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Abstract

Recent years have seen the ever-increasing importance
of pre-trained models and their downstream training in
deep learning research and applications. At the same time,
the defense for adversarial examples has been mainly inves-
tigated in the context of training from random initialization
on simple classification tasks. To better exploit the potential
of pre-trained models in adversarial robustness, this paper
focuses on the fine-tuning of an adversarially pre-trained
model in various classification tasks. Existing research has
shown that since the robust pre-trained model has already
learned a robust feature extractor, the crucial question is
how to maintain the robustness in the pre-trained model
when learning the downstream task. We study the model-
based and data-based approaches for this goal and find that
the two common approaches cannot achieve the objective of
improving both generalization and adversarial robustness.
Thus, we propose a novel statistics-based approach, Two-
WIng NormliSation (TWINS) fine-tuning framework, which
consists of two neural networks where one of them keeps
the population means and variances of pre-training data in
the batch normalization layers. Besides the robust informa-
tion transfer, TWINS increases the effective learning rate
without hurting the training stability since the relationship
between a weight norm and its gradient norm in standard
batch normalization layer is broken, resulting in a faster es-
cape from the sub-optimal initialization and alleviating the
robust overfitting. Finally, TWINS is shown to be effective
on a wide range of image classification datasets in terms of
both generalization and robustness.

1. Introduction
The adversarial vulnerability of deep neural networks

(DNNs) [59] is one of the major obstacles for their wide
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Figure 1. The performance of fine-tuning robust and non-robust
large-scale pre-trained (PT) ResNet50 [26, 55] on CIFAR10 [34]
and Caltech-256 [22]. We compare standard adversarial training
(AT), Learning without Forgetting (LwF) (model approach) [39],
joint fine-tuning with UOT data selection (data approach) [46]
and our TWINS fine-tuning. The robust accuracy is evaluated
using l∞ norm bounded AutoAttack [11] with ϵ = 8/255. On
CIFAR10, the data-based and model-based approach fail to im-
prove clean and robust accuracy. On Caltech, both approaches im-
prove the clean accuracy but hurt the robust accuracy. Our TWINS
fine-tuning improves the clean and robust performance on both
datasets. The pink triangle denotes the performance of standard
AT with the non-robust pre-trained ResNet50, which drops con-
siderably compared with fine-tuning starting from the robust pre-
trained model.

applications in safety-critical scenarios such as self-driving
cars [18] and medical diagnosis [19]. Thus, addressing
this issue has been one focus of deep learning research
in the past eight years. Existing works have proposed
to improve adversarial robustness from different perspec-
tives, including data augmentation [21, 48, 53, 56], regu-
larization [37, 43, 44, 51] and neural architecture [23, 28].
However, most of existing works investigate the problem
under the assumption that the training data is sufficient
enough, and training from scratch gives a satisfactory per-
formance, which is not realistic in the real world. There
are a large number of computer vision tasks where training
from scratch is inferior to training from pre-trained weights,
such as fine-grained image classification (e.g., Caltech-
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Figure 2. The TWINS structure and training pipeline. (a) The Frozen Net and Adaptive Net have the same structure and share the weight
parameters, except for batch normalization (BN) layers. The Frozen Net uses pre-trained means and standard deviations (STD) in the
normalization layer, while Adaptive Net uses the mean and STD computed from the current batch as in standard BN. (b) In each step
of mini-batch stochastic gradient descent (SGD), we split the batch of adversarial examples, generated from attacking the Adaptive Net,
into two sub-batches and feed them to the Adaptive Net and Frozen Net respectively. The loss of two networks are combined and back-
propagated to their shared parameters to train the network. In the inference stage, only the Adaptive Net is used.

UCSD Birds-200-2011 or CUB200 [60]), object detection
[42] and semantic segmentation [49].

On the other hand, pre-trained models have been consid-
ered as the foundation models in deep learning [5] as a result
of their strong performance and wide employment in com-
puter vision [17,24,25,45], as well as natural language pro-
cessing [6, 13, 52]. Thus, how to better use the pre-trained
model in downstream has emerged as a major research topic
in many vision and language tasks, such as image classifica-
tion under distribution shifts [47, 63], object detection [36]
and semantic segmentation [29,35]. There are a few papers
that investigate the pre-trained model’s robustness in target
tasks [7, 8, 15, 31, 32, 57, 62]. [7, 57] mainly considers the
transfer between small-scale datasets (e.g., CIFAR100 to
CIFAR10), while [8, 32] use adversarial robust pre-training
and fine-tuning on the same dataset, without considering a
large-scale and general pre-trained model. Finally, [15, 62]
investigate different kinds of robustness to corruption or
out-of-distribution samples, and are not devoted to adver-
sarial robustness.

