
CNN+CNN: Convolutional Decoders for Image Captioning

Qingzhong Wang and Antoni B. Chan
Department of Computer Science, City University of Hong Kong

qingzwang2-c@my.cityu.edu.hk, abchan@cityu.edu.hk

Abstract

Image captioning is a challenging task that combines
the field of computer vision and natural language process-
ing. A variety of approaches have been proposed to achieve
the goal of automatically describing an image, and re-
current neural network (RNN) or long-short term memory
(LSTM) based models dominate this field. However, RNNs
or LSTMs cannot be calculated in parallel and ignore the
underlying hierarchical structure of a sentence. In this pa-
per, we propose a framework that only employs convolu-
tional neural networks (CNNs) to generate captions. Ow-
ing to parallel computing, our basic model is around 3×
faster than NIC (an LSTM-based model) during training
time, while also providing better results. We conduct exten-
sive experiments on MSCOCO and investigate the influence
of the model width and depth. Compared with LSTM-based
models that apply similar attention mechanisms, our pro-
posed models achieves comparable scores of BLEU-1,2,3,4
and METEOR, and higher scores of CIDEr. We also test our
model on the paragraph annotation dataset [22], and get
higher CIDEr score compared with hierarchical LSTMs.

1. Introduction

Human beings are able to describe what they see, and im-
age captioning is a task that can make a computer have this
ability. To achieve this goal requires at least three models:
(1) vision model—to extract visual features from images,
(2) language model—to generate captions, (3) the connec-
tion between vision and language models. Image captioning
combines two fields—computer vision and natural language
processing (NLP) to address the challenge of understanding
both images and their descriptions.

Recently, increasing research has been devoted to im-
age captioning, and a variety of methods have been pro-
posed [16, 8, 21, 31, 34, 36, 33, 2, 19, 9, 35]. Almost all of
the current proposed methods are under the framework of
CNN+RNN, in which a CNN is used for the vision model,
and an RNN is employed to generate sentences. Moreover,
there are different ways to connect the CNN and RNN. A
naive way is directly feeding the output of the CNN into the
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Figure 1. Language models: (a) RNN-based model, which takes
the current word and the previous hidden states as input [31]; (b)
the tree structure of a sentence, where {S, NP, VP, PP} denote sen-
tence, noun phrase, verb phrase, and preposition phrase [26, 25];
(3) CNN-based model, which is much denser than a tree structure,
but is able to learn a tree structure [20]. ⊗ denotes zero padding.

RNN [21, 31]. However, this naive approach treats objects
in an image the same and ignores the salient objects when
generating one word. To imitate the visual attention mech-
anism of humans, attention modules have been introduced
into the CNN+RNN framework [34, 36, 19].

Although the CNN+RNN framework is popular and pro-
vides satisfying results, there are disadvantages of sequen-
tial RNNs: (1) RNNs have to be calculated step-by-step,
which is not amenable to parallel computing during train-
ing; (2) there is a long path between the start and end of the
sentence using RNNs (see Fig. 1a), which easily forgets the
long-range information. Tree structures can make a shorter
path between the start and end words (see Fig. 1b), but trees
require special processing that is not easily parallelizable.
Also trees are defined by NLP (e.g., noun phrase, adjec-
tives, verb phrase, etc), which is a hand-crafted structure
that may not be optimal for the captioning task.

An alternative language model to RNNs and trees are
CNNs applied to the sentence to merge words layer by layer
[22, 20], thus learning a tree structure of the sentence (see
Fig. 1c). CNNs can be implemented in parallel, and have a
larger receptive field size (can see more words) using less
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layers. E.g., given a sentence composed of 10 words, a
RNN needs to iterate 10 times to get a representation of the
sentence (equivalent to 10 layers), while a CNN with kernel
size 3 only needs 5 layers. Using wider kernels, CNNs are
able to tackle longer sentences with less layers. CNN have
been widely applied to the field of NLP, leading to improved
performances in many tasks, such as language modeling,
machine translation and text classification [5, 10, 11, 13, 4].

