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Abstract

The accuracy of crowd counting in images has improved
greatly in recent years due to the development of deep neu-
ral networks for predicting crowd density maps. However,
most methods do not further explore the ability to localize
people in the density map, with those few works adopting
simple methods, like finding the local peaks in the density
map. In this paper, we propose the optimal transport mini-
mization (OT-M) algorithm for crowd localization with den-
sity maps. The objective of OT-M is to find a target point
map that has the minimal Sinkhorn distance with the in-
put density map, and we propose an iterative algorithm
to compute the solution. We then apply OT-M to gener-
ate hard pseudo-labels (point maps) for semi-supervised
counting, rather than the soft pseudo-labels (density maps)
used in previous methods. Our hard pseudo-labels pro-
vide stronger supervision, and also enable the use of recent
density-to-point loss functions for training. We also propose
a confidence weighting strategy to give higher weight to the
more reliable unlabeled data. Extensive experiments show
that our methods achieve outstanding performance on both
crowd localization and semi-supervised counting. Code is
available at https://github.com/Elin24/OT-M .

1. Introduction
Crowd understanding gains much attention due to its

wide applications in surveillance [33, 61] and crowd dis-
aster prevention. Most studies in this area concentrate
on crowd counting, whose objective is to provide the to-
tal number and distribution of crowds in a scene automat-
ically. Due to the development of deep learning, recent
methods [5,58,59,62,67] have achieved success on a variety
of counting benchmarks [50, 61, 62, 66]. Counting methods
can be extended to other applications, such as traffic man-
agement [63], animal protection [2], and health care [32].

Although crowd counting has been greatly developed,
most methods do not explore further applications of the
estimated density maps after obtaining the count. Specifi-
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Figure 1. The relationship between crowd counting CNNs and OT-
M algorithm. CNNs are trained to generate density maps (soft la-
bels). OT-M produces point maps (hard labels) from the predicted
density maps, without needing training.

cally, there is limited research on crowd localization, track-
ing, or group analysis with predicted density maps. Taking
crowd localization as an example, only a few methods, such
as local maximum [13, 58, 65], integer programming [36],
or Gaussian mixture models (GMM) [14], have been pro-
posed to locate pedestrians or tiny objects from density
maps. Moreover, recent localization methods ignore the
counting density map, and instead are based on point de-
tection [40, 54], blob segmentation [1, 10, 17], or inverse
distance maps [24]. However, this will increase the inef-
ficiency of a crowd understanding system, since separate
networks are required for counting and localization.

To broaden the application of density maps for localiza-
tion, in this paper we propose a parameter-free algorithm,
Optimal Transport Minimization (OT-M), to estimate the
point map indicating locations of objects from a counting
density map (see Fig. 1). OT-M minimizes the Sinkhorn
distance [7] between the density map (source) and point lo-
calization map (target), through an alternating scheme that
estimates the optimal transport plan from the current point
map (the OT-step), and updates the point map by minimiz-
ing their transport cost (the M-step). OT-M is parameter-
free and requires no training, and thus can be applied to any
crowd-counting method using density maps.

To demonstrate the applicability of density-map based
localization, we apply OT-M to semi-supervised counting.
In previous work, [38] builds a baseline for semi-supervised
counting based on the mean-teacher framework [55], but
finds it ineffective. Looking closely, we note that the base-
line in [38] uses a soft pseudo-label (density map) to super-
vise the student model, whereas successful semi-supervised
classification [52] or segmentation [6, 55] methods usually
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are based on hard pseudo-labels (e.g., class labels or binary
segmentation masks). In the context of semi-supervised
crowd counting, the hard label is the point map in which
each person is pseudo-annotated with a point. Thus, in this
paper we generate hard pseudo-labels using OT-M for the
unlabeled crowd images for semi-supervised crowd count-
ing. As an additional benefit, the hard pseudo-labels al-
low training CNNs under semi-supervised learning using
recent density-to-point loss functions (e.g., Bayesian loss
(BL) [34] or generalized loss (GL) [58]), which are more
effective than traditional losses, e.g. L2.

Similar to other semi-supervised tasks, some estimated
pseudo labels may be inaccurate due to limitations of the
current trained model. To reduce the effect of these noisy
pseudo-labels, we propose a confidence-weighted GL (C-
GL) for semi-supervised counting. Specifically, we com-
pute the unbalanced optimal transport plan between the stu-
dent’s predicted density map (source) and the hard pseudo-
labels from the teacher (target), and then define the pixel-
wise and point-wise confidences based on the consistencies
between source, target and the plan. Experiments show that
the trained model is more robust with our C-GL.

In summary, the contributions of this paper are 3-fold:
• We propose an OT-M algorithm to estimate the loca-

tions of objects from density maps, which is based on
minimizing the Sinkhorn distance between the den-
sity map and the target point map. Since OT-M is
parameter-free, it can be applied to any density map
without training.