In this paper, we consider how to transfer the adver-
sarial robustness of a large-scale robust pre-trained model
(e.g., a ResNet50 pre-trained on ImageNet [12] with adver-
sarial training) on various downstream classification tasks
when fine-tuning with adversarial training. This problem
setting is becoming more important as the standard pre-
trained models do not learn robust representations from the
pre-training data and are substantially weaker than the ro-
bust pre-trained counterparts in some challenging down-
stream tasks, e.g., fine-grained classification as shown in
our experiment. Meanwhile, more large-scale robust pre-
trained models are released (e.g., ResNet [55] and ViT [4]),
which makes the robust pre-trained models more accessible.
However, naively applying adversarial training to fine-tune
from the robustly pre-trained model will lead to subopti-

mal robustness, since the robust representations learned by
the robust pre-trained model are not fully utilized. For ex-
ample, [57] suggests that the robustness from a pre-trained
model needs to be explicitly maintained for its better trans-
fer to the downstream.

Following the idea that the key to improving the trans-
ferability of robustness is to maintain the robustness of the
pre-training stage during fine-tuning [57], we first evalu-
ate the data-based and model-based approach on two rep-
resentative datasets, CIFAR10 and Caltech-256. The data-
based approach uses pre-trained data in the fine-tuning and
keeps their performance under adversarial attack, while the
model-based approach regularizes the distance of features
of the fine-tuned and pre-trained model. Our experiment
shows that both methods fail to improve the robustness and
generalization (Fig. 1), since the two methods are too ag-
gressive in retaining the robustness and hurt the learning in
downstream. Thus, we propose a subtle approach that keeps
the batch-norm (BN) statistics of pre-training for preserving
the robustness, which we call Two-WIng NormaliSation
(TWINS) fine-tuning. TWINS has two neural networks
with fixed and adaptive BN layers respectively, where the
fixed BN layers use the population means and STDs of pre-
training for normalization, while the adaptive BN layers
use the standard BN normalization. Our experiment first
demonstrates the importance of pre-trained BN statistics in
the robust fine-tuning and then finds the benefit of TWINS
in adversarial training dynamics. As the relationship be-
tween weight norm and its gradient norm no longer holds in
TWINS, it is able to increase the gradient magnitude with-
out increasing the gradient variance. At the initial training
stage, TWINS has a faster escaping speed from the sub-
optimal initialization than vanilla adversarial training [41].
At the final training stage, the gradient of TWINS is more
stable than adversarial training, which alleviates the robust
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overfitting effect [56]. In summary, the contributions of our
paper are as follows:

1. We focus on the fine-tuning of large-scale robust pre-
trained models as a result of their potential importance
in various downstream tasks. We evaluate current ap-
proaches to retain the pre-training robustness in fine-
tuning, and show that they cannot substantially im-
prove the robustness.

2. We propose TWINS, a statistics-based approach for
better transferability of robustness and generalization
from the pre-training domain to the target domain.
TWINS has two benefits: a) it keeps the robust statis-
tics for downstream tasks, thus helps the transfer the
robustness to downstream tasks and b) it enlarges the
gradient magnitude without increasing gradient vari-
ance, thus helps the model escape from the initializa-
tion faster and mitigates robust overfitting. The mech-
anisms of these two benefits are validated by our em-
pirical study.

3. The effectiveness of TWINS is corroborated on five
downstream datasets by comparing with two popu-
lar adversarial training baselines, adversarial training
(AT) [48] and TRADES [64]. On average, TWINS
improves the clean and robust accuracy by 2.18% and
1.21% compared with AT, and by 1.46% and 0.69%
compared with TRADES. The experiment shows the
strong potential of robust pre-trained models in boost-
ing downstream’s robustness and generalization when
using more effective fine-tuning methods.

2. Related Work
Adversarial defense. There are several major approaches
to improving the adversarial robustness of DNNs. The train-
ing of DNNs can be regularized to induce biases that are
beneficial to adversarial robustness, such as locally linear
regularization [51], margin maximization [14, 43] and Ja-
cobian regularization [30]. The most commonly used ad-
versarial defense is adversarial training (AT) [48], which
directly trains the DNN on adversarial examples generated
from PGD attack. Later, TRADES [64] is proposed to add
a KL regularization to AT and achieves stronger adversarial
robustness. Our paper proposes TWINS to improve adver-
sarial training in the fine-tuning stage when the initial model
is adversarially pre-trained. We compare TWINS-AT and
TWINS-TRADES with vanilla AT and TRADES in our ex-
periment and show the strong effectiveness of TWINS in
the robust fine-tuning setting.
Fine-tuning for downstream robustness. Several aspects
of robustness in pre-training and fine-tuning have been stud-
ied in existing works. Adversarial contrastive learning
[8, 32] is proposed to pre-train on a dataset with contrastive
learning and then fine-tune on the same dataset, without
considering the transferability of robustness from a large-