Inspired by the applications of CNNs in the field of NLP,
we develop a framework that only employ CNNs for image
captioning. The main contributions of this paper are:

1. We propose a CNN+CNN framework for image cap-
tioning, which is faster than LSTM-based models and
outperforms them on some metrics.

2. We propose a hierarchical attention module to connect
the vision CNN with the language CNN, which signif-
icantly improves the performance.

3. We investigate the influence of the hyper-parameters,
including the number of layers and the kernel width of
the language CNN. The receptive field of the language
CNN can be increased by stacking more layers or in-
creasing the kernel width, and our experiments show
that increasing the kernel width is better.

2. Related work
CNN+RNN models Many methods have been proposed
to automatically generate captions of images, and the most
popular framework is CNN+RNN. Most work endeavors to
modify the language model and the connection between the
vision and language models to improve the performance.

The m-RNN model [21] uses a vanilla RNN combined
with different CNNs (AlexNet or VGG-net) – the RNN hid-
den states and the CNN output are fed into a multimodal
block to fuse the image and language features at each time
step, and a softmax layer predicts the next word. However,
the vanilla RNNs suffers from the vanishing gradient prob-
lem. Therefore, the neural image captioning (NIC) model
employs a LSTM as a decoder [31]. At the beginning, the
NIC model takes the image feature vector as input, and then
the visual information is passed through the recurrent path.

In both m-RNN and NIC, an image is represented by a
single vector, which ignores different areas and objects in
the image. A spatial attention mechanism is introduced into
image captioning model in [34], which allows the model to
pay attention to different areas at each time step.

Most recently, [36, 33, 35] have included semantics,
which are image annotations produced by an image clas-
sifier, into image captioning. A semantic attention model is
proposed in [36], which applies a fully convolutional net-
work (FCN) to detect semantics first and then computes a
weight for each semantic at each time step. Although this
semantic attention significantly improves the performance,
to some extent, it has a problem of prediction error accu-

mulation along generated sequences [35]. Alternatively, [9]
uses semantics differently, by generating the parameters of
an RNN or LSTM from the output of the semantic detector.
This model can be trained in a end-to-end manner.

LSTMs have also been used hierarchically to model a
shallow tree structure. [28] proposes a phrase LSTM model,
which has two levels of LSTMs, one to model the sentence
composed of phrases, and another to generate words in a
phrase. Similarly, [32] applies a skeleton LSTM to generate
the skeleton words of the sentence, and an attribute LSTM
to generate adjective words that modify the skeleton words,
which is a coarse-to-fine model. Hierarchical LSTMs have
also been used to generate a paragraph description consist-
ing of multiple sentences to describe an image [15].

To our knowledge, our work is the first that applies
CNNs to completely replace RNNs for image captioning.
Inspired by [20], we propose a hierarchical attention mod-
ule, which aims to learn the co-relationship between con-
cepts at each level and image areas. Furthermore, our atten-
tion module uses the dot-product, which has less parameters
and can be calculated faster than the MLP-based attention
in [34, 19].

CNNs in NLP Deep learning methods have dominated
the field of NLP, and CNNs are an important tool to solve
NLP problems. In [3], CNNs are applied to several NLP
tasks, such as chunking, part-of-speech tagging, named en-
tity recognition, and semantic role labeling. This CNN-
based model provides accurate results with fast speed, and
is capable of learning representations instead of employing
hand-crafted features.

[13] develops a CNN model with a max-over-time pool-
ing layer for sentence classification. [4] experiments with
very deep CNNs for text classification, and the results sug-
gest that depth and max-pooling improve the performance.

In terms of language modeling, [5] introduces a new
activation function called gated linear units (GLU), which
applies an output gate to each unit, and can be trained
faster than ReLUs. In [10], GLUs are adopted for machine
translation, where a convolutional sequence-to-sequence
model outperforms the popular LSTM-based sequence-to-
sequence model [27, 1]. In [11], dilated convolution is em-
ployed to increase the receptive field of the CNN.