• We use OT-M to produce hard pseudo-labels for semi-
supervised counting, which conforms with schemes in
other semi-supervised tasks. The hard label also al-
lows applying density-to-point loss like GL to unla-
beled data for more effective training.

• To mitigate risks brought by inaccurate pseudo-labels,
we propose a confidence-weighted Generalized Loss
to reduce the influence of inconsistencies between the
teacher’s and student’s predictions. Experiments show
that our loss improves semi-supervised counting per-
formance.

2. Related works
Crowd Counting. Before deep learning became popu-

lar, detection-based methods for counting pedestrians were
based on detecting human body parts [19, 20], but do not
work well in the dense crowds due to partial occlusions. In-
stead, regression-based methods overcome these obstacles
by directly predicting the final count based on low-level fea-
tures [4, 5, 12]. Recent methods use a convolutional neural
network (CNN) to estimate a density map from a crowd im-
age, and the corresponding count is obtained by summing
over the density map [21]. Various networks are proposed
to address scale variations in crowd scene [3, 11, 22, 67], by

using multiple columns [3, 67], multi-task learning [11], or
dilated convolution [22]. However, all these methods are
trained by pixel-wise L2 loss, which is ineffective since the
original ground-truth point map is blurred by a hand-crafted
Gaussian kernel and loses localization information. To ad-
dress this, [25,34,35,58,60] directly compare the predicted
density map and the ground-truth point map. [35] designed
an efficient algorithm to optimize counting models based
on UOT’s semi-dual regularized formulation, while [25] de-
rived a semi-balanced form of Sinkhorn divergence to sat-
isfy the identity of indiscernibles. [58] proves that L2 loss
and Bayesian loss [34] are special cases of generalized loss.

Localization with Object Density Maps. The goal of
most crowd counting methods is to estimate a density map
representing the distribution of pedestrians, and then take
its sum as the final count result. However, as shown in
Fig. 1, localizing pedestrians according to the density map
is tricky since the predicted density map is blurry. [36] re-
covers the locations of objects by applying integer program-
ming to windowed observations of the density map. [36]
also considers clustering methods, like K-means or mean-
shift, on each connected component to localize partially-
occluded instances. Differently, [14] proposes localization
by learning a Gaussian mixture model (GMM) to fit the den-
sity map, where the centers of the estimated Gaussian com-
ponents correspond to the people locations. Finally, [13,58]
aim to estimate sparse density maps, and then define every
local maximum pixel whose value is greater than a thresh-
old as the location of a person. In contrast to these meth-
ods, our OT-M is based finding the point map with mini-
mal Sinkhorn distance to the density map. Empirical results
show that OT-M is more accurate and robust.

Density maps are also used to improve detectors and
trackers in crowded scenes [14]. In [45], density estimation
is jointly optimized with standard detectors to reduce false
positive errors and improve recall. In [43, 44], the tracking-
by-counting paradigm is proposed to overcome occlusions
and appearance variations during tracking in crowd scene.

Semi-supervised Counting. As labeling very dense
crowd images can be expensive, leveraging unlabeled
crowd images with semi-supervised counting has seen in-
creased interest in recent years. L2R [29, 30] introduces
a rank rule for unlabeled data, inspired by the observation
that cropped image contains the same or fewer objects than
the original image. GP [49] proposes an iterative method
based on the Gaussian process to assign soft pseudo-labels
to unlabeled images. IRAST [31] uses density segmen-
tation as a surrogate task to detect conflicting predictions
and correct them. The segmentation task is also considered
by SUA [38], which follows the popular teacher-student
scheme [16], and segmentation results are used to model
unlabeled data’s uncertainty. DACount [26] designs a struc-
ture similar to the multiple columns and switching mod-
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ule in Switch-CNN [3], and uses multiple learnable density
agents to learn features of crowd in different density levels.

Unlike these methods based on surrogate tasks, our semi-
supervised framework is based on density maps predicted
from the unlabeled data. Our OT-M is utilized to generate
hard pseudo-labels (point maps) for training with unlabeled
data, and we further propose a confidence-weighted GL to
reduce the influence of inaccurate pseudo-labels.

3. OT-M Algorithm
In object counting, the ground-truth (GT) density map

is obtained by convolving a Gaussian kernel with the GT
point map, i.e., converting the hard-label into a soft-label.
However, there is little research to address the inverse prob-
lem, converting the soft-label density map into a hard-label
point map. In this section, we introduce a parameter-free
algorithm to estimate the hard label from a soft density
map by minimizing the entropic optimal transport cost (i.e.,
Sinkhorn distance [7]1) between them.