scale pre-trained model to a different downstream task. In
contrast, our paper investigates a more general problem,
where task-specific pre-training is not needed for a new task
as we use one robust large-scale pre-trained model trained
on ImageNet. [55] considers the robust pre-training on the
large-scale ImageNet and its transfer to downstream tasks,
but focuses on the performance on clean instead of adver-
sarial images. The Learning-without-Forgetting (LwF) [39]
approach for retaining robustness is shown to be effective
in the small-scale transfer experiment [57], but is not ef-
fective in our experiment setting of transfer of large-scale
models. [31] proposes a learning rate schedule to improve
the adversarial robustness of fine-tuned models, and [16]
proposes robust informative fine-tuning for pre-trained lan-
guage models to robustly keep pre-training information in
downstream. The difference between [16, 31] and our work
is that they assume a standard pre-trained model instead of
the adversarial pre-trained model. [15, 62] investigate the
performance of pre-trained models in downstream tasks, but
the focus is the robustness to out-of-distribution samples in-
stead of adversarial perturbations.
Batch normalization. There are existing papers propos-
ing the two-branch BN structure for different purposes with
different technical details. [58] proposes dual normaliza-
tion for a better trade-off between accuracy and robustness,
where the normalization is a weighted sum of normalized
clean and adversarial input. [61] proposes a similar two-
branch BN structure, where one branch is for adversarial
examples and the other is for clean examples. The ma-
jor difference between our work and [58, 61] is that both
BN branches in TWINS are for adversarial examples and
one branch (Frozen Net) has fixed BN statistics from pre-
training so as to better maintain the pre-trained robustness,
whereas [58, 61] uses clean examples in BN and aims to
improve the accuracy for clean images.

3. The Model-based and Data-based Approach
to Retaining Adversarial Robustness

This section introduces the two common approaches
for keeping adversarial robustness of pre-training in down-
stream, model-based and data-based approaches. Denote
the feature vector output of a neural network as gθ(x), the
training sample in the downstream task as {(xi,yi)}Ni=1 ∼
P, and the loss function as L(wT gθ(x)+b,y), where (w, b)
are the parameters of last classification layer. We assume
that the pre-trained model is trained on adversarial exam-
ples generated from the PGD attack [48], where the l∞
norm of the adversarial attack is bounded by ϵ, and during
fine-tuning we use adversarial training with the same PGD
attack to obtain adversarial robustness in downstream tasks.
In short, we consider the robust pre-training and robust fine-
tuning setting in this paper, if not specified otherwise.
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Model-based approaches. We first introduce the model-
based approach, which keeps the pre-trained model θpt dur-
ing fine-tuning so as to maintain its robustness. The objec-
tive function is∑
(xn,yn)∼P

L(wT gθ(x̃n) + b,yn) + λLwF ∥gθpt(x̃n)− gθ(x̃n)∥2,

(1)

where the adversarial example generated from xn is de-
noted as x̃n. The regularization term of the loss aims to
minimize the distance between the features from the pre-
trained and the fine-tuned models, which is expected to
maintain the robustness of the pre-trained model. This ap-
proach is originally proposed in [39] to prevent the catas-
trophic forgetting in continual learning, and is used in [57]
to preserve adversarial robustness in transfer learning. Note
that [57] uses the LwF method in standard fine-tuning in-
stead of robust fine-tuning as in our paper.

Data-based approaches. The objective function of the
data-based approach is∑

(xn,yn)∼P

L(wT gθ(x̃n) + b,yn)

+λUOT

∑
(xm,ym)∼Q

L(wT
q gθ(x̃m) + bq,ym), (2)

where P and Q are data distribution of the target and the
pre-training tasks, wq, bq are the classification layer for
pre-trained data from Q. This method regularizes the cur-
rent fine-tuned model feature extractor so that its prediction
is still robust on the pre-training data. The joint training
method is proposed in [46] to improve the performance of
fine-tuning in downstream tasks where the training data is
not sufficient.

Next, we test the performance of these two approaches
on two standard image classification datasets, CIFAR10
[34] and Caltech-256 [22], with results shown in Figure 1.
We use a grid search for learning rate and λLwF (λUOT )
and report the result of the model with the best robust ac-
curacy. See Section 5 and the supplemental material for the
experiment setting. On CIFAR10, both approaches fail to
improve either clean or robust accuracy; on Caltech-256,
the two approaches improve the clean accuracy by a small
margin but deteriorate the robustness. One reason why the
model- and data-based approaches fail is that the regular-
ization term might be too strong, thus hurting the learning
in the downstream.

