounts of target scene annotations; while compared
to [55], we do not need calibrations of the real scenes. Therefore, ours is a more
difficult and practical setting for applying the trained multi-view counting model
to real scenes.

4 Experiment

4.1 Experiment setting

Ground-truth We use the single-view density maps, homography transforma-
tion matrix, and scene crowd count as ground-truth for training. The ground-
truth for the single-view density maps are constructed as in typical single-image
counting methods [56]. The ground-truth homography transformation matrix of
a camera-view pair is calculated with the corresponded people head coordinates
(normalized to [−1, 1]). If there are no common people in the 2 camera views (no
overlapped region), a “dummy” homography matrix is used as the ground-truth:
H = [0, 0,−10; 0, 0,−10; 0, 0, 1]. As for the ground-truth people count, we only
require the total scene-level count, which is in contrast to [53], which requires
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scene-level people annotations on the ground-plane. Thus our setting is more
difficult compared to the previous multi-view counting methods that use camera
calibration and pixel-level supervision.

Training and evaluation The training is stage by stage: we train the SVC
and homography estimation CNNs, then fix both of them and train the remaining
modules. On the large synthetic dataset, we use learning rates of 10−3. On
the real scene datasets, the learning rate is 10−4. Network settings are in the
supplemental. Mean absolute error (MAE) and mean normalized absolute error
(NAE) of the predicted counts are used as the evaluation metrics.

Datasets We validate the proposed calibration-free multi-view counting on
both a synthetic dataset CVCS [55] and real datasets, CityStreet [53] and PETS2009
[9]. Furthermore, we also apply the proposed model trained on CVCS dataset to
real datasets CityStreet, PETS2009 and DukeMTMC [32,53].

– CVCS is synthetic dataset for multi-view counting task, which contains 31
scenes. Each scene contains 100 frames and about 100 camera views (280k
total images). 5 camera views are randomly selected for 5 times for each
scene in the training, and 5 camera views are randomly selected for 21 times
for each test scene during testing. No camera calibrations are used in the
training or testing. The input image resolution is 640× 360.

– CityStreet, PETS2009 and DukeMTMC are 3 real scene datasets for
multi-view counting. CityStreet contains 3 camera views and 300 multi-view
frames (676 × 380 resolution) for training and 200 for testing. PETS2009
contains 3 camera views and 1105 multi-view frames (384×288) for training
and 794 for testing. DukeMTMC contains 4 camera views and 700 multi-
view frames (640 × 360) for training and 289 for testing. Among these 3
datasets, CityStreet is the most complicated dataset as it contains more
severe occlusions and larger angle changes between camera views.

Comparison methods We denote our method using the weight maps in
Eq. 1 as CF-MVCC, and the weight maps with confidence scores in Eq. 2 as
CF-MVCC-C. As there are no previous calibration-free methods proposed, we
adapt existing approaches to be calibration-free:

– Dmap weightedH: This is the calibration-free version of Dmap weighted
in [53]. With Dmap weighted, the density maps are weighted by how many
times an image pixel can be seen by other camera views, based on the camera
calibrations. Since camera calibrations are not available in our setting, the
estimated homography Hij is used to calculate the weight maps. Note that
this method only considers the camera geometry, and not other factors (e.g.,
image contents, occlusion, and distance) when computing the weights.

– Dmap weightedA: The camera-view features are concatenated and used
to estimate the weight maps for summing single-view predictions, which
is a self-attention operation. Compared to Dmap weightH and our method,
Dmap weightedA only considers image contents, and no geometry constraints.

– Total count: Since scene-level density maps are not available in our setting,
we replace scene-level density maps with total count loss in CVCS [55].
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Method MAE NAE

Calibrated
CVCS backbone 14.13 0.115
CVCS (MVMS) 9.30 0.080
CVCS 7.22 0.062

Calibration-free

Dmap weightedH 28.28 0.239
Dmap weightedA 19.85 0.165
Total count 18.89 0.157
4D corr 17.76 0.149
CF-MVCC (ours) 16.46 0.140
CF-MVCC-C (ours) 13.90 0.118

Table 1. Scene-level counting performance on synthetic multi-scene dataset CVCS.