In this paper, our proposed model adopts language CNNs
without pooling layers, which is different from [13, 4]. Fur-
thermore, we use causal convolution (similar to [29]), so
that our model can generate captions word-by-word.

3. Model

CNNs show relatively strong abilities to tackle very long
sequences [29]. Inspired by CNNs used for NLP, we pro-
pose a CNN+CNN frame work for image captioning. There
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Figure 2. The CNN+CNN model for image captioning. The vision
CNN extracts features from the image, and the language CNN is
applied to model the sentence. The attention module and predic-
tion module fuse the information from image and word contexts.
The convolutions in the language CNN use causal filters (depend-
ing only on the present and past words), to enable feed-forward
sentence generation. For each convolutional layer in the language
module, we use k−1 zero vectors to pad the sentence matrix along
the length axis, where k denotes the kernel size (here, k = 3).

are four modules in our framework: (1) vision module,
which is adopted to “watch” images; (2) language module,
which is to model sentences; (3) attention module, which
connects the vision module with the language module; (4)
prediction module, which takes the visual features from the
attention module and concepts from the language module
as input and predicts the next word. Fig. 2 illustrates the
proposed framework for image captioning.

The vision module The vision module is a CNN without
fully connected layer, whose output is a d× d×Dc feature
map. In each position of the feature map, the Dc dimen-
sional feature vector represents part of the image. Define
v = [v1, · · · , vN ] to be the list of image feature vectors,
where vi ∈ RDc , i is the position index in the feature map,
and N = d2 is the number of positions. In this paper, we
use VGG-16 [24] as the CNN for the vision module.

The language module The language model is based on
a CNN without pooling, which is very different from the
typical RNN-based framework (e.g., [21, 31, 7, 34]). RNNs
adopt a recurrent path to memorize the context, while CNNs
use kernels and stack multiple layers to model the context.

Let S = [w1, w2, · · · , wL] be a sentence with L words.
We first use a look-up table to project each word into an
embedding space with De dimensions, and calculate the
embeddings E = [e1, e2, · · · , eL], where ej ∈ RDe . In
this stage, a sentence is represented by a L×De matrix. A
stack of convolutional layers with gated linear units (GLUs)
follows the embedding layer, which is calculated using the
following equations:

hla =W l
a ∗ hl−1 + bla, (1)

hlb =W l
b ∗ hl−1 + blb, (2)

hl = hla � σ(hlb), (3)

whereW l
a,W

l
b ∈ Rk×De denote the kernels of the lth layer,

bla and blb are biases, ∗ denotes the convolution operator,
� denotes the element-wise multiplication, and σ(x) =

1
1+e−x . hlb plays the role of a gate and hla is a linear trans-
formation. In our framework h0 = E. Note that the convo-
lution filters are causal filters, only depending on the cur-
rent and past inputs. During inference, this structure al-
lows a sentence to be generated using a feed-forward pro-
cess where the predicted word at the output layer is used as
the next word input.

For modeling sentences, the length of the output is re-
quired to be the same as the input sentence. Since there are
no pooling layers and fully connected layers, we need to add
zero-padding at the beginning of the input and hidden lay-
ers. If the convolutional kernel width is k, which indicates
that it considers k concepts1 in each step, the word/concept
matrices needs to be zero padded with k−1 zero vectors be-
fore convolution. The output of the CNN is a set of concepts
c = [c1, c2, · · · , cL], where cj ∈ RDe .

The attention module Intuitively, to predict different
words, different objects in the images should be attended
and input into the prediction module. The attention module
takes the visual features v and the concepts c at the top level
as input, which is shown in Fig. 3. For each concept cj and
visual feature vector vi, we calculate a score si,j as follows:

si,j = cTj Uvi, (4)

where U ∈ RDe×Dc is a parameter matrix. There-
fore each concept cj corresponds to a score vector sj =
[s1,j , s2,j , · · · , sN,j ], indicating matches with the image

1The bottom-level represents words, whereas hidden layers represent
different concepts.
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Figure 3. The attention module. We apply dot-product and soft-
max to calculate the weight for each position and concept, which
only has one parameter matrix (linear transformation).

features. Then sj is fed into a softmax layer, which assigns
a weight wi,j for the visual feature vector vi,

wi,j =
esi,j∑N
i=1 e

si,j
. (5)

We use the weighted sum operation to calculate the final
attention vector as follows,

aj =

N∑
i=1

wi,jvi. (6)

The output of our attention module is the attention features
a = [a1, a2, · · · , aL], where ai ∈ RDc , corresponding to
each word in the sentence.