Let the soft-label density map predicted by a CNN be
represented as A = {(ai,xi)}ni=1, where ai ≥ 0 and
xi ∈ R2 are the density value and coordinate of the i-th
pixel, and n is the number of pixels. Given the density map
A, our goal is to estimate a hard label B = {(bj ,yj)}mj=1,
where bj = 1 and yj ∈ R2 represents the j-th point (person
location). The number of points m is the count obtained
from the density map A, rounded to the nearest integer, i.e.,
m = ⌊

∑n
i=1 ai⌉. Since bj = 1 is fixed for all points, we

will use the shorthand B = {yj}mj=1 to reduce clutter.
We estimate the hard labels by minimizing the Sinkhorn

distance between the points B and the density map A,

B̂ = argmin
B={yj}m

j=1

Lε(A,B), (1)

where Lε(A,B) is the Sinkhorn distance between A and B,
and ε is a near-zero weight for the entropic term:

Lε(A,B) = min
P∈U(a,b)

⟨C,P⟩ − εH(P), (2)

=
∑
i,j

CijPij + ε
∑
i,j

Pij log(Pij) (3)

where C = [Cij ] is the cost matrix, P = [Pij ] is the trans-
port plan, and H(P) = −

∑
i,j Pij log(Pij) is the entropy

of P. Here, the cost matrix element Cij = C(xi,yj) mea-
sures the cost when moving a unit mass from xi to yj . We
use the squared Euclidean distance as the cost function:

C(xi,yj) = ∥xi − yj∥2. (4)

1Sinkhorn distance [7] is different from Sinkhorn divergence [8]. The
latter removes the entropic bias from the former to build a positive-definite
loss function. Here we use the basic one [7] to estimate hard labels.

The Sinkhorn distance in (2) finds the optimal transport plan
P, whose element Pij is the mass quantity (i.e., density)
transported from xi to yj , that minimizes the total trans-
port cost. In balanced optimal transport, P is constrained
to admissible couplings that preserves the total mass from
each xi and to each yj , U(a, b)

def.
= {P ∈ Rn×m

+ : P1m =

a,P⊤1n = b}, where a = [ai], b = [bj ], and 1n is the
vector of n ones.

To find the solution of (1), we propose the OT-M al-
gorithm that iteratively computes: 1) the optimal transport
plan for Sinkhorn distance in (2) while holding the cost ma-
trix fixed; and 2) the optimal cost matrix, parametrized by
the points B, while holding the transport plan fixed. For-
mally, after initialization of the points B(0) = {y(0)

j }mj=1,
the k-th iteration of the OT-M algorithm is:

OT-step: P(k) = argmin
P∈U(a,b)

⟨C(B(k−1)),P⟩ − εH(P), (5)

M-step: B(k) = argmin
B={yj}m

j=1

⟨C(B),P(k)⟩ − εH(P(k)), (6)

where C(B) is the cost matrix between A and B. The de-
tails of each step and convergence proof are presented next.

3.1. Optimal Transport Step (OT-Step)

The goal of OT-step is to compute the optimal transport
plan P(k) between A and B(k−1). The solution can be for-
mulated as [41]:

P = diag(u)Kdiag(v), K = exp(−C/ε), (7)

where u ∈ Rn
+ and v ∈ Rm

+ are two unknown scaling vari-
ables. Then the minimization of (5) can be solved efficiently
through the Sinkhorn algorithm – an alternate minimization
scheme [46, 51]. Specifically, the following iterations are
repeated after initializing v with an arbitrary positive vector
v(0) (v(0) = 1m by default):

u(l+1) =
a

Kv(l)
, v(l+1) =

b

K⊤u(l+1)
, (8)

where the division is element-wise.
In summary, the cost matrix C(k) = C(B(k−1)) is com-

puted from the current points B(k−1), and the Gibbs kernel
matrix K(k) = exp(−C(k)/ε) is calculated. Next, the it-
erations in (8) are run until convergence, and the transport
plan P(k) is calculated from (7). Note that a and b are nor-
malized to make their sums equal to perform balanced OT.

3.2. Minimization step (M-Step)

The M-step computes the new set of points B(k) =

{y(k)
j } by minimizing (6) while keeping P(k) fixed. Specif-

ically, we rewrite (6) by plugging in the cost function,

B(k) = argmin
{yj}m

j=1

∑
i,j

P
(k)
ij C(xi,yj), (9)
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(a) Density map (b) Iteration-1 (c) Iteration-2

(a) Density map (b) Iteration-1 (c) Iteration-2

Figure 2. A demonstration of OT-M algorithm. (a) a density map
A with four objects; (b, c) two iterations in OT-M. The color in-
dicates the pixels that are assigned to the same point using the
current transport plan P(k) in the OT-step. Filled-in markers are
the new set of points B(k), while open markers are the previous
set of points B(k−1). Solid arrows represent movements of corre-
sponding points in the M-step.

and noting that each yj can be optimized independently,

y
(k)
j = argmin

yj

n∑
i=1

P
(k)
ij ∥xi − yj∥2. (10)

Setting the derivative of (10) equal to zero, the solution is:

∂

∂yj

n∑
i=1

P
(k)
ij ∥xi−yj∥

2 = 0 ⇒ y
(k)
j =

∑n
i=1 P

(k)
ij xi∑n

i=1 P
(k)
ij

. (11)

In (11), y(k)
j is the barycenter of masses assigned to yj in

the transport plan P(k). The algorithm is summarized in the
Supp., and two iterations are visualized in in Fig. 2.

