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Abstract

In this paper, we propose a progressive unsupervised

learning (PUL) framework, which entirely removes the need

for annotated training videos in visual tracking. Specif-

ically, we first learn a background discrimination (BD)

model that effectively distinguishes an object from back-

ground in a contrastive learning way. We then employ

the BD model to progressively mine temporal correspond-

ing patches (i.e., patches connected by a track) in sequen-

tial frames. As the BD model is imperfect and thus the

mined patch pairs are noisy, we propose a noise-robust

loss function to more effectively learn temporal correspon-

dences from this noisy data. We use the proposed noise ro-

bust loss to train backbone networks of Siamese trackers.

Without online fine-tuning or adaptation, our unsupervised

real-time Siamese trackers can outperform state-of-the-art

unsupervised deep trackers and achieve competitive results

to the supervised baselines.

1. Introduction

Visual object tracking (VOT) is one of the fundamental

tasks in computer vision, which has gained much attention

in recent years due to its wide usage in many practical ap-

plications, such as robotics [37], video surveillance [25] and

eye-tracking applications [24]. Although much progress has

been made on VOT, it is still far from being fully solved due

to the numerous real-world challenges, e.g., background

cluster, rotation, occlusion and illumination variation.

To handle with the above challenges, the existing end-

to-end trainable deep trackers [62, 65] learn rich feature

representations from large-scale annotated training videos

based on supervised learning. The representative works are

Siamese trackers [29, 30], which learn feature representa-

tions in an offline manner, and achieve favorable perfor-

mance even without online fine-tuning or adaptation. The

success of Siamese-based trackers demonstrate that the nu-

merous annotated data is the key to feature learning of

deep trackers. For example, the pioneering deep tracker

SiamFC [4] is trained with the ILSVRC [43] dataset, which

contains about 2 million labeled frames. Some extensions
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Figure 1: Tracking accuracy and EAO obtained by supervised (denoted by

blue color) and unsupervised trackers (red color) on the VOT17/18 dataset.

Without online fine-tuning or adaptation, our unsupervised AlexPUL and

ResPUL trackers outperform state-of-the-art online updating-based un-

supervised trackers, meanwhile performing favorably against supervised

deep trackers, which shows the potential of our unsupervised method.

like SiamRPN++ [30] commonly need more labeled video

datasets for training, e.g., using Got-10k [18], LaSOT [12],

Youtube-BB [42]. These supervised deep trackers assume

that a robust tracking model can be learned by using large-

scale annotated video datasets. However, they usually ig-

nore the fact that annotating such large scale video datasets

can be prohibitively expensive and time-consuming.

Unlabeled videos or images are a fertile source for unsu-

pervised learning, since they are easily collected from on-

line services. The main problem is how to construct a super-

visory signal from these sources for learning a feature map

representation that is useful for visual tracking. The super-

vision in visual tracking generally comes from two aspects:

spatial supervision in a static video frame, and sequential

supervision across multiple frames. Spatial supervision [45]

can be achieved by learning template correspondence in a

single frame or image. The training cost is reduced by us-

ing static images, but the learned features lack invariance to

visual changes in sequential frames. On the other hand, se-

quential supervision is commonly achieved by finding tem-

poral correspondence in multiple frames. The recent cycle

learning [2, 51] is based on sequential supervision, but the

tracking performance is still limited without online adapta-

tion [53]. To achieve favorable performance, an online up-

dated correlation filter is required [8]. In this paper, we pro-

pose to use both spatial and sequential supervision for un-
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Figure 2: Overview of Progressive Unsupervised Learning (PUL) for learning feature representations for tracking. Given various instances sampled from

unlabeled videos, we first use contrastive learning to learn a background discrimination (BD) model, applying anchor-based hard negative mining. In order

to learn temporal correspondence (TC), we then apply the BD model to mine temporal corresponding patches. Since the mined patch pairs are noisy (i.e.,

they lack exact spatial correspondence), we propose a noise-robust (NR) loss function for TC learning. In the temporally-mined patches, the estimated target

center is the red “x”, while the true target center is the green circle.

supervised representation learning in visual tracking. With-

out applying online fine-tuning or updating, our method can

achieve favorable unsupervised performance.

In this paper, our main motivation is that a robust track-

ing model should suppress background distractors and iden-

tify temporal correspondences across multiple frames si-

multaneously. To achieve this, we propose a progressive

unsupervised learning (PUL) framework (see Fig. 2). The

key idea is to progressively learn an unsupervised tracking

model based on the two parts of learning: background dis-

crimination (BD) and temporal correspondence (TC) learn-

ing. For the former, we formulate BD learning as a con-

trastive learning task [7, 16], which aims to separate dif-

ferent identity instances in the deep embedding space. To

learn more discriminative features for visual tracking, we

extend the original contrastive learning framework [7] by

proposing an anchor-based hard negative mining (AHM)

strategy. Our AHM further boosts the feature discrimina-

tion by learning to suppress hard negative distractors.