The prediction module As shown in Fig. 2, our proposed
prediction module takes the attention features a and con-
cepts c as input. Our prediction module is a one-hidden
layer neural network. At the jth sentence position, aj and
cj are fed into the network, the output is the prediction prob-
ability of next word Pj+1,

hpj = f (W p
a aj +W p

c cj + bp) , (7)

Pj+1 = softmax(Uphpj ), (8)

where W p
a ∈ RDp

h×Dc and W p
c ∈ RDp

h×De are the pa-
rameters, and Dp

h denotes the number of hidden units in
the prediction module. f(x) = max(x, 0.1x) is a leaky
ReLU, and Up ∈ RV×Dp

h , where V represents the vocabu-
lary size. During training the input image-sentence pair is
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Figure 4. The hierarchical attention model. The structure of hi-
erarchical attention moves up the layers, not to the right, so as to
prevent sideways connections in the same layer (as in an RNN).

given, therefore the prediction module can be implemented
as a 1 × 1 convolutional kernel, which is faster than RNN-
based models.

3.1. Hierarchical attention

The basic CNN+CNN model in the previous sub-section
extracts attention features from the top-level of the language
model. However, different levels of the language CNN rep-
resent different concept levels that could benefit from vi-
sual inputs. Hence, we also consider a hierarchical atten-
tion (hier-att) module (see Fig. 4), where attention vectors
are computed at each level of the language model and fed
into the next level,

al−1
j =

N∑
i=1

wl−1
i,j vi, (9)

hla =W l
a ∗ hl−1 +W att

a ∗ al−1 + bla, (10)

hlb =W l
b ∗ hl−1 +W att

b ∗ al−1 + blb, (11)

hl = hla � σ(hlb), (12)



where wl−1
i,j is computed using equations (4-5) on the con-

cepts cl−1at level l−1, W att
a ,W att

b ∈ RDe×Dc and al−1 =
[al−1

j ]Lj=1.
In contrast to RNN-based models that calculate atten-

tion maps in a left-right (word-by-word) manner, our at-
tention maps are calculated in a bottom-up (layer-by-layer)
manner, so as to prevent sideways connections in the same
layer. This allows our model to be trained in parallel over
all words in the sentence, rather than word-by-word. Note
that the model still sees attended features of previous words
(from the lower layer) through the causal convolution layer.

3.2. Training and inference

During training, as image-caption pairs are given, the
convolution structures are applied in the normal way, and
the loss function for each sentence is the cross-entropy,

L = −
L−1∑
j=0

yj+1 log(Pj+1) +
λ

2

∑
W

||W ||2, (13)

where yj+1 denotes the ground-truth label and Pj+1 is the
prediction probability. The first term is the same with the
loss function in [31], and the second term is the regulariza-
tion term, where W denotes the weights in our framework.

During inference, the caption is generated given the im-
age using a feed-forward process. The caption is initialized
as zero padding and a start-token <S>, and is fed as the
input sentence to the model to predict the probability of the
next word. The predicted word is appended to the caption,
and the process is repeated until the ending token </S> is
predicted, or the maximum length is reached. The predicted
words are selected using a naive greedy method (most prob-
able word), which is equivalent to a beam-search algorithm
with beam width of 1.

4. Experiments

We present experiments using our proposed CNN+CNN
model on three datasets.

4.1. Dataset and experimental setup

MSCOCO MSCOCO is the most popular dataset for im-
age captioning, comprising 82,783 training and 40,504 vali-
dation images. Each image has 5 human annotated captions.
As in [12, 34], we split the images into 3 datasets, consisting
of 5,000 validation and 5,000 testing images, and 113,287
training images. Our vocabulary contains 10,000 words.