4. TWINS Fine-Tuning
The previous section demonstrates that both data- and

model-based approaches cannot substantially improve the
adversarial robustness in the downstream task. Thus we
propose the TWINS for the better fine-tuning of robust pre-
trained models for downstream adversarial robustness.
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Figure 3. The mean and normalized STD of gradient norms in
AT and TWINS-AT on CIFAR10, CIFAR100 and Caltech-256.
The averaged µ(∥∇w∥) and σ(∥∇w∥)/µ(∥∇w∥) over epochs
are shown in each plot. The gradient magnitudes of TWINS-AT
are substantially larger than those of AT, while the Normalized
STDs of gradient norm in TWINS-AT are not obviously increased
(CIFAR10) or even decreased (CIFAR100 and Caltech-256) com-
pared with AT. This property leads to the faster escaping speed
of TWINS-AT from the initial sub-optimum compared with AT
(Fig. 4), and reduced robust overfitting (Tab. 1).

4.1. Proposed Method

Though BN layers contain only a few parameters com-
pared to convolution and fully connected layers, they play
an important role in the good performance of DNNs. [20]
shows that even if we only train the BN layers, the perfor-
mance of a DNN is already quite impressive. [50] finds that
only training the parameters in BN layers in an image gen-
erator is effective for small datasets. [38] proposes adaptive
BN for domain adaptation, which updates the BN statis-
tics with data from a target domain. These works motivate
us to propose a statistics-based approach for retaining pre-
training information in the target task.

Typical BN layers track the mean and STD of the train-
ing set and save them for the inference stage. As this dis-
tribution information for each layer might be helpful for
downstream robustness, we propose the TWINS robust fine-
tuning, which maintains two networks, Frozen Net that uses
the BN statistics from the robust pre-trained model, and
Adaptive Net that learns its BN statistics from the down-
stream task. Instead of using two independent networks
for the Frozen and Adaptive Net, we let the two networks
share weight parameters, excluding the BN layers, to save
the model size and inference time. At initialization, both

16439



(1) CIFAR10 (2) CIFAR100 (3) Caltech-256

𝜃
−
𝜃 !

"

Step Step Step

Figure 4. The distance between the current step’s weight θ and the
initialization θpt. On the three datasets, TWINS-AT has a faster
escaping speed from the sub-optimal initial model than AT, which
is due to TWIN-AT’s larger gradient norm as shown in Figure 3.

networks and their BN statistics are initialized by the robust
pre-trained models. During training, the Frozen Net uses
the population means and STDs of pre-training data com-
puted in the pre-training stage in the normalization opera-
tion, while the Adaptive Net uses the current batch’s mean
and STD in the normalization and updates its running mean
and STD with the target training data. Fig. 2 shows the gen-
eral pipeline of TWINS training and the network structure.

The training objective of TWINS with adversarial train-
ing (TWINS–AT) in one mini-batch is:

B/2∑
j=1

L(wT gθa(x̃
(a)
j ) + b,yj)+ (3)

λtwins

B∑
i=B/2+1

L(wT gθf (x̃
(a)
i ) + b,yi), (4)

where θf and θa denote the Frozen and Adaptive Nets re-
spectively, and x̃(a) is the adversarial image for x when
attacking the Adaptive Net θa. We split the batch into
two different sub-batches to avoid doubled batch sizes in
TWINS training. Since the Frozen and Adaptive Nets share
weight parameters, the number of parameters in TWINS is
only increased by a very small amount (i.e., BN parame-
ters). Thus, TWINS-AT only has a negligible cost in terms
of memory and training time compared with vanilla AT. The
TWINS structure can also be used in the TRADES in a sim-
ilar way. Similar to [38], we can use the target training set
to update the BN statistics so that they are more relevant
to the downstream task. We call this procedure warmup in
TWINS fine-tuning. The pseudo codes of TWINS-AT and
TWINS-TRADES are given in Alg. 1 of the supplemental.

4.2. The mechanism of TWINS

The first benefit of TWINS is mentioned in the motiva-
tion of TWINS, i.e., the BN statistics have robustness infor-
mation in the pre-training domain that can be leveraged by
robust fine-tuning to improve the downstream robustness.
This argument is validated by our ablation study in Sec-
tion 5, where we initialize the means and STDs with 1.0
and 0.0 for Frozen Net instead of the pre-trained means
and STDs and check the accuracy and robustness. Fig-
ure 5 shows that the TWINS with (1,0) initialization can-
not match the performance with TWINS with pre-trained

Method Rob. Acc. C10 C100 Caltech CUB Dogs

AT
Best ↑ 51.84 31.38 49.09 27.08 21.19
Final ↑ 49.41 28.52 48.37 26.60 19.80
Gap ↓ 2.43 2.86 0.73 0.48 1.39

TWINS-AT
Best ↑ 53.23 31.60 48.80 29.24 20.89
Final ↑ 52.40 31.08 48.40 29.24 20.58
Gap ↓ 0.83 0.52 0.40 0.00 0.29

Table 1. The robust accuracy drop of AT and TWINS-AT, where
the adversarial attack is PGD10. TWINS-AT has smaller accu-
racy drop compared with AT, indicating that the TWINS-AT is
less prone to robust overfitting as a result of reduced variance of
gradient norms and stable training as shown in Fig. 3.

statistics, indicating that the robustness information in pre-
training is essential to the effectiveness of TWINS.

