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Abstract—The egocentric perspective is a recent perspective
brought by new devices like the GoPro and Google Glass, which
are becoming more available to the public. The hands are the
most consistent objects in the egocentric perspective and they
can represent more information about people and their activities,
but the nature of the perspective and the ever changing shape
of the hands makes them difficult to detect. Previous work has
focused on indoor environments or controlled data since it brings
simpler ways to approach it, but in this work we use data with
changing background and variable illumination, which makes
it more challenging. We use a Deformable Part Model based
approach to generate hand proposals since it can handle the
many gestures the hand can adopt and rivals other techniques
on locating the hands while reducing the number of proposals.
We also use the location where the hands appear and size in
the image to reduce the number of detections. Finally, a CNN
classifier is applied to remove the final false positives to generate
the hand detections.

I. INTRODUCTION

The egocentric perspective has the characteristic of seeing
the world as we humans see it – the videos move quite
swiftly, which makes the images and objects taken from this
perspective to be blurry and hard to detect. When having this
perspective we find the hands being the most consistent objects
and they appear in a reasonable size that allows enough feature
extraction for detection when doing daily activities. Hand
detection is a special case on the object detection problem
– due to the shape variation it presents, the many joints
and fingers of the hand drastically change their appearances
creating a hard challenge to tackle. This has led to focusing
instead on generating hand proposals as a first step, and
using a more computationally expensive classifier to score.
When interacting with the world the hands are the means
of interaction with other people and objects, which provides
information on the environment and the activities the user is
doing. This makes the hands appear in the image consistently,
since a person concentrates on other people or objects they
interact with and makes activity recognition and other objects
detection use hand detection in their processes [1], [2].

Some approaches present limited environments by never
changing the location during the activities [2], resulting in low
variation of illumination and background. Other works choose
to approach the problem using segmentation [3], [4], which
makes them able to detect hands and other body parts that
resemble the skin.

In this work we address hand detection as an object
detection problem, instead of using segmentation to detect
hands as in previous works, with the person performing daily
activities while changing locations, meaning that the egocentric
video will contain a variety of objects and backgrounds. We
use object detection based on a pictorial approach, where we
learn the whole object as well as the parts of the object. This
way we are able to detect the hands using the shape, even if
the fingers change the appearance of the hands, as we detect
the hands as a combination of the whole hand and the fingers.
The object parts are an important characteristic and it allows
for more flexibility since fingers can move quite drastically.
We also use the knowledge that the hands appear in specific
areas in daily activities, which can be used as prior knowledge
about the position and size of the hand in the image.

II. RELATED WORK

The egocentric perspective is attracting more research due
to the new technologies that are being developed and made
available to the public, which generates more data to work
with. One of the areas of interest using this new perspective is
activity recognition [1], [2], [5]–[9], which uses the objects in
the image or the background to recognize the activity. From
the egocentric perspective, an object the person is interacting
with can represent the activity. This however causes the objects
move swiftly and have different appearances, which makes
the images to be blurry and objects hard to detect. Using
the egocentric perspective, video retrieval and summarization
methods were also developed [10]–[13]. These papers have
as the main task to obtain and visualize the most important
parts of video sequences by focusing on the objects the person
interacts with over time, and creating the story or sequence
of stories derived from the videos. The egocentric perspective
also gives the opportunity to do research on object recognition
and tracking [14]–[18], where they focus on the different
appearances the hand can take but require a hand or object
detector. Another work that has been done is in virtual and
augmented reality [19], while other works also get information
out of this perspective [20]. For the specific case of hand
detection in egocentric videos, there is not much work being
done since it is a recent topic, and most of the approaches
focus on pixel-level segmentation [14], [21]–[23] to detect the
hands.

One of the first to handle something close to hand detection
was Ren and Gu [17], which is not hand detection specific, as
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it concentrates on any object that behaves like a hand. They
segment the image using optical flow patterns, and detecting
if the pattern corresponds to that of a hand, since there is a
noticeable difference between the flow of the hands and the
background. However, this makes any object that moves like a
hand to be detected. In contrast to [17], we concentrate on the
shape of the hands to disambiguate the hands from the objects
the hands interact with.