For temporal correspondence learning, we employ the

BD model to progressively mine corresponding-pairs of

patches in short video clips. Following [4], a common prac-

tice is to use pixel-wise binary-cross entropy (BCE) loss

between the tracker and GT response maps for learning the

temporal correspondence across multiple frames in a video.

However, the mined patch-pairs that are used as the pseudo

ground-truth (GT) are not well matched, due to an imperfect

BD model (e.g., see right side of Fig. 2). That is, there exists

non-negligible spatial noise in the GT locations, whereas

BCE assumes no spatial noise. This mismatch between the

actual noise in the GT and the assumed noise by the loss

will limit the generalization and localization ability of the

trained model. To alleviate problem, we propose a new like-

lihood function for tracking response maps, which is based

on a generative model of the GT spatial noise. Notably,

our likelihood function models correlations between pixels

in the response map, whereas BCE does not consider these

correlations. We use the negative log likelihood as our new

noise-robust (NR) loss function, to more effectively learn

temporal correspondence from noisy patch pairs.

We apply the proposed PUL framework to train back-

bone networks used in two Siamese trackers [4, 65].

The offline-learned backbone networks (i.e., AlexNet [28]

and CIResNet-22 [65]) can be directly applied for online

Siamese tracking. We show that without using online fine-

tuning or adaptation, our unsupervised trackers outperform

state-of-the-art unsupervised trackers on five benchmarks.

In summary, the main contributions of our work are:

• We propose a progressive unsupervised learning

(PUL) framework, which formulates visual tracking as

a combination of background discrimination and tem-

poral correspondence learning.

• We propose to learn a background discrimination

model through contrastive learning and anchor-based

hard negative mining.

• We propose a noise-robust loss to effectively learn

temporal correspondences from noisy patch-pairs.

2. Related Work

Supervised Deep Tracking. Existing deep trackers

commonly follow a one-stage or two-stage supervised

learning framework. The representative one-stage learn-

ing framework is built on a Siamese network [46]. Based

on SiamFC [4], further improvements are made, including

scale regression [30, 29], online adaptation [64], architec-

ture design [60] and discriminative feature learning [54, 11].

The two-stage framework generally trains both an offline-
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learned model and a complementary online model for im-

provement, e.g., as with deep feature-based correlation fil-

ters [6, 8]. To improve the offline-learned Siamese net-

works, some extensions [5, 64] learn to update the model in

an meta-learning fashion. In this paper, we apply our PUL

framework to the one-stage learning framework, mainly be-

cause we aim to make direct comparisons with other offline-

learned feature representations for tracking.

Contrastive Unsupervised Learning. Contrastive

learning aims to contrast positive pairs against negative

pairs for unsupervised learning of representations [7].

Based on this idea, [58] proposes to use a memory bank to

store the pre-computed instance features for contrast, while

other extensions have been developed, e.g., CPC [35], CMC

[48], MoCo [16]. Instead of using a memory bank, an-

other type of contrastive learning method [7, 47] focuses on

using in-batch samples for augmented positive or negative

sampling, which aims to maximize/minimize the similarity

between a positive/negative sample pair. Although much

progress has been achieved by contrastive learning in some

downstream applications (e.g., detection and segmentation),

its application to visual tracking is not well-explored. In this

work, we show that an effective background discrimination

model can be learned using contrastive learning.

Unsupervised Learning from Video. The most related

work to ours is [55], which employs an off-the-shell tracker

(e.g., KCF [17]) to find temporal correspondence in multi-

ple frames, and then uses this supervisory signal for triplet

ranking learning. There are two main differences between

our work and [55]: 1) we show that an off-the-shell tracker

is not necessarily required – a robust tracker can be learned

with unsupervised contrastive learning, which can provide

favorable temporal supervision for further learning; 2) we

further model the noise in mined patches to make the tem-

poral learning more robust.