It is intriguing that even with the (1,0) initialization,
TWINS still outperforms the AT baseline in terms of ro-
bustness or accuracy on some datasets, e.g., Stanford Dogs
and CIFAR100. This suggests that besides retaining the
pre-training information, TWINS provides some other ben-
efits during robust fine-tuning. By analyzing the gradient of
TWINS, we find that TWINS implicitly increases the effec-
tive learning rate without increasing the oscillation and em-
pirically validate this finding. We detail this analysis next.
Effective learning rate We first write the gradient of a
weight vector for TWINS training. Consider the l-th layer’s
weight w(l)

j and its output after BN layer

h̃
(l)
ij =

ĥ
(l)
ij − 2

B

∑B/2
k=1 ĥ

(l)
kj√

2
B

∑B/2
k=1(ĥ

(l)
kj − µ̂

(l)
j )2

(5)

=
w

(l)
j

T
(h

(l−1)
i − µ(l−1))√

2
B

∑B/2
k=1(w

(l)
j

T
(h

(l−1)
i − µ(l−1)))2

, (6)

where we denote h
(l)
ij , ĥ(l)

ij and h̃
(l)
ij as the output of ReLU,

convolution or fully connected layer and BN layer respec-
tively, for i-th sample, j-th output variable at l-th layer. The
gradient with respect to w

(l)
j is

∇aw
(l)
j =

∂La(x̃i)

∂w
(l)
j

=
∇h̃

(l)
ij (h

(l−1)
i − µ(l−1))√

2
B

∑B/2
k=1(w

(l)
j

T
(h

(l−1)
i − µ(l−1)))2

−
∇h̃

(l)
ij w

(l)
j

T
(h

(l−1)
i − µ(l−1))

( 2
B

∑B/2
k=1(w

(l)
j

T
(h

(l−1)
i − µ(l−1)))2)3/2

Σ(l−1)w
(l)
j ,

where µ(l−1) and Σ(l−1) are the mean and covariance ma-
trix from (l − 1)-th layer, ∇h̃

(l)
ij represents the gradient of

loss with respect to h̃
(l)
ij . If we write the weight as its norm

∥w(l)
j ∥ multiplied by the unit vector u(l)

j , there is a relation-

ship between ∇w
(l)
j and ∥w(l)

j ∥,

∥∇aw
(l)
j ∥ =

1

∥w(l)
j ∥

∥∇au
(l)
j ∥ (7)
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This relationship has been found in [2, 27] and extended to
any scale-invariant layers such as layer normalization [3]
by [40]. It means that there are two ways to increase the
gradient magnitude or the effective learning rate: 1) find a
steeper descent direction where ∥∇au

(l)
j ∥ is increased and

2) decrease the weight norm so that 1/∥w(l)
j ∥ is increased.

For a DNN with standard BN layers, the training will ex-
ploit this property to increase the gradient magnitude by
reducing the weight norms with the help of weight decay
regularization, which leads to a spurious increase in gradi-
ent magnitude and a larger variance of gradient estimation.
In contrast, for a DNN with fixed BN layers such as the
Frozen Net, the gradient norm is not correlated with weight
norm,

∇fw
(l)
j =

∂Lf (x̃i)

∂w
(l)
j

= ∇h̃
(l)
ij

h
(l−1)
i

σ
(l)
j,pt

. (8)

In this gradient, the only way to increase the gradient mag-
nitude is to find the actual steeper direction. The overall
gradient for the weight is

∆w
(l)
j = ∇aw

(l)
j + λtwins∇fw

(l)
j . (9)

Empirical Study To see the difference between the gra-
dients in AT and TWINS-AT, we record the gradient of all
weight parameters in each step of the two training meth-
ods and compute the mean and STD of the gradient norm in
each epoch. The model parameters and their gradients are
treated as long vectors and we compute the l2 norm of the
weight and gradient vector. Figure 3 shows the mean and
normalized STD of gradient norms in 60 training epochs
for three datasets. Here we show the normalized STD, i.e.,
dividing the STD by the mean, to see the relative effect
of variance. The major finding is that the gradient mag-
nitude of TWINS-AT is substantially larger than that of AT,
while the variance of TWINS-AT is lower than AT in most
epochs. Note that in theory, the ratio between STD and
mean should remain the same after down-scaling the weight
norm in standard BN, but in practice we do observe the high
normalized variance of DNNs with standard BNs since we
use one epoch’s gradients to approximate the variance and
mean.