The model proposed by Bambach et al. [24] uses a CNN-
based technique for detecting, identifying, and segmenting
hands in egocentric videos of multiple people interacting
with each other. They use the information of a hand to be
in a specific location, with a specific size and with color-
like features to generate hand proposals, and then use the
CNN to score them. Their dataset contains specific activities
that include playing board games while sitting down, without
changing environments. They concentrate on detecting the
hands of multiple people instead of just the user. This approach
however needs 2,500 object proposals to find the hands in
the image. In our work, we generate a much smaller number
of proposals, by using both shape features and location to
generate proposals.

Finally, Li and Kitani [14] propose a more diverse database
focusing on the variation of illumination. They select the best
color feature model for each environment using scene-level
feature probes. The database they propose has drastic changes
in the background simulating daily activities, such as walking
and grabbing objects in the kitchen. They segment the image
and find which features are able to distinguish the hand from
the background the best. However, these color features also
detect other body parts as well. In our work, we focus on
the hands alone using the shape to avoid detecting skin like
features.

III. DEFORMABLE PART MODEL (DPM)

In order to model the hand, we need a model that can
adapt to the many appearance variations of the hand. Since
we want to address a daily activity database we also need to
handle changes in the background and illumination. In order to
address the hand detection problem we chose the Deformable
Part Model (DPM) proposed by Felzenszwalb et al. [25]. The
features used in this approach are the histograms of oriented
gradients (HOG). DPM learns an object by considering the
whole object as well as the parts that compose the object,
and the spatial relationship among the whole object and the
parts, as shown in Figure 1. In this example, when representing
a hand, DPM uses the fingers as some of the parts, which
allows this model to detect a hand even if the fingers change
location. In order to use the parts of the object effectively
DPM represents the parts at double the resolution for the HOG
features, which allows more detail for the local representation
of the object. This model provides a score by combining the
whole object and the parts with the spatial information – if a
part is farther away the score decreases.

Learning a DPM only requires the bounding box annotation
of the object, with the part annotations learned automatically.
To train models using partially labeled data, DPM uses a
latent variable formulation of MI-SVM [26], called latent SVM
(LSVM). DPM also can represent different perspectives of the

Fig. 1. Multiple hand representations found by DPM, fist (upper row) and
palm (lower row), from the training sample (far left). The DPM consists of
the whole object representation (middle left), the parts representation (middle
right) and the spatial deformation (far right).

object called components, as seen in Figure 1. This makes
DPM able to address the different appearances the hand can
take, e.g., a palm and a fist.

A. Formulation

DPM first extracts a dense feature map using linear filters.
A feature map is defined as an array whose entries are d-
dimensional feature vectors computed from a dense grid of
locations in an image. A filter is defined as an array of d-
dimensional weight vectors, and the score of a specific filter
F at a position (x, y) in a feature map G is the dot product
of the filter F and a sub-window of the feature map with it’s
top-left corner being at position (x, y),

F ·G(x, y) =
∑
x′,y′

F [x′, y′]G[x+ x′, y + y′]. (1)

Let F be a w × h filter. Let H be a feature pyramid and
p = (x, y, l) specify a position (x, y) in the l-th level of
the pyramid. Let φ(H, p,w, h) denote the vector obtained by
concatenating the feature vectors in the w × h subwindow of
H with top-left corner at p in row-major order. The score of
F at p is F ′ · φ(H, p,w, h), where F ′ is the vector obtained
by concatenating the weight vectors in F in row-major order.
The score is denoted as F ′ · φ(H, p) since the subwindow
dimensions are implicitly defined by the dimensions of the
filter F .

The DPM represents an object with n parts as a (n+ 2)-
tuple (F0, P1, ..., Pn, b), where F0 is the whole object repre-
sentation or root filter, Pi is a model for the i-th part, and b is
a real valued bias term. Each part model is composed by a 3-
tuple (Fi, vi, di) where Fi is the i-th part representation or part
filter, vi is a two-dimensional vector which represents the parts
location relative to the root position which is called the anchor,
and di is a four-dimensional vector which are the coefficients
of a quadratic function, representing the area where the part
can move, relative to the anchor position.