3.3. Convergence of the OT-M Algorithm

We next prove that our OT-M algorithm converges – af-
ter each iteration the estimated B(k) decreases the Sinkhorn
distance in (1) until a local minimum is achieved, at which
point it cannot decrease (but will not increase) [37, 39].
Denote the cost matrix in the k-th iteration as C(k) =
C(B(k−1)). After computing the optimal transport plan
P(k) for cost matrix C(k) in the OT-step in (5), we have

⟨C(k),P(k)⟩−εH(P(k)) ≤ ⟨C(k),P(k−1)⟩−εH(P(k−1)),
(12)

since P(k) is the minimizer over all admissible transport
plans. Next, in the M-step in (6), we obtain the optimal
B(k) for fixed transport plan P(k), and thus

⟨C(B(k)),P(k)⟩ ≤ ⟨C(k),P(k)⟩, (13)

since the cost matrix C(B(k)) is the minimizer. Noting that
C(B(k)) = C(k+1), we thus obtain

⟨C(k+1),P(k)⟩ ≤ ⟨C(k),P(k)⟩, (14)

⇒ ⟨C(k),P(k−1)⟩ ≤ ⟨C(k−1),P(k−1)⟩. (15)

Finally, substituting (15) into (12), we obtain the conver-
gence condition:

⟨C(k),P(k)⟩−εH(P(k)) ≤ ⟨C(k−1),P(k−1)⟩−εH(P(k−1)),
(16)

EMA

Student Net

Teacher Net

forward

backward

C-GL

C-GL

OT-M

(a) Training  with labeled data

(b) Training  with unlabeled data

Figure 3. The pipeline of our semi-supervised counting frame-
work. The teacher is updated with the EMA of the student. On
the unlabeled data, the teacher predicts a soft pseudo label (den-
sity map), from which OT-M generates a hard pseudo label (point
map). The student is trained on the labeled data with GT point
maps, and the unlabeled data with pseudo point maps. C-GL is
our proposed confidence-weighted generalized loss.

where the LHS is the Sinkhorn objective for iteration k and
the RHS is for k − 1. Thus, in each iteration the objective
in (1) is non-increasing, and the algorithm converges.

4. OT-M Based Semi-Supervised Counting

Using pseudo-labels [18] is an effective method for semi-
supervised learning. Most related works on classifica-
tion [18,53,64] and segmentation [6,9,68] empirically show
that hard labels are more valuable than soft labels. In this
section we show how to effectively take advantage of hard
pseudo-labels, i.e., point maps, generated through OT-M al-
gorithm for semi-supervised counting. As shown in Fig. 3,
we use the mean-teacher framework [55], where an expo-
nential moving average (EMA) is used to update the pa-
rameters in the teacher net. For labeled images, the stu-
dent net is trained with fully-supervised learning on the GT
point maps. For unlabeled images, we use the teacher net
to generate a soft pseudo-label (density map), and OT-M is
applied to produce a hard pseudo-label (point map). Mean-
while, these unlabeled images are perturbed and input into
the student net to generate a prediction, which is supervised
by the hard pseudo labels. For effective training, we pro-
pose a confidence-weighted generalized loss (C-GL) to re-
duce the effect of inconsistent (noisy) pseudo-labels.

4.1. Generalized Loss with Gating

The Generalized Loss (GL) [58] is based on the unbal-
anced optimal transport (UOT) problem,

Lε,τ
gl = min

P∈Rn×m
+

⟨C,P⟩ − εH(P) + τD(P,a,b), (17)
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where a ∈ Rn and b = 1m are the predicted density values
and ground truth point values. D is a divergence penalizing
marginal deviation, with τ controls the degree of imbalance
allowed. In GL, D(P,a,b) is defined as

Dgl(P,a,b) = ∥P1m − a∥22 + ∥P⊤1n − b∥1. (18)

There is no efficient algorithm to directly implement (17)
with Dgl as the divergence, so [58] firstly approximates the
optimal P by solving UOT with KL divergence (KL-UOT),
and then plugs P̂ back into (17) to compute the GL. Specif-
ically, applying the Sinkhorn algorithm [41] to KL-UOT
yields both the optimal transport plan P̂ and (f∗,g∗), the
gradients of (a,b). Thus the generalized loss is rewritten:

Lε,τ
gl = a⊤f∗ + b⊤g∗ − εH(P̂)

+ τ2∥P̂1m − a∥22 + τ1∥P̂⊤1n − b∥1.
(19)