Flickr30k Flickr30k contains 31,783 images, each of
which has 5 captions. Following [12], we use 1,000 images
for validation and 1000 images for testing, and the remain-
der for training. The vocabulary size is 10,000.

Paragraph annotation dataset (PAD) A dataset with
19,551 images from MSCOCO and visual genome (VG).
Each image is described by a paragraph comprising sev-
eral sentences. The average length of the paragraph is 67.5
words, while that of MSCOCO dataset is 11.3. Generating
such long captions is much more challenging. We use the
same split as [15], and our vocabulary size is 5,000.

Implementation details For all datasets, we set De =
300. In our framework, the vision module is the VGG-
16 network without fully connected layers, which is pre-
trained on ImageNet.2 We use conv5 3 feature map to com-
pute attention features (Dc = 512 and d = 14). The size of
the hidden layer in the prediction module is 1024, and λ=1e-
5. We apply Adam optimizer [14] with mini-batch size 10
to train our model. For VGG-16, we set the learning rate to
1e-5, and for other parameters, the learning rate starts from
1e-3 and decays every 50k steps.3 The stopping criteria is
based on the validation loss. The weights are initialized by
the truncated normal initializer with stddev = 0.01. The
model was implemented in TensorFlow.

During training time, the images are resized to 299×299
and then we randomly crop 224 × 224 patches as inputs.
During testing time, the images are resize into 224 × 224
without cropping.4 The maximum caption length is 70 for
MSCOCO and Flickr30k, and 150 for PAD.

Compared models We compare our proposed model with
and without hierarchical attention. We also compare other
popular models: DeepVS [12], m-RNN [21], Google NIC
[31], LRCN [7], hard-ATT and soft-ATT [34] on MSCOCO
and Flickr30k datasets, and Sentence-Concat, DenseCap-
Concat, Image-Flat, Regions-Flat-Scratch, Regions-Flat-
Pretrained, and Regions-Hierarchical [15] on PAD.

Metrics We report the following metrics: BLEU-1,2,3,4
[23], Meteor [6], Rouge-L [17] and CIDEr [30], which are
computed using the MSCOCO toolkit [18]. For all metrics,
higher values indicate better performance.

4.2. Results on MSCOCO and Flickr30k

Table 1 shows the results on MSCOCO and Flickr30k.
Note that all models only use the image information without
semantics or attributes boosting. In terms of the B-1 score,
which only considers bigrams, our model performs slightly
worse than Hard- and Soft-ATT models, but better than NIC

2https://github.com/tensorflow/models/tree/
master/research/slim

3For PAD, the learning rate decays every 10k steps.
4We employ the code provided by the following link:

https://github.com/tensorflow/models/tree/master/
research/im2txt

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/im2txt
https://github.com/tensorflow/models/tree/master/research/im2txt


Dataset Model B-1 B-2 B-3 B-4 M R C

MSCOCO

DeepVS [12] 0.625 0.450 0.321 0.230 0.195 - 0.660
m-RNN [21] 0.670 0.490 0.350 0.250 - - -

NIC [31] 0.666 0.461 0.329 0.246 - - -
LRCN [7] 0.697 0.519 0.380 0.278 0.229 0.508 0.837

Hard-ATT [34] 0.718 0.504 0.357 0.250 0.230 - -
Soft-ATT [34] 0.707 0.492 0.344 0.243 0.239 - -

Ours (w/o hier-att) 0.688 0.513 0.370 0.265 0.234 0.507 0.839
Ours (w/ hier-att) 0.685 0.511 0.369 0.267 0.234 0.510 0.844

Flickr30k

DeepVS [12] 0.573 0.369 0.240 0.157 0.153 - 0.247
m-RNN [21] 0.60 0.41 0.28 0.19 - - -

NIC [31] 0.663 0.423 0.277 0.183 - - -
LRCN [7] 0.587 0.39 0.25 0.165 - - -

Hard-ATT [34] 0.669 0.439 0.296 0.199 0.185 - -
Soft-ATT [34] 0.667 0.434 0.288 0.191 0.185 - -