The DPM is able to detect an object at a particular position
and scale within an image using a feature pyramid H , with
each level having the image at a different resolution. Let the
p = (x, y, l) specify a position (x, y) in the l-th level of the
pyramid. Given a candidate location p0, DPM calculates the
score of this location by combining the score of whole object
model, and the highest possible scores of the parts,

score(p0) = max
p1,...,pn

score(p0, . . . , pn), (2)



where the point set (p0, ..., pn) corresponds to the root and
hypothesized part locations. The score of the hypothesized
parts’ locations considers both the part’s appearance and spatial
location,

score(p0, ..., pn) =

n∑
i=0

F ′
i ·φ(H, pi)−

n∑
i=1

di ·φd(dxi, dyi)+b,

(3)
where the displacement of the part relative to the anchor
position is represented as

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi), (4)

and the deformations features as

φd(dx, dy) = (dx, dy, dx2, dy2). (5)

IV. LEARNING DPM FOR HAND PROPOSALS

One characteristics of DPM is its ability to find different
appearances or components using the training data, but it
requires the number of components be provided. In the original
work [25], DPM finds the components using the bounding
boxes size ratio as the criteria for splitting the database. They
assume that different views of the object will correspond to
different bounding boxes ratios. However in this work we
propose to do split the components using the shape of the
appearances. We also use the location of the hands in the image
to restrict the detections. We do this by learning one DPM for
the object itself and then use the spatial information to help
trim the false positives. Our training pipeline is illustrated on
Figure 2.

A. DPM Initialization for Hands

For this work we learn the hands by changing the ini-
tialization of the DPM to be unsupervised and to make it
more suitable for hands. In the original formulation [25],
given the number of components, DPM splits the data for the
components using the bounding boxes ratio. This would create
components that combine appearances that share the same
bounding box ratio. However, for egocentric hands, we found
that the hands can take different appearances with similar
bounding box ratio, as seen in Figure 1, making the original
splitting method not suitable for extracting meaningful clusters
of hand appearance.

We propose to use the appearance of the hands to do the
splits instead. First we mirror flip all the left hands, so that
all hands are normalized to the right hand. We then extract
HOG features from each data sample, and cluster them. We
select k-means clustering to split the data over a hierarchical
clustering approach, since a hierarchical approach can create
small clusters that negatively affects the DPM performance due
to its sensitivity to database size. This allows us to separate
the data samples into the different perspectives or components
even though they might have similar bounding box ratios. To
estimate the number of components in an unsupervised way,
we use the Silhouettes clustering criterion [27] with k-means.
Finally, we split each cluster into two using the bounding box
ratio, since the DPM is still sensitive to the bounding box
ratio for detection. We do not split the data even more to
avoid creating too many slices and affecting the performance
negatively. Our proposed initialization method is unsupervised

Fig. 3. Hand pixel distribution of the combined EDSH1 and EDHS2 datasets
(a), and the EDSHK dataset (b), from the Li and Kitani [14] dataset.

and adapts to the nature of the data. For other DPM settings, we
use the default parameters. In particular, we use eight parts per
component and HOG features, using 8 pixel bins as windows.
Finally we lower the SVM threshold in the DPM to -1.1 and
set the interval to 10 to get high recall as implemented in the
author’s code [25].

B. IOU Suppression

In the original formulation, DPM has a post-processing step
where it uses non-maximum suppression (NMS) to reduce the
raw detections it produces. NMS however can suppress too
many of the detections by suppressing true positives. Here, we
propose a variation of the NMS based on the intersection-over-
union (IOU), which takes both bounding boxes areas rather
than only one bounding box area as the NMS does, We will
call this IOU suppression.

C. Proposal Pruning

When learning an object detector we often concentrate
on the object itself, more information can be used for hand
detection under an egocentric perspective. Specifically, the
hands tend to concentrate in a particular area of the image
while doing daily activities. This suggests we can use the
location to help prune the hand proposals from the false
positives. Figure 3 shows a heat map of the hands’ locations in
the Li and Kitani’s database [14]. The Li and Kitani database
[14] consists on 3 main portions EDSH1, EDSH2 and EDSHK,
where EDSH1 and EDSH2 changes location similarly going
in and out of rooms, and EDSHK where the person is in the
kitchen making tea and interacting with the kitchen. The hand
locations in the EDSH1 and EDSH2 databases are concentrated
in the middle of the image, while in EDSHK the area with
hands changes slightly as the person performs a different
activity. This suggests that hands are not used in the same
way depending on the activity, and we can use this spatial
information to trim the detections we know are false positives,
since the hands never go to some areas. Figure 4 presents
the multiple detections after the IOU post-processing with the
bounding boxes from the training data. Some detections are
too far away and the shape is too different from what would
we expect the hands to have, we can use this knowledge to
prune the detections.