– 4D corr: Replacing the VPM module in CF-MVCC with a 4D correlation
[33] method for estimating the matching score Mij of the camera-view pair.
Finally, we compare with multi-view counting methods that use camera cal-

ibrations: MVMS [53], 3D [54], CVCS backbone and CVCS [55], and CVF [58].

4.2 Experiment results

Scene-level counting performance We show the scene-level counting perfor-
mance of the proposed models and comparison methods on CVCS, CityStreet
and PETS2009 in Tables 1 and 2. On CVCS dataset, the proposed CF-MVCC-C
achieves the best performance among the calibration-free methods. The compar-
ison methods Dmap weightedH and Dmap weightedA only consider the camera
geometry or the image contents, and thus their performance is worse than CF-
MVCC, which considers both. Including confidence score maps into the weights
(CF-MVCC-C) will further improve the performance. Total count replaces the
pixel-level supervision in CVCS with the total count loss, but directly regressing
the scene-level count is not accurate since the projection to the ground stretches
the features and makes it difficult to learn to fuse the multi-view features with-
out pixel-level supervision. The 4D corr method also performs poorly because
the supervision from the total-counting loss is too weak to guide the learning
of the matching maps from the 4D correlation maps. Finally, our CF-MVCC-C
performs worse than calibrated methods CVCS and CVCS (MVMS), but still
better than CVCS backbone, which is reasonable since our method does not use
any calibrations and no pixel-wise loss is available for the scene-level prediction.

In Table 2, on both real single-scene datasets, our proposed calibration-free
methods perform better than the other calibration-free methods. Furthermore,
CF-MVCC-C is better than CF-MVCC, indicating the effectiveness of the con-
fidence score in the weight map estimation. Compared to calibrated methods,
CF-MVCC-C is comparable to MVMS [53], and slightly worse than 3D [54] and
CVF [58]. The reason might be that the calibrated methods can implicitly learn
some specific camera geometry in the fusion step, since the methods are trained
and tested on the same scenes.
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CityStreet PETS2009
Method MAE NAE MAE NAE

Calibrated
MVMS 8.01 0.096 3.49 0.124
3D counting 7.54 0.091 3.15 0.113
CVF 7.08 - 3.08 -

Calibration-free

Dmap weightedH 9.84 0.107 4.23 0.136
Dmap weightedA 9.40 0.123 6.25 0.252
Total count 11.28 0.152 6.95 0.265
4D corr 8.82 0.102 4.55 0.147
CF-MVCC (ours) 8.24 0.103 3.84 0.125
CF-MVCC-C (ours) 8.06 0.102 3.46 0.116

Table 2. Scene-level counting performance on real single-scene datasets.

Visualization results We show the visualization results the predicted con-
fidence, weight, and density maps in Fig. 4. The red boxes indicate regions that
cannot be seen by other cameras, and thus their predicted weights are large
regardless of the confidence scores. The red circles show a person that can be
seen in 3 camera views (3, 4 and 5) – the weights are small since the person can
be seen by multiple cameras. This shows that the proposed method is effective
at estimating weight maps with confidence information. See the supplemental
for more visualizations (eg. projection results with ground-truth and predicted
homography matrix).

Ablation studies Various ablation studies are evaluated on the CVCS dataset.
Ablation study on confidence map We conduct an ablation study on the

confidence score estimation: 1) without the confidence scores, i.e., CF-MVCC; 2)
using only image features to estimate confidence scores, denoted as CF-MVCC-
F; 3) using only distance information, denoted as CF-MVCC-D; 4) using both
image features and distance, i.e., our full model CF-MVCC-C. The results are
presented in Table 3. Using either image features (CF-MVCC-F) or distance
information (CF-MVCC-D) can improve the performance compared to not using
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Method Feat. Dist. MAE NAE

CF-MVCC 16.46 0.140
CF-MVCC-F ✓ 16.13 0.139
CF-MVCC-D ✓ 16.12 0.135
CF-MVCC-C ✓ ✓ 13.90 0.118

Table 3. Ablation study on estimating the confidence map using image features and/or
distance information.