Note that P̂ is a function of both a and b.
In (19) we introduce separate hyperparameters (τ1, τ2)

on the L1/L2 loss terms to “gate” them to improve training.
Let mP̂, ma, and mb be the sum of P̂, a, and b respectively,
which correspond to the total transported density, the count
of the predicted density map, and the GT count. In practice
we find that the Sinkhorn algorithm sometimes estimates a
P̂ whose sum mP̂ is larger than both ma and mb, which
is harmful to training. For example, suppose ma < mb,
then the predicted count is smaller than the GT count, and
we hope to increase ma to match mb. However if mb <
mP̂, then the L1 loss term will encourage mP̂ to decrease,
which also decreases ma, but this is in conflict to the goal
of increasing ma. Thus, we can set τ1 = 0 to ignore the
L1 loss term when ma < mb < mP̂. Other cases can be
handled analogously, resulting in the following “gating” of
the L1/L2 loss terms through setting of (τ1, τ2),

τ1 =


0, ma < mb < mP̂,

0, mP̂ < mb < ma,

τ, otherwise.

τ2 =


0, mb < ma < mP̂,

0, mP̂ < ma < mb,

τ, otherwise.

We set hyperparameter τ = 0.1 following [58].

4.2. Confidence Strategy

Semi-supervised learning has a common drawback: pre-
dictions for unlabeled data are usually noisy, which leads
to confirmation bias [15] towards these errors and conse-
quently learns defective models. To overcome this issue,
we build a confidence strategy based on the consistency be-
tween the teacher’s hard label and the student’s prediction
for semi-supervised counting model trained with GL.

Assume the density map predicted by the student model
is a, and the hard pseudo-label predicted by the teacher
model (via OT-M) is b, and the KL-UOT transport plan be-
tween them is P̂. We calculate the consistency via the point-
wise distance between the transport plan and point target b:

P1 .over-estimated P2    .under-estimated P3    .well-estimated

(a) density map (c) reconstructed points (e) pixel-wise weights 𝐰2

(b) point map (d) weight calculation (f) point-wise weights 𝐰1

Figure 4. The visualization of confidence weights. There are
three points: P1 is over-estimated, P2 is under-estimated, and P3 is
well-esimated. (a) predicted density map. (b) point map. (c) target
points b and its reconstruction P̂1n using KL-UOT. (d) The ab-
solute difference between b and P̂1n, and w1 calculated by (20).
(e, f) visualization of pixel-wise w2 and point-wise w1 weights on
the original map. Our confidence weights assign large weight to
point P3 and its surrounding pixels, and small weights to P1 and
P2 and their surrounding pixels.

w1 = exp
[
− γ

(
diag(b)−1|P̂⊤1n − b|

)]
, (20)

in which γ > 0 is a hyperparameter to decrease the confi-
dence, and | · | is the element-wise absolute value. Note that
w1 is close to 1 as long as the sum of each column of P̂’s is
close to corresponding element bj = 1.

Next, we propagate w1 to the pixels to compute con-
fidence values for elements in a. Specifically, pixel-wise
confidence w2 is a weighted sum of elements in w1, and
the weight is computed by normalizing each row in P̂:

w2 = diag(P̂1m)−1P̂w1. (21)

Embedding w1 and w2 into GL, the final formulation is:

Lε,τ,γ
c-gl = a⊤W2f

∗ + b⊤W1g
∗ − εH(P̂)

+ τ2∥W2(P̂1m − a)∥22 + τ1∥W1(P̂
⊤1n − b)∥1,

(22)
where W1 = diag(w1) and W2 = diag(w2). Fig. 4 visu-
alizes w1 and w2 in a simple example.

Note that the original GL in (19) is a special case of the
C-GL in (22). Some counting methods [26, 27, 57] report
that there may be annotation noise in labeled data, so (22)
can also be applied to labeled data to depress noise if a suit-
able γ is given. In our experiments, we set γ = 0.5 for both
labeled and unlabeled data.

5. Experiments
In this section, we conduct experiments to demonstrate

the efficacy of our OT-M algorithm and its use in semi-
supervised counting. In the first part, we use synthetic
and real data to empirically show the OT-M algorithm’s
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input image density map iteration = 1 iteration = 2 iteration = 4 iteration = 8 Ground Truth

(a) The convergence process of OT-M when a pseudo density map is used.

(b) The convergence process of OT-M when the density map is predicted by CNN in GL[53].

Figure 5. Estimated point maps in different iterations of OT-M algorithm (Top-k initialization is used here for better visualization).

convergence process. The localization performance is also
compared with previous density-map based algorithms. In
the second part, we compare our framework with previous
semi-supervised counting approaches. After that, the abla-
tion study is conducted to show whether each component of
our framework works as expected.

5.1. Experiment setup

Localization experiments are conducted on two pub-
lic datasets, UCF-QNRF [13] and NWPU-Crowd [61].
Semi-supervised counting is tested on four datasets:
ShanghaiTech-A and B (ST-A, ST-B) [67], UCF-
QNRF [13], and JHU++ [50]. In each dataset, 5%,
10%, 40% of training samples are selected as labeled data.
We follow 2 protocols, the single trial version from [26],
and a new version based on averaging over 5 random trials
for each percentage.