In order to use the spatial information to prune the de-
tections we use a classifier to differentiate the possible hands
and the false positives that are clearly not hands. We train a
Support Vector Machine (SVM) to learn the size and location



Fig. 2. Training pipeline of our proposal generation method. We use the bounding box ground truth to train the DPM and find the different appearances. To
train the Spatial SVM we use the DPM to detect the hands on the training dataset and suppress the detections using IOU suppression. As positives we use the
detections whose intersection over union with the ground truth is over 0.5, every other detection is taken as negative.

Fig. 4. Hand DPM detections after the IOU suppression (red) and training
bounding boxes (green) on a Li and Kitani [14] database sample.

information from the DPM detections. Let D be set of DPM
detections obtained by applying the DPM on the training data,
and T the training dataset. Denote PT and NT to be the
positive and negative training sets respectively,

PT = {d ∈ D, t ∈ T : IOU(d, t) > 0.5} (6)

where the intersection-over-union between d and t is

IOU(d, t) =
|d ∩ t|
|d ∪ t|

. (7)

The negative set NT = D \ PT corresponds to detections
that do not intersect with any ground truth bounding box.
We downsample the negatives set using a random subset to
match the positives set size. Finally, we train an SVM using
input features (x, y, width, height) to classify the positive and
negative sets.

V. EXPERIMENTS

A. Datasets

To compare our approach we use the databases provided
by Li and Kitani [14], which we denote as EDSH, and by
Bambach et al. [24], which we denote as EgoHands, as
they are realistic datasets with high variability. The EDHS
dataset consists on 3 portions (EDSH1, EDSH2 and EDSHK)
containing different scenarios and actions. We consider these
as they are the most variable portions – EDSH1 and EDSH2
change rooms and illuminations, and EDSHK contains hands
with the most variable appearances as they handle multiple
objects (EDSHK). When comparing on EDSH, we use k-
fold cross validation with k = 5 to make the results more
robust since this database is not built for object detection. We
made sure to have each database portion proportionally equally
represented.

When comparing on EgoHands we use all the hands
without differentiating left from right or different people, and

we use their main split with all the activities and locations.
This database contains multiple people interacting with each
other by playing board games, which makes the appearances of
the hands more complex since they interact with the world and
each other. Even though this database does not concentrate on
changes of illumination, it does present illumination variations
when changing activities and backgrounds.

B. Methods

We denote DPM as our trained deformable part model
using the intersection over union non maximum suppression,
and SVM as the svm with the model spatial features. To
compare our hand proposals we use various hand detection
and generic object detection methods:

• Bambach [24] uses three probability distributions to
generate bounding boxes proposals: the hand occurrence
in the image, the probability of the bounding box to have
a specific location and size, and the probability of the
bounding box center pixel to be of that of a hand. We
use the code provided by the author to generate object
proposals.

• Selective Search [28] uses a hierarchical grouping al-
gorithm to split the image into superpixels and generate
bounding boxes from them, which is a base for CNN
object detections [29]. We use the code provided by the
authors and set the threshold k = 50.

• Random Prim [30] transforms the image to superpixels
and creates a connectivity graph with the nodes being
the superpixels and the edges being the probability of
the superpixels being inside the object. This generates
random partial spanning trees with large expected sum of
edge weights, which then are transformed into bounding
boxes. We use the code provided by the author with the
fast and slow version which differ from having low and
high recall respectively.

• Objectness [31] is an object proposal method which com-
bines in a Bayesian framework several image cues mea-
suring characteristics of objects, the color contrast, edge
density and superpixel’s straddling to generate bounding
boxes. We use the code provided by the author and trained
it using random database images.

• RPN [32] generates bounding boxes using a convolutional
neural network (CNN) which outputs the bounding boxes
predictions from features maps. We train RPN on the full
training dataset using the code provided by the authors.
We use the VGG-16 net version with default settings. As
RPN needs a large amount of samples we only use it on
the EgoHands database.