SVC Method MAE NAE

CSR-Net [17]
CF-MVCC 16.46 0.140
CF-MVCC-C 13.90 0.118

LCC [22]
CF-MVCC 14.01 0.117
CF-MVCC-C 12.79 0.109

Table 4. Ablation study on single-view counting networks for SVC module.

the confidence map (CF-MVCC). Furthermore, using both image features and
distance information (CF-MVCC-C) further improves the performance. Thus,
the confidence map effectively adjusts the reliability of the each camera view’s
prediction, in order to handle occlusion and/or low resolution.

Ablation study on single-view counting network We implement and
test our proposed model with another recent single-view counting network LCC
[22], which uses a larger feature backbone than CSRnet, and is trained with
traditional counting density maps as in our model. The results presented in
Table 4 show that the proposed CF-MVCC-C achieves better performance than
CVCS when using different single-view counting networks in the SVC module.

Ablation study on the homography prediction module We also con-
duct experiments to show how the homography prediction module affects the
performance of the model. Here the ground-truth homography matrix is used for
training the proposed model. The performance of the proposed model trained
with homography prediction Hpred or ground-truth Hgt is presented in Table
5. The model with ground-truth homography achieves better performance, and
CF-MVCC-C performs better than CF-MVCC.

Ablation study on variable numbers of camera-views The modules of
the proposed models are shared across camera-views and camera-view pairs, so
our method can be applied to different numbers of camera views at test time.
In Table 6, the proposed models are trained on the CVCS dataset [55] with
5 input camera views and tested on different number of views. Note that the
ground-truth count is the people count covered by the multi-camera views. The
performance of the proposed method CF-MVCC-C is worse than the calibrated
method CVCS [55], but better than the calibrated method CVCS backbone [55]
when the number of test camera views are close to the number of training views
(3 and 5). Unlike CVCS method, the performance of CF-MVCC-C degrades as
the number of cameras increases. The reason is that the error in weight map
prediction might increase when the number of camera views changes.
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Homography Method MAE NAE

Hpred
CF-MVCC 16.64 0.140
CF-MVCC-C 13.90 0.118

Hgt
CF-MVCC 12.04 0.101
CF-MVCC-C 11.69 0.098

Table 5. Ablation study on the homography matrix input.

CVCS backbone CVCS CF-MVCC-C

No. Views MAE NAE MAE NAE MAE NAE

3 14.28 0.130 7.24 0.071 11.01 0.107
5 14.13 0.115 7.22 0.062 13.90 0.118
7 14.35 0.113 7.07 0.058 18.45 0.147
9 14.56 0.112 7.04 0.056 22.23 0.174

Table 6. Ablation study on testing with different numbers of input camera-views. The
model is trained on CVCS dataset with 5 camera-views as input.

Adaptation to novel real scenes In this part, we use domain adaption to ap-
ply the proposed model CF-MVCC-C pre-trained on the synthetic CVCS dataset
to the real scene datasets CityStreet, PETS2009 and DukeMTMC. We consider
3 training methods: 1) Synth, where pre-trained model is directly tested on the
real scenes; 2) Synth+UDA, where unsupervised domain adaptation is applied
to the pre-trained model. Specifically, 2 discriminators are added to distinguish
the single-view density maps and weight maps of the source and target scenes. 3)
Synth+F, where the models pre-trained on the synthetic dataset are fine-tuned
with one labeled image set. Specifically, our pre-trained proposed model’s SVC
module is fine-tuned with only 1 labeled camera-view image (V) from the train-
ing set of the real dataset, denoted as “+F(V)”. For comparison, the calibrated
CVCS backbone and CVCS are fine-tuned with one set of multi-view images (V)
and one labeled scene-level density map (S), denoted “+F(V+S)”.