One benefit of the larger gradient magnitude is that the
model can escape from the initial sub-optimal point faster
and find a better local optimum than the small gradient op-
timization [41]. We validate this hypothesis by recording
the distance between the current model and the initial model
during training. Figure 4 shows these weight distances on
three datasets, where TWINS-AT moves away from the ini-
tial model much faster than the AT baseline. The robust
overfitting effect of adversarial training [54] is partially a
result of large gradient variance, especially at the final stage

of training [9]. We compare the robust accuracy drop of AT
and TWINS-AT in Table 1 and find that the small relative
variance of TWINS-AT has the effect of reducing robust
overfitting. See the experiment details in Sec. 5 and Supp.

5. Experiment

This section presents our experiment with TWINS. We
first introduce our experiment setting and then show our
main result and ablation study.

5.1. Experiment Settings
Dataset. We use five datasets in our experiment. CIFAR10
and CIFAR100 [34] are low-resolution image datasets,
where the training and validation sets have 50,000 and
10,000 images, and CIFAR10 has 10 classes, while CI-
FAR100 has 100 classes. Caltech-256 [22] is a high-
resolution dataset with 30,607 images and 257 classes,
which is split into training and validation set with a ratio
of 9:1. Caltech-UCSD Birds-200-2011 (CUB200) [60] is
a high-resolution bird image dataset for fine-grained im-
age classification, which contains 200 classes of birds,
5,994 training images and 5,794 validation images. Stan-
ford Dogs [33] has high-resolution dog images from 120
dog categories, where the training and validation set has
12,000 and 8,580 images. For both low-resolution im-
age datasets (CIFAR10 and CIFAR100) and high-resolution
datasets (Caltech-256,CUB200 and Stanford Dogs), we re-
size the image to 224×224 so that the input sizes are the
same for pre-training and fine-tuning. As with pre-training,
the input image is normalized by the mean and STD of the
pre-training set. Note that the resizing and normalization
function is integrated into the model so we can attack the
input image with the [0,1] bounds for pixel values as in stan-
dard adversarial attacks. We use the standard ImageNet data
augmentation for high-resolution datasets [26]. For CIFAR
datasets, we use random cropping with padding=4 and ran-
dom horizontal flipping.
Adversarial Pre-Training. Large-scale adversarial pre-
training on ImageNet is time-consuming, and thus
[55] has released adversarially pre-trained ResNet50 and
WideResNet50-2, trained with l2 and l∞ norm bounded at-
tacks. In this paper, we adopt the pre-trained ResNet50
models, trained with l∞ attack with bound ϵpt = 4/255. We
test other robust pre-trained models in our ablation study.
Training Setting. For baselines and our method, we train
all parameters of the pre-trained model, i.e., full fine-tuning
instead of linear probing [57], with PGD attacks of l∞
norm. The PGD step is 10, ϵft = 8/255 and stepsize
α = 2/255. We set the batch size as 128 and train the
model for 60 epochs and divide the learning rate by 0.1 at
30th and 50th epoch. In TWINS with warmup, we initial-
ize the means and STDs with their pre-trained values, and
update the means and STDs using the target training set.
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Metric Method CIFAR10 CIFAR100 Caltech256 CUB200 Stanford Dogs

Clean Acc.

AT 89.77 69.48 75.90 65.74 60.09
TWINS-AT 91.24(+1.47) 70.72(+1.24) 76.86(+0.96) 68.09(+2.35) 64.98(+4.89)
TWINS-AT+warmup 91.95(+2.18) 72.12(+2.64) 77.35(+1.45) 67.64(+1.90) 66.12(+6.03)
TRADES 87.06 62.76 69.70 58.92 59.99
TWINS-TRADES 86.61(-0.45) 66.72(+3.96) 71.12(+1.42) 60.72(+1.80) 60.58(+0.59)
TWINS-TRADES+warmup 86.60(-0.46) 65.91(+3.15) 73.39(+3.69) 61.05(+2.13) 63.96(+3.97)

PGD10

AT 52.24 28.52 48.37 26.60 19.80
TWINS-AT 52.73(+0.49) 31.08(+2.56) 48.40(+0.03) 29.24(+2.64) 20.58(+0.78)
TWINS-AT+warmup 52.46(+0.22) 29.12(+0.60) 49.13(+0.76) 27.67(+1.07) 19.48(-0.32)
TRADES 54.04 32.20 47.28 27.87 21.36
TWINS-TRADES 56.23(+2.19) 33.51(+1.31) 47.31(+0.03) 27.05(-0.82) 19.93(-1.43)
TWINS-TRADES+warmup 55.81(+1.77) 33.48(+1.28) 48.53(+1.25) 26.68(-1.19) 19.46(-1.90)