Ours, w/o hier-att 0.577 0.401 0.276 0.190 0.184 0.425 0.352
Ours, w/ hier-att 0.607 0.425 0.292 0.199 0.191 0.442 0.395

Table 1. Performance on MSCOCO and Flickr30k dataset. B, M, R, C stand for BLEU, Meteor, Rouge-L and CIDEr, respectively. The
bold, red, and blue numbers are the highest value, 2nd highest and 3rd highest values, respectively.

A man in a black shirt 
is playing a guitar

A man in a black shirt 
is playing a guitar

A man riding a wave 
on top of a surfboard

A person riding a surf 
board on a wave

a dog is eating a slice 
of pizza

A pizza on a table 
with a dog

A woman is standing 
next to a horse

A horse standing on a 
brown floor next to a 
white covered field

A horse is standing in 
a field

A plate of pizza with a 
stuffed animal on it 

A person riding a surf 
board on a wave

A man in a black shirt 
is playing a guitar

Figure 5. Examples of generated descriptions. Black, blue and red
text correspond to captions from NIC, our model, and our model
with hier-att.

and m-RNN on MSCOCO. In terms of B-2,3,4 and M met-
rics, the performance of our model ranks 2nd, and the values
are marginally lower than the LRCN model, which applies
multilayer LSTMs to generate captions. This suggests that
adopting CNNs as decoder is competitive or can be better
than using LSTMs. When we apply our proposed hierarchi-
cal attention model, the B-4, M, R and CIDEr scores exhibit
improvement. Using hier-att with our model improves the
CIDEr score from 0.839 (no hier-att) to 0.844 and the Me-
teor score from 0.507 to 0.510.

On Flickr30k, our proposed model also provides the
comparable results, and can slightly improve the M score
compared with LSTM-based models. Moreover, our
proposed hierarchical attention significantly improves all
scores compared with the model without hierarchical atten-
tion. The CIDEr score is improved from 0.352 to 0.395
(12% increase), B-1 score is improved by 3% from 0.507 to
0.607 and other scores are improved by around 1%.

An advantage of our proposed CNN+CNN model is the

training speed. We compare our 6-layer model without hi-
erarchical attention with NIC. When we set the batch size
to 32, and train our model and NIC on the same machine
with a GTX1080 GPU, it takes 0.24 seconds per batch for
our model, and 0.64 seconds for NIC. Our model is about
3× faster than NIC for training.5 After training 50k steps
(each step uses one batch), the loss decreases by around
70%, and the model is able to output reasonable descrip-
tions. In the inference stage, both our CNN+CNN model
and LSTM-based model generate one word at a time, and
thus, the inference speed is almost the same.

Note that the NIC model contains about 6.7M parame-
ters, while our proposed model contains more than 16.0M
parameters. Although our model is more complex, it can
be trained faster because it can better take advantage of par-
allelization since there are no recurrent (left-right) connec-
tions between words within the same layer. Examples of
generated descriptions are shown in Fig. 5.

4.3. Results on paragraph generation

We evaluate our model on the paragraph annotation
dataset, in which an image has a much longer caption
than MSCOCO and Flickr30k. Table 2 shows the results.
Our proposed model exhibits comparable performance with
Image-Flat when considering B-1,2,3,4, which is lower than
the Regions-Hierarchical. Our model with kernel size 7 sig-
nificantly improves the CIDEr score, which is specifically
designed to evaluate image captioning models. Some ex-
amples generated by our 20-layer model with kernel size 7
are shown in Fig. 6.

5NIC is the simplest among the LSTM-based models.