For the Random Prim [21] and Selective Search [20] methods
we consider only the first 2,500 proposals. For the other



Fig. 5. Li and Kitani [14] database transformation, from original sample
(a), to a hands only image (b), to hand segmentation (c) and the resulting
bounding boxes (d).

methods we input 2,500 as the number of proposals when using
the authors’ code.

After generating hand proposals we use the CNN provided
by Bambach et al. [24] on each method’s bounding box
proposals to perform the final hand detection. Since the DPM
bounding box does not contain context around the hand, the
CNN is run on bounding boxes that are enlarged by 1.25 times
to cover the entire hand. We also consider an improved DPM
detection scheme, denoted a DPM+, where the DPM and CNN
scores are combined to obtain the detection score,

score = sDPM + λ ∗ sCNN, (8)

where sDPM is the DPM score and sCNN is the CNN score.

Since the approach proposed by Li and Kitani [14] uses
segmentation there cannot be a direct comparison, so we use
their approach and then transform the results. We provide
this comparison to as a baseline with the dataset while also
acknowledging its unfairness. To transform from segmentation
to bounding boxes we do as follows. First we change the
testing database so that the only skin like features are that
of the hands (either left or right) and we set all the other
skin-like pixels to black, thus creating images with only hands
with skin-like features, as seen in Figure 5. When creating the
new images we expand the black pixel mask since the mask
is not perfect and we don’t want any pixels influencing the
results from other skin areas. In order to help their approach,
once we have a mask for each image we find all the connected
components and calculate the centroid of each one, and for the
testing we take a mask as positive if the centroid falls inside
a ground truth bounding box.

C. Evaluation metrics

To score the bounding boxes we use the PASCAL VOC
criteria where a detected bounding box is considered positive
if the intersection over union with a ground truth bounding box
is over 0.5. We evaluate the hand proposal approaches using
the recall to see how many of the ground truth objects we
are finding. The recall represents all the ground truth objects
correctly detected, without taking into consideration the false
positives, and it can be taken as an upper limit as to what
an approach can achieve. Since we are dealing with object
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Fig. 6. Recall for hand proposal methods on EDSH.
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Fig. 7. Recall for hand proposal methods on EgoHands.

proposals pruning we expect to have a decrease of in the recall.
We use the average precision to compare the overall detection
performance.

D. Results

Figure 6 presents the recall behavior of the methods for
proposal generation on the EDSH database. Bambach et al.
[24] has the highest recall but it requires generating more than
2,000 proposals. In contrast, our method reaches its recall peak
with less proposals and the recall is similar. Selective Search,
Random Prim and Objectness have similar high recall, showing
that color and edge features can be used to detect hands with
high illumination variability.

Figure 7 presents the recall behavior of the proposal
methods on the EgoHands database. Overall we achieve the
highest recall and reach the recall peak with less proposals.
DPM is able to find the hands on a database with a highly
variable illumination and quickly moving cameras, which is
needed on the egocentric perspective.

Selective Search [28] and Bambach et al. [24] achieve sim-
ilar high recall, showing that color, size and location provide
information for hand detection even in occluded instances, as
the database contains hands interacting with objects and other
people. RPN [32] struggles finding some hands but is able
to reach high recall with only 500 proposals, as every other



TABLE I. COMPARISON OF THE NUMBER OF PROPOSALS VERSUS
RECALL ON EDSH

Steps Mean Std. Dev. Recall

Li and Kitani [14] 1.76 1.01 0.6943
DPM 30.58 9.61 0.9707
DPM + SVM 21.76 6.74 0.9268
Bambach et al. [24] 2500 0 0.9774
Selective Search [28] 1152 292.23 0.8958
Random Prim (Fast) [30] 376.6 227.45 0.5176
Random Prim (Slow) [30] 1895 460.38 0.9261
Objectness [31] 1878 155.7 0.937

Fig. 8. Testing sample (upper left) where Li and Kitani [14] encountered
hand-like color features during segmentation (upper right), which led to false
positives (bottom).

method except the DPM needs more than 1,000 proposals to
achieve high recall.