AA

AT 48.46 23.47 43.85 22.82 12.30
TWINS-AT 49.81(+1.35) 26.73(+3.26) 43.69(-0.16) 22.33(-0.49) 14.37(+2.07)
TWINS-AT+warmup 49.02(+0.56) 25.72(+2.25) 43.92(+0.07) 23.58(+0.75) 13.80(+1.50)
TRADES 50.31 26.40 43.39 22.21 12.05
TWINS-TRADES 51.71(+1.40) 28.29(+1.89) 41.77(-1.62) 22.68(+0.47) 13.36(+1.31)
TWINS-TRADES+warmup 51.10(+0.79) 28.30(+1.90) 43.55(+0.16) 21.92(-0.29) 10.94(-1.11)

Table 2. The performance of our TWINS-AT and TWINS-TRADES on five image classification tasks compared with AT and TRADES.
The clean accuracy means the accuracy when testing images are input without adversarial perturbations. PGD10 and AA denote the robust
test accuracy under PGD10 and AutoAttack. The increase and decrease in performance are denoted with green and red numbers. The bold
numbers denote the best robust accuracy under AA. The proposed TWINS achieves better robustness and clean accuracy compared with
the baseline. Averaged over the datasets, the clean and robust accuracy of TWINS are increased by 2.18% and 1.21% compared with AT,
and 1.46% and 0.69% compared with TRADES. The means and STDs of the performance are in the supplemental.

Metric PT Model Caltech256 CUB200 Dogs

Clean Acc
Random 48.99 12.38 7.27
Non-Robust 64.66 53.30 41.99
Robust 75.90 65.74 60.09

PGD10
Random 31.78 3.728 3.59
Non-Robust 39.86 19.68 13.32
Robust 48.37 26.60 19.80

Table 3. Comparison of random initialization, non-robust and ro-
bust pre-trained model on three difficult classification tasks, when
fine-tuned with AT. The robust pre-trained model is indispensable
to downstream robustness.

The momentum of updating statistics is 0.1, the batch size
is 128, and the warmup only lasts one epoch. Note that in
the warmup stage, the input samples are added with adver-
sarial perturbations generated by the PGD attack, which has
the same setting as the attack in training, and the classifier
layer is the pre-trained classifier for the adversarial attack.
Our pilot experiment shows that using adversarial examples
as input is more effective than using clean exmaples in the
warmup. The optimizer is SGD with momentum in all of
our experiments. The learning rate, weight decay and reg-
ularization hyperparameter are determined by grid search,
which is described in detail in the supplemental.
Adversarial robustness evaluation. Two standard adver-
sarial attacks are used in our experiment, i.e., PGD and
AutoAttack [11]. The adversarial perturbation is l∞ norm
bounded in our evaluation. The setting of PGD attack for
validation set is the same as the PGD attack in training. The
AutoAttack (AA) is a more reliable adversarial attack and
more often used for evaluation than PGD in recent years.

Method Metric
λWD

1e-5 1e-4 1e-3 1e-2

AT
Clean Acc. 89.92 89.94 89.77 90.28
Robust Acc. 46.34 44.67 48.46 47.57

TWINS-AT
Clean Acc. 91.90 91.42 91.24 87.33
Robust Acc. 47.19 49.07 49.81 51.65

Table 4. The performance of TWINS-AT and AT on CIFAR10
when the hyperparameter for weight decay λWD is changed. The
robust accuracy is evaluated using AutoAttack. Our TWINS-AT
achieves better adversarial robustness than AT for different λWD .

We use the standard attacks of AA, i.e., untargeted APGD-
CE, targeted APGD-DLR, targeted FAB [10] and Square
Attack [1], with ϵ = 8/255. The robust accuracy in our
experiment result denotes the accuracy under AA.

5.2. Experimental Result

On the three high-resolution datasets, we compare the
performance of fine-tuning different initialization models,
i.e., random initialization, standard pre-trained ResNet50
and robust pre-trained ResNet50. Table 3 shows that the
pre-trained models are essential to the accuracy and robust-
ness in challenging downstream tasks, since the random ini-
tialization is much worse than the two pre-trained models.
The robust pre-trained model has a clear benefit over the
standard pre-trained one, indicating that robust pre-training
is indispensable to downstream robustness.