The results are presented in Table 7. The first 7 methods are calibrated meth-
ods that train and test on the same single scene (denoted as ‘RealSame’). This
can be considered as the upper-bound performance for this experiment. The
remaining 9 methods are calibrated and calibration-free methods using domain
adaptation. The proposed method trained with Synth+F(V) achieves better per-
formance than other training methods or CVCS [55] with domain adaptation or
Synth+F(V+S). Compared to calibrated single-scene models [34,53,54,58], the
CF-MVCC-C training with Synth+F(V) still achieves promising performance,
and is slightly worse than MVMS and 3D. Note that Synth+F(V) only uses one
frame annotated with people during fine-tuning, and does not require camera
calibrations during test time. Thus, our method has practical advantage over
the calibrated single-scene methods, which require much more annotations and
the camera calibrations.
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PETS2009 DukeMTMC CityStreet
Model Training MAE NAE MAE NAE MAE NAE

Calibrated

Dmap weighted [34] RealSame 7.51 0.261 2.12 0.255 11.10 0.121
Dect+ReID [53] RealSame 9.41 0.289 2.20 0.342 27.60 0.385
LateFusion [53] RealSame 3.92 0.138 1.27 0.198 8.12 0.097
EarlyFusion [53] RealSame 5.43 0.199 1.25 0.220 8.10 0.096
MVMS [53] RealSame 3.49 0.124 1.03 0.170 8.01 0.096
3D [54] RealSame 3.15 0.113 1.37 0.244 7.54 0.091
CVF [58] RealSame 3.08 - 0.87 - 7.08 -

Calibrated

CVCS backbone [55] Synth 8.05 0.257 4.19 0.913 11.57 0.156
CVCS backbone [55] Synth+UDA 5.91 0.200 3.11 0.551 10.09 0.117
CVCS backbone [55] Synth+F(V+S) 5.78 0.186 2.92 0.597 9.71 0.111
CVCS [55] Synth 5.33 0.174 2.85 0.546 11.09 0.124
CVCS [55] Synth+UDA 5.17 0.165 2.83 0.525 9.58 0.117
CVCS [55] Synth+F(V+S) 5.06 0.164 2.81 0.567 9.13 0.108

Calib-free
CF-MVCC-C (ours) Synth 14.63 0.458 5.16 0.984 48.58 0.602
CF-MVCC-C (ours) Synth+UDA 12.76 0.398 2.65 0.498 14.89 0.176
CF-MVCC-C (ours) Synth+F(V) 4.85 0.162 1.80 0.293 8.13 0.095

Table 7. Results on real testing datasets. “Training” column indicates different train-
ing methods: “RealSame” means training and testing on the same single real scene;
“Synth” means cross-scene training on synthetic dataset and directly testing on the real
scenes; “+UDA” means adding unsupervised domain adaptation; “+F(V+S) means
finetune the the calibrated methods on a set of multi-view images (V) and one cor-
responding scene-level density map (S); “+F(V)” means finetuning the single-view
counting with one labeled camera view image (V) from the training set of real scenes.

5 Conclusion

In this paper, we propose a calibration-free multi-view counting method that
fuses the single-view predictions with learned weight maps, which consider both
similarity between camera-view pairs and confidence guided by image content
and distance information. The experiments show the proposed method can achieve
better performance than other calibration-free baselines. Compared to previous
calibrated multi-view methods, our proposed method is more practical for real
applications, since our method does not need camera calibrations in the testing
stage. The performance can be further improved by pre-training on a synthetic
dataset, and applying domain adaptation with a single annotated image. In this
case, our fine-tuned calibration-free method outperforms fine-tuned calibrated
methods. Our work provides a promising step towards practical multi-view crowd
counting, which requires no camera calibrations from the test scene and only one
image for fine-tuning the single-view density map regressor.
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