Model B-1 B-2 B-3 B-4 M R C
Sentence-Concat∗ 0.311 0.151 0.076 0.040 0.120 - 0.068
DenseCap-Concat∗ 0.332 0.169 0.085 0.045 0.127 - 0.125
Image-Flat∗ [12] 0.340 0.200 0.122 0.077 0.128 - 0.111

Regions-Flat-Scratch∗ 0.373 0.217 0.131 0.081 0.135 - 0.111
Regions-Flat-Pretrained∗ 0.383 0.229 0.142 0.090 0.142 - 0.121

Regions-Hierarchical∗ 0.419 0.241 0.142 0.087 0.160 - 0.135
Ours, 20-layer, k = 3 0.350 0.202 0.118 0.068 0.140 0.263 0.106
Ours, 20-layer, k = 5 0.311 0.171 0.099 0.057 0.127 0.263 0.120
Ours, 20-layer, k = 7 0.350 0.194 0.107 0.059 0.133 0.259 0.152

Table 2. Results on the paragraph annotation dataset. The bold numbers represent the highest score. We use a 20-layer CNN with skip
connections every 3 layers, and we do not use hierarchical attention for this task. ∗The results are from [15].

A man is standing on a baseball field. He is 
wearing a blue and white jersey uniform. A black 
helmet is the jersey , and his hat is red. His shoes 
are white and black. He is holding a black bat in 
his hand. The other man is wearing a cap , a gray 
shirt , suspenders and gloves. More of a chain link 
fence is surrounding the field. Tall trees can be 
seen in the background .

A brown horse with a black mane is 
standing in the carriage down a wooded 
area. There are trees in the background 
behind the man. Trees are visible in the 
distance behind the trees .

A man is standing on a grassy field outside on a 
sunny day. He is reaching for a white frisbee that is 
soaring in front of him. The man is wearing a shirt 
and blue jean shorts. Trees can be seen sitting near 
a sidewalk in the background. Part of a building can 
be seen behind the trees. A person is walking 
towards the sidewalk in front of the building .

A bunch of cows are grazing in a field. There are 
a bunch of trees and trees surrounding the 
house. The sky is blue and has a few white 
buildings .

Figure 6. Examples of generated paragraph description.

4.4. Wider or Deeper?

In this experiment, we compare the performance of our
model with different kernel widths and depths, with results
shown in Table 3. Designing and training deeper networks
is popular, yet in our experiments on image captioning it is
unnecessary to use deeper network on these datasets. The
results suggest that for MSCOCO and Flickr30k datasets 6-
layer networks with kernel size 3, and hierarchical attention
is the optimal choice.

For our proposed model without hierarchical attention,
increasing the kernel width is a better choice both on
MSCOCO and Flickr30k. When the kernel size increases
from 2 to 7, the CIDEr score increases from 0.827 to 0.839
on MSCOCO, and from 0.342 to 0.352 on Flickr30k, which
is better than the 20-layer network.

A group of zebras are grazing in a field

A man and woman are standing in a kitchen

 A � � green� � � � � traffic � � � � � � � � light� � � � �  sitting on a � � � � � � � � � � � � � � sidewalk� � � � � � � �

Two giraffes are standing in a 
zoo enclosure

A vase filled with flowers sitting on a table

A large elephant standing next to a pile of rocks

 A � person on a beach flying a kite

A bride and groom cutting their 
wedding cake

Figure 7. Visualization of attention maps learned by our model.
The left-most images are the input images, and each bold-
underline word corresponds to one attention map. Here we show
nouns, verbs, prepositions and numbers.

Note that the average length of the captions in MSCOCO
is 11.6, and the receptive field of a 6-layer CNN with ker-
nel size 3 is 13, which is longer than many sentences in
MSCOCO. Increasing the kernel width or the network depth
increases the complexity of the model, which makes it is
more difficult to train and easier to overfit. Based on our
experiments, we suggest using k = 3 and setting the depth
such that the receptive field is the average length of the
sentences, which gives relatively good balance between the
complexity and model performance.
4.5. Attention module analysis

We use the MSCOCO test images to visualize the atten-
tion maps and descriptions. The attention maps are visual-
ized by upsampling the 14×14 attention maps with bilinear
interpolation and Gaussian smoothing (see Fig. 7). Our pro-
posed model is able to pay attention to correct area when
predicting the corresponding words. However, it is difficult
to quantify the attention module. E.g., when the model pre-
dicts the word “man” (second row in Fig. 7), it also pays
attention to the woman, and vice versa. For the prepositions
and verbs, our model attends to the correct area, e.g. when
the word “next” is present, the areas around the elephant are