Table 2 shows the result of TWINS-AT and TWINS-
TRADES compared with the baselines. Since AA is a more
reliable attack, we highlight the best robust accuracy un-
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(1) Clean Accuracy (2) Robust Accuracy

Figure 5. Ablation study where the BN statistics in TWINS are
initialized with (0,1) for means and STDs, denoted as TWINS-
Init. The population mean and STD of pre-training are crucial to
TWINS.

der AA on each dataset. The TWINS fine-tuning learns
more robust DNNs, as well as achieves a better clean ac-
curacy on all five datasets, demonstrating the strong ef-
fectiveness of TWINS in the robust pre-training and ro-
bust fine-tuning setting. On CIFAR10 and CIFAR100, both
TWINS-AT and TWINS-TRADES achieve better robust-
ness and clean accuracy than their baselines, while the
warmup only improves the clean accuracy and hurts the
robustness sometimes. On Caltech-256, TWINS-AT im-
proves upon the vanilla AT in both robustness and accu-
racy, but TWINS-TRADES does not perform better than
vanilla TRADES. However, the warmup helps boost the
performance of TWINS-TRADES as well as TWINS-AT
and makes the TWINS with warmup perform better than
the baselines.

On the two fine-grained image classification datasets,
TWINS-AT and TWINS-TRADES generally perform bet-
ter than baselines in terms of accuracy and robustness, if we
look at the robust accuracy under AA, where only TWINS-
AT on CUB200 has a slightly worse robust accuracy than
its baseline. We find that the warmup improves the clean
accuracy but hurts the robustness in most cases, except for
CIFAR100 and Caltech-256. This can be a result of noisy
adversarial perturbation, since we use the pre-trained classi-
fier layer in the adversarial attack, or the insufficient update
steps. Nevertheless, we note that the warmup can be con-
sidered as an operation for achieving a trade-off between
robustness and accuracy.

5.3. Ablation Study

TWINS initialization. We use the pre-trained BN statistics
in the Frozen Net to keep the robust information learned
during pre-training. To show the importance of the pre-
trained BN statistics, we use the standard initialization
(mean=0 and STD=1) for BN statistics in the Frozen Net,
denoted as TWINS-Init, and show the result on the five
datasets in Figure 5. Both clean and robust accuracy drop
when the (0,1) initialization is used in TWINS-Init, demon-
strating the crucial role of pre-trained statistics in TWINS.
The fact that TWINS-Init sometimes improves upon the AT
baseline motivates us to investigate the effect of TWINS on

Method Metric
ϵpt

1/255 2/255 4/255 8/255

AT
Clean Acc. 65.47 67.08 69.48 69.93
Robust Acc. 24.76 25.79 23.47 27.71

TWINS-AT
Clean Acc. 68.55 70.45 70.72 72.59
Robust Acc. 25.97 26.62 26.73 28.62

Table 5. The performance of TWINS-AT and AT on CIFAR100
when robust pre-trained ResNet50 with different ϵpt are used.

gradient norms in Section 4.
Effect of weight decay. Weight decay is the reason for the
decreasing weight norm in DNNs with BN layers, so in-
creasing the hyperparameter of weight decay λWD is also
a way to increase the gradient magnitude. Table 4 show
the result of TWINS-AT and AT when different λWD are
used when fine-tuning the robust pre-trained model on CI-
FAR10. The robust accuracy of TWINS-AT is consistently
better than that of AT across different λWD’s. We draw the
same conclusion on CIFAR100 (see supplemental). Note
that the clean accuracy of TWINS-AT drops when a large
λWD is used, suggesting that we should not use a too large
λWD for TWINS-AT.
Different robust pre-trained models. The main exper-
iment uses the robust pre-trained ResNet50 with ϵpt =
4/255 as the initial model. We try different robust pre-
trained models with different ϵpt in Table 5, which shows
that a larger ϵpt is beneficial to both clean and robust ac-
curacy in the downstream, and the proposed TWINS-AT
is better than AT in both metrics with different pre-trained
models.

6. Conclusion
This paper investigates the utility of robust pre-trained

models in various downstream classification tasks. We first
find that the commonly used data- and model-based ap-
proaches to maintain pre-training information do not work
in the adversarial robust fine-tuning. We then propose a sub-
tle statistics-based method, TWINS, for retaining the pre-
training robustness in the downstream. In addition to the
robustness preserving effect, we find that TWINS increases
the gradient magnitude without sacrificing the training sta-
bility and improves the training dynamics of AT. Finally,
the performance of TWINS is shown to be stronger than
that of AT and TRADES on five datasets. One limitation
of our work is that we only evaluate the robust supervised
pre-trained ResNet50. Recently, robust pre-trained ViT’s on
ImageNet [4] have been released. Our statistics-based ap-
proach can be extended to the layer normalization, on which
the increasing gradient magnitude argument also holds, and
thus future work will extend TWINS to ViT.
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