For the OT-M algorithm, we consider three initialization
methods of B(0): 1) Top-k selects the m pixels with the
largest density values as the initial points; 2) Uniform se-
lects the initial m points uniformly at random; 3) adaptive
initialization normalizes the density map into a probability
distribution, from which the m initial points are sampled.
We set the maximum number of iterations in OT-M as 16,
and also use the following early stopping criteria:

1

m

m∑
j=1

∥y(k)
j −y

(k−1)
j ∥2 < 1 and max

j
∥y(k)

j −y
(k−1)
j ∥2 <

1

r
,

where r is the down-sampling ratio of CNN (r = 1
8 in our

experiments). When the average distance moved of points
in B(k) is smaller than 1 pixel, and the maximum moved
distance is smaller than 1/r, then the algorithm stops.

5.2. Experiments on OT-M Convergence

We first show the effectiveness and convergence of OT-
M on some examples from ST-A. The accuracy of OT-M
relies on the precision of estimated density maps. When
the density map is perfect, the estimated point map should
be extremely similar to the GT. To show this, we generate
synthetic density maps by applying a Gaussian kernel (with
variance 8) to the GT point map, and then recover the point
maps through OT-M. In Fig. 6(a), we present the Sinkhorn
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(b) Predicted density map
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Figure 6. The convergence of OT-M during the iterative process
on (a) synthetic density maps; (b) predicted density maps by CNN.

distance objective between the predicted point map and the
given density map during the iterations, when using differ-
ent initializations. Using the adaptive initialization yields
faster convergence, compared to other initialization meth-
ods. In Fig. 5(a), we visualize the iterative convergence
process on an example. To better show the effectiveness of
OT-M, we use the worst initialization method, top-k, where
most of the initial points are in a small area. After initial-
ization, OT-M is able to gradually move the points closer to
the targets, and finally yields a point map that is close to the
ground-truth.

We next evaluate how well the recovered point maps
compare to the GT point maps. We use the GT density
maps from UCF-QNRF, downsample them by 1/8 to make
the problem more difficult, and then apply OT-M to recover
the point maps. The results are presented in the first row
of Table 1. OT-M obtains high precision, recall, and F1
(> 0.91), showing its superior accuracy compared to Lo-
cal Maximum (LM) [58] and GMM [14]. Furthermore, we
find that the OT-M algorithm is robust to initialization – the
three different initialization methods yield the same results,
although they have different convergence speed.

Finally, we visualize a example on density maps pre-
dicted from a CNN in Fig. 5(b). Compared with synthetic
density maps, CNN predictions are more ambiguous and
noisy. The OT-M algorithm works as expected: decreasing
the Sinkhorn distance between the estimated point map and
the given density map, as displayed in Fig. 6(b). We further
evaluate the localization performance of OT-M on predicted
density maps in the next section.

5.3. Localization Performance on Density Maps

In this section, we compare OT-M algorithm with two
other localization methods based on density maps: Lo-
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Density Map Localization Precision Recall F-measure

ground-truth
density map

LM [58] 0.892 0.736 0.807
GMM [14] 0.842 0.838 0.840

OT-M (ours) 0.914 0.910 0.912

GL [58]
cvpr’21

LM [58] 0.782 0.748 0.765
GMM [14] 0.750 0.728 0.739

OT-M (ours) 0.804 0.783 0.793

MAN [27]
cvpr’22

LM [58] 0.624 0.483 0.544
GMM [14] 0.749 0.732 0.736

OT-M (ours) 0.772 0.755 0.760

ChfL [47]
cvpr’22

LM [58] 0.812 0.571 0.671
GMM [14] 0.755 0.740 0.747

OT-M (ours) 0.780 0.765 0.772

Table 1. Comparison of different localization methods on UCF-
QNRF dataset for different density maps (ground-truth and pre-
dicted). Note that the ground-truth density map is downsampled
by 1/8 to match the output size of GL and ChfL.

Method Prec. Rec. F-meas.
box Faster RCNN [42] cvpr’15 0.958 0.035 0.068

density
map

RAZNet [28] cvpr’19 0.666 0.543 0.599
GL+LM [58] cvpr’21 0.800 0.562 0.660

GL+OT-M(ours) 0.710 0.658 0.683

point P2PNet [54] iccv’21 0.729 0.695 0.712
CLTR [23] eccv’22 0.694 0.676 0.685

Table 2. Localization from density maps on NWPU-Crowd.

cal Maximum (LM) [58] and GMM [14]. The evalua-
tion is based on precision, recall, and F-measure, follow-
ing [13, 61]. Tab. 1 presents results on UCF-QNRF using
different density-map-based localization and recent density
map counting models, including GL [58], MAN [27], and
ChfL [47]. Note that GL uses a simple VGG-19 [48] as
backbone, while MAN uses a transformer-based [56] struc-
ture. Thus, their down-sampling rates are 1

8 and 1
16 respec-

tively, and the predicted density map from GL have higher
resolution than MAN, which is why GL’s localization abil-
ity is better than MAN’s. Overall, OT-M is the better lo-
calization algorithm with substantially better precision, re-
call, and F-measure, regardless of the density map model
used. In contrast LM and GMM are sensitive to the type of
density maps; LM performs better than GMM on GL den-
sity maps because they have higher resolution, and thus are
more sparse, while in contrast GMM performs better than
LM on MAN density maps because they are smoother. Fi-
nally, the result on GT density maps are the upper-bound
performance of localization with 1/8-downsampled density
maps, showing there is still room for improvement.