Table I presents the average number of proposals the
methods generate on EDSH. Our approach generates the
second least number of proposals after Li and Kitani [14],
but achieves higher recall. Compared to other methods our
approach generates considerable less proposals. For the overall
performance, we find that the SVM deletes hands if they
are too far away in the outer region, which makes it reduce
the performance even if we are able to delete on average
10 to 30 percent of the false positives. This is due to the
database consisting of only a small portion containing the
person interacting with the world, and most of time staying in
the same area as the person walks in and out of rooms. Li and
Kitani [14] performance is affected by similar color features in
EDSH, as seen in Figure 8. The skin-like features found, like
wood (tables and doors), negatively affect the performance by
either creating false positives or merging with the hands.

Table II presents the number of proposals generated with
each method on EgoHands. Our method shows a considerable
decrease in the hand proposals from the other methods, as the
SVM is able to decrease the number or proposals by about
40%. The SVM has a small impact on the recall, but provides
a good tradeoff, especially when comparing with the number
of proposals of the other approaches.

Table III presents the times it takes for each method to
generate the proposals per image. Overall, our method using
CPU takes longer than other methods, as some methods like
Bambach et al. [24] and Random Prim (Fast) [30] focus
on speed. This is a tradeoff for the decrease of number of
proposals previously shown. Bambach et al. [24] is the fastest

TABLE II. COMPARISON OF THE NUMBER OF PROPOSALS VS. RECALL
ON EGOHANDS.

Steps Mean Std. Dev. Recall

DPM Raw 4712.3 2282.0 0.9616
DPM 268.71 92.93 0.9616
DPM + SVM 162.40 53.65 0.9164
Bambach et al. [24] 2500 0 0.9499
Selective Search [28] 2500 0 0.9431
Random Prim (Fast) [30] 1844 707.6 0.5860
Random Prim (Slow) [30] 2500 0 0.8994
Objectness [31] 1943 180.5 0.8279
RPN [32] 2500 0 0.9249

TABLE III. PROPOSAL GENERATION AND HAND DETECTION TIMES ON
THE EGOHANDS DATASET.

Proposal Generation Hand Detection
Methods Mean (s) Std.Dev. w/ CNN (s)

DPM (CPU) 6.050 0.422 6.09
DPM (GPU) 0.724 0.067 0.77
Bambach et al. [24] 0.038 0.006 0.48
Selective Search [28] 2.752 0.534 3.20
Random Prim (Fast) [30] 2.038 0.916 3.08
Random Prim (Slow) [30] 9.241 0.555 9.68
Objectness [31] 7.297 1.107 7.64
RPN (CPU) [32] 7.112 0.644 7.56
RPN (GPU) [32] 0.318 0.050 0.76

method since it can be taken as barely using the image for the
proposal generation, followed by RPN [32], as it uses GPU
to speed up the CNN. However, when also implemented on
GPU, DPM has similar running time to RPN [32].

Finally, Figure 9 presents the precision-recall curve for
hand detection on EgoHands. DPM+ shows overall the best
performance with the highest AP. DPM+ also obtains higher
recall than other methods, showing that our approach can find
more hands in heavily occluded environments more accurately.
The combination of the CNN and the DPM score is able to
improve the performance showing that usefulness of the HOG
features and the DPM hand representations of parts and whole.
For comparison, RPN [32] performs worse in terms of AP,
which demonstrates that there is still room for improvement us-
ing deep learning for the hand detection problem. Bambach et
al. [24] performs worse than shape-focused methods, showing
that shape-focused based methods can generate hand proposals
more accurately. Moreover location and size can help improve
other approaches, like the DPM, by pruning false positives.
Selective Search [28] and Random Prim [30] show that color
features are limited for hand detection due to illumination
changes and occlusion. For hand detection, DPM+ and RPN
have similar running time on GPU.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a combination of De-
formable Part Models and spatial features SVM for hand
detection on an egocentric perspective that achieves higher
recall and overall performance than state-of-the-art methods.
We showed that DPM can find the hands despite the egocentric
perspective having drastic illumination changes and the hand
presenting complex appearances. Moreover our approach pro-
vides a considerable decrease in the hand proposals without
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Fig. 9. Precision-Recall curves on the EgoHands database.

dramatically reducing the recall. Using the DPM proposals,
hand detection performance becomes better than RPN. For
future work, we plan to use end-to-end methods for object
detection based on deep neural networks.
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