Dataset #layers k #para B-1 B-2 B-3 B-4 M R C

MSCOCO

6, w/o hier-att

2 16.0 M 0.679 0.504 0.363 0.262 0.231 0.505 0.827
3 16.9 M 0.683 0.509 0.367 0.264 0.234 0.507 0.829
5 18.7 M 0.687 0.511 0.368 0.264 0.233 0.509 0.838
7 20.5 M 0.688 0.513 0.370 0.265 0.234 0.507 0.839

6, w/ hier-att

2 16.0 M 0.682 0.508 0.368 0.266 0.233 0.508 0.836
3 16.9 M 0.684 0.514 0.372 0.269 0.235 0.511 0.842
5 18.7 M 0.685 0.511 0.369 0.267 0.234 0.510 0.844
7 20.5 M 0.686 0.510 0.367 0.264 0.234 0.510 0.834

20 w/o hier-att 3 24.5 M 0.683 0.505 0.365 0.264 0.234 0.505 0.838

Flickr30k

6, w/o hier-att

2 16.0 M 0.552 0.378 0.257 0.175 0.179 0.421 0.342
3 16.9 M 0.577 0.396 0.267 0.181 0.180 0.426 0.350
5 18.7 M 0.577 0.396 0.268 0.183 0.183 0.424 0.340
7 20.5 M 0.577 0.401 0.276 0.190 0.184 0.425 0.352

6, w/ hier-att

2 16.0 M 0.581 0.403 0.277 0.190 0.182 0.433 0.368
3 16.9 M 0.607 0.425 0.292 0.199 0.191 0.442 0.395
5 18.7 M 0.588 0.402 0.270 0.185 0.183 0.428 0.352
7 20.5 M 0.593 0.412 0.282 0.193 0.187 0.437 0.386

20 w/o hier-att 3 24.5 M 0.589 0.411 0.284 0.198 0.175 0.425 0.320

Table 3. The influence of the kernel width and number of layers. #layers denotes the number of layers, k denotes the width of kernel, and
#para is the number of parameters of the model, which reflects the complexity of the model.

a room with a desk , chair , chair and a window.

a kitchen with a stove , sink , and a vase.

Figure 8. Example failure cases. Scenes with many objects are
challenging for the visual attention model.

highlighted.

When there are many objects in an image, although the
model can pay attention to the areas that contain objects, it
predicts the wrong words or repeats a words several times,
as seen in Fig. 8. The top row shows that the model pre-
dicts the word “chair” two times, and the attention maps are
similar. The bottom row shows that although the objects are
attended, the model predicts the wrong words “stove” and
“sink”, which are likely influenced by the preceding context
“a kitchen with a”.

We also visualize our model with hierarchical attention
in Fig. 9, which shows the attention maps at the top-level for
the predicted words. The model with hierarchical attention
tends to pay attention to small areas at the top level, and for
the scenes with many objects it is able to focus on the rel-
atively correct areas, which is similar to the coarse-to-fine
procedure. Compared with the failure cases in Fig. 8, using
hierarchical attention provides more details, which could
benefit caption generation.

A herd of zebra standing on top of a lush green field

A man and a woman standing in a room

A desk with a computer and a chair in it

A large blue and white airplane on a runway

A plate of food with meat and vegetables

Figure 9. Visualization of the attention maps at the top-level of
our hierarchical attention. The hierarchical attention can handle
many-object scenes.

5. Conclusions
We have developed a CNN+CNN framework for image

captioning and explored the influence of the kernel width
and the layer depth of the language CNN. We have shown
that the ability of the CNN-based framework is competitive
to LSTM-based models, but can be trained faster. We also
visualize the learned attention maps to show that the model
is able to learn concepts and pay attention to the correspond-
ing areas in the images in a meaningful way.
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