We also test the localization performance on the NWPU-
Crowd test set and compare with other density-map based
methods, as presented in Tab. 2. Faster RCNN [42] is based
on box detection, and it has the best precision (0.958), but
its recall is very small (0.035). Among the density map
methods, our OT-M gives the highest recall (0.658) and F-
measure (0.683). It outperforms the baseline Local Maxi-
mum (LM) in terms of recall and F-measure. Besides, OT-
M also performs similarly to the recent point-based method
CLTR [23] in terms of F-measure.

Label
Pct. Methods ST-A ST-B UCF-QNRF JHU++

MAE MSE MAE MSE MAE MSE MAE MSE

5%

MT [55] 104.7 156.9 19.3 33.2 172.4 284.9 101.5 363.5
L2R [29] 103.0 155.4 20.3 27.6 160.1 272.3 101.4 338.8
GP [49] 102.0 172.0 15.7 27.9 160.0 275.0 98.9 355.7

DAC [26] 85.2 135.0 12.5 22.1 123.5 207.3 83.9 308.8
OT-M (ours) 83.7 133.3 12.6 21.5 118.4 195.4 82.7 304.5

10%

MT [55] 94.5 115.5 15.6 24.5 145.5 250.3 90.2 319.3
L2R [29] 90.3 115.5 15.6 24.4 148.9 249.8 87.5 315.3

IRAST [31] 86.9 148.9 14.7 22.9 135.6 233.4 86.7 303.4
DAC [26] 82.5 123.2 10.9 19.1 115.1 193.5 74.0 297.1

OT-M (ours) 80.1 118.5 10.8 18.2 113.1 186.7 73.0 280.6

40%

MT [55] 88.2 151.1 15.9 25.7 147.2 249.6 121.5 388.9
L2R [29] 86.5 148.2 16.8 25.1 145.1 256.1 123.6 376.1
SUA [38] 68.5 121.9 14.1 20.6 130.3 226.3 80.7 290.8
DAC [26] 71.1 119.7 8.1 13.6 96.8 168.2 66.3 276.6

OT-M (ours) 70.7 114.5 8.1 13.1 100.6 167.6 72.1 272.0

Table 3. Comparison of semi-supervised counting on the single
trial experiment from [26].

5.4. Semi-Supervised Counting
We next present the results for semi-supervised counting.

Tab. 3 compares ours with previous methods using the same
backbone and experiment protocol (i.e., same set of labeled
data) from [26], consisting of one trial for each label per-
centage (5%, 10%, 40%). The DAC results are reproduced
to ensure the same experiment design. It shows that OT-
M outperforms most semi-supervised counting approaches,
especially when there are fewer labeled data (5% and 10%).
When the label percentage is increased to 40%, DAC [26]
achieves lower MAE and MSE on UCF-QNRF and JHU++,
while SUA [38]’s MAE is the lowest on ST-A. However, our
framework has the smallest MSE on all these datasets.

In the above experiments, only one trial is used for each
label percentage, which is inadequate because the random
selection of labeled data strongly influences the counting
performance and stability. To investigate this issue, we test
DAC [26] and our method in another experiment with mul-
tiple trials, where each trial uses different randomly selected
labeled data. Here the averaged MAE/MSE over multi-
ple trials is more representative of the algorithm’s perfor-
mance, compared to using a single trial, especially when
the number of labeled samples is small. The experiment re-
sults are presented in Tab. 4. For 5% and 10% labeled data,
our framework outperforms DAC [26] on all four datasets.
The average and standard deviation of MAE/MSE are much
smaller than DAC. For 40% labeled data, DAC [26] has
lower MAEs than ours on three datasets, while our model
has lower MSE on all datasets. In summary, the com-
bination of OT-M and the proposed confidence strategy
can achieve outstanding performance using a simple mean-
teacher framework, especially for smaller percentages of la-
beled data (5% & 10%).

5.5. Ablation Study on Semi-Supervised Counting

We next conduct ablation studies using the 5% labeled
data setting on UCF-QNRF [13].

Confidence-weighted GL on labeled data. The top half
of Tab. 5 presents the effect of the (τ1, τ2) gating scheme
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Label
Percentage Methods ST-A ST-B UCF-QNRF JHU++

MAE MSE MAE MSE MAE MSE MAE MSE

5% DAC [26] 92.9±3.4 148.6±10.3 13.4±2.2 24.6±6.7 122.7±7.8 218.9±14.0 81.2±2.4 313.7±12.2
OT-M (ours) 86.0±2.2 132.7±3.3 12.8±1.4 22.0±4.5 120.1±7.3 208.9±11.7 80.9±3.1 303.1±9.5

10% DAC [26] 84.8±4.5 140.9±11.3 11.1±0.5 18.9±1.9 110.5±5.9 196.0±16.3 76.0±2.0 293.8±10.4
OT-M (ours) 81.6±2.6 127.1±3.8 10.9±0.5 18.1±1.4 107.9±4.1 180.6±7.8 75.5±1.6 287.9±11.1

40% DAC [26] 71.6±2.0 120.8±5.6 9.0±0.3 14.6±0.5 91.8±4.7 161.4±12.4 64.1±3.0 270.6±9.3
OT-M (ours) 70.0±2.2 113.0±6.9 9.0±0.4 14.2±0.7 93.4±5.4 157.5±7.8 66.5±3.1 268.2±9.5

Table 4. Comparison with DAC [26] averaged over 5 trials (mean±std), where each trial uses different randomly sampled labeled data.

Data gate confidence MAE MSE

label only
145.59 257.31

! 144.48 255.33
! ! 138.52 242.26

Data loss for unlabeled data MAE MSE

label+unlabel

L2 loss 137.17 239.52
L2 w/ confidence 135.88 233.19

GL 125.32 214.96
GL w/ confidence (C-GL) 120.13 208.87

Table 5. Ablation study on 5% label data of UCF-QNRF.

and confidence-weights on labeled data. With gating, MAE
is reduced from 145.59 to 144.48. The gap is small since
most loss is from the transport term, ⟨C,P⟩, but the MAE
and MSE still decrease by 1.11 and 1.94. As mentioned in
Sec. 4.2, confidence weights can also be applied to labeled
data to suppress annotation noise. Relevant experimental
results demonstrate its effectiveness – it helps the counting
model achieve better performance (MAE: 138.52).

Hard labels vs. soft labels. Next, we compare the per-
formance while unlabeled data is used during training. We
compare our framework with the soft pseudo-labels (pre-
dicted density maps) using L2 loss. We also design a confi-
dence strategy for L2 loss:

w′ = exp[−γ′(diag(at)
−1|at − as|)], (23)

where at and as represent density maps predicted by the
teacher and student, and γ′ is similar to γ in (20). The re-
sults are shown in the bottom half of Tab. 5 – the counting
model can predict more accurately under the guidance of
confidence strategy during training, regardless of using soft
or hard labels. However, using hard pseudo-labels for unla-
beled samples reduces estimation errors dramatically, com-
pared to soft labels. Using the confidence-weights with GL
also greatly improves the MAE and MSE (e.g., MAE 125.3
drops to 120.13).

Localization method. Finally, we consider differ-
ent density-map localization methods for generating hard
pseudo-labels in our semi-supervised counting framework,
as presented in Tab. 6. LM [58] performs even worse than
training with only labeled data, which is because the num-
ber of points generated by LM could be different from the
count in the teacher’s density map, i.e., the number of local
maxima in the density map is not guaranteed to be the sum
of the density map. In contrast, both GMM [14] and OT-M

Method MAE MSE
Label only 138.52±10.65 242.26±16.62

LM [58] 148.53±9.53 270.25±23.67
GMM [14] 126.67±7.41 217.00±16.17

OT-M (ours) 120.13±7.34 208.87±11.65

Table 6. Ablation study on semi-supervised counting when using
different density-map localization methods. (mean±std).
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Figure 7. The localization performance on unlabeled data im-
proves during training. (x-axis is the training epoch.)

sets the number of pseudo-points as the sum of the predicted
density map, and then estimates their locations. Compared
with GMM, OT-M obtains more accurate pseudo hard-label,
which leads to counting models that can better capture in-
formation from the unlabeled, and thus improves the semi-
supervised learning performance. Specifically, Fig. 7 shows
the localization performance on the unlabeled data during
semi-supervised training. Generally, the localization im-
proves during training, while OT-M obtains the best local-
ization accuracy, i.e., the most accurate hard pseudo-labels.

6. Conclusion
This paper presents a parameter-free crowd localization

method on density map, the OT-M algorithm. OT-M alter-
nates between two steps: in the OT-step, the transport plan
between the current point map and the input density map
is estimated; in the M-step, the point map is updated us-
ing the transport plan computed in the OT-step. The con-
vergence of OT-M is analyzed both in theory and practice.
Experiments also show that OT-M outperforms previous lo-
calization methods based on density maps, as well as re-
cent point detection methods. Furthermore, we apply OT-M
to semi-supervised counting to produce hard pseudo-labels,
and we propose a confidence-weighted generalized loss for
this task, which assigns lower confidence to unlabeled data
with inconsistency between teacher’s labels and student’s
predictions. Empirical results demonstrate that efficacy of
our framework on several crowd counting datasets.
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