Recent works leverage various pretext tasks constructed

in video, including temporal order verification [36], frame

reconstruction [13] and displacement prediction [34]. A

typical tracker TLD [20] uses unlabeled data with estimated

pseudo labels to boost the online training while our PUL

further considers temporal correspondence noise for the bet-

ter offline learning. Several unsupervised VOT methods use

cycle learning in video. UDT [51] performs forward track-

ing and backward verification in a correlation filter track-

ing framework, by using a cycle consistence loss. [33] pro-

poses to learn dense correspondence from videos. Cycle-

Siam [2] further extends the cycle learning to a Siamese

tracking framework. Finally, S2SiamFC [45] only uses spa-

tial supervision, which learns template correspondence in

a static video frame. In contrast, our approach uses both

spatial and sequential supervision, achieving better perfor-

mance via progressive learning.

Learning from Noisy Labels. Most works on learning

from noisy labels focus on image classifiers, where large

datasets are crawled from the web or annotated by crowd-

sourcing, via methods such as robust loss functions [15, 56],

label cleaning or noise-modeling [59, 49], sample selection

[41], and improved training schemes [19, 32]. Similarly,

[61, 44] learns from noisy class labels for instance segmen-

tation and webly supervised object detection.

Besides classification problems, previous works focus on

various types of noisy labels specific to computer vision.

To handle noisy annotated segmentations, [66] modifies the

loss to allow multiple class labels near segment boundaries,

while [1] aligns predicted boundaries with edges in the im-

age. [40] uses a regression model [22] to predict uncertainty

in dense pose correspondences. Several methods perform

label correction to clean noisy labels. In human pose es-

timation, [21] performs label correction for missing anno-

tations of joint points. In object detection, [31] addresses

noisy positive/negative labels of the anchors, via reweight-

ing based on a cleanliness score computed using a trained

detector. In crowd-counting, [3] uses an EM-like algorithm

to correct the point-wise person annotations while learn-

ing the crowd density map estimator. In VOT, [10] trains

the response map predictor by minimizing KL divergence

(KLD) to a Gaussian conditional distribution arising from

label noise. In contrast, our method explicitly integrates out

the label noise to obtain the response map likelihood Eq.

(7). KLD in [10] is a per-pixel loss, whereas ours models

the correlations between pixels in the response map.

In contrast to these previous methods, we propose a loss

function that is robust to spatial annotation noise, based on

a generative noise model. To the best of our knowledge, our

work is the first to consider spatial noise in the patch-pairs

used for learning in VOT.

3. Proposed Method

An overview of our proposed progressive unsupervised

learning (PUL) framework is shown in Fig. 2, which con-

sists of three main steps: background discrimination learn-

ing, temporal mining, and temporal correspondence learn-

ing. Our goal is to learn a deep tracking model without us-

ing any annotated videos. Moreover, the learned unsuper-

vised representation should be effective for visual tracking

even without online fine-tuning or adaptation. Our frame-

work is compatible with standard Siamese trackers.

3.1. Revisiting Siamese Tracking

SiamFC [4] is a classic end-to-end trainable deep track-

ing framework. The key idea in SiamFC is to formulate

visual tracking as a deep similarity learning problem, thus

enabling the deep network to be learned with large-scale

annotated data in an offline manner. Formally, given a tem-

plate image z and a search image I, a response map is cal-
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culated via cross-correlation:

f(I, z) = ϕ(I) ∗ ϕ(z) + b, (1)

where ϕ(·) is a fully-convolutional embedding function, b is

a bias parameter and ∗ indicates the cross-correlation opera-

tion. Each element in the response map represents the sim-

ilarity between the corresponding subregion in I and the

template z. In the training stage, elements in the ground-

truth (GT) label map m are assigned to a positive label if

they are within radius R of the true object location y:

m(x) = BR(x|y) =

{

1, k||x− y||1 ≤ R,

0, otherwise,
(2)

where x ∈ R
2 is a pixel location in the response map, and k

is the total stride of network. The loss between the GT label
map m and the predicted response map f = f(I, z) is the
pixel-wise weighted binary cross entropy (BCE) loss,

L(f ,m) =
∑

x∈X

−w(x)log[f(x)m(x)(1− f(x))(1−m(x))], (3)

where w is pixel-wise weight map that alleviates the class

imbalance problem.

3.2. Background Discrimination Learning

We next describe our proposed method for learning a

background discrimination (BD) model from static video

frames, which learns to suppress background distractors.

3.2.1 Data Preprocessing

The basic Siamese trackers commonly use the ILSVRC-

2015 dataset [43] as the training data, which contains about

4,300 videos in total. For fair comparison, we also use

the ILSVRC-2015 dataset for learning, but we do not use

the bounding box annotations for supervision. To keep the

diversity of the training data, we sample a training frame

in every 10 frames of a video, resulting in the training set

F. Since we assume the bounding box annotations are not

available, we generate a set of object proposals as candi-

date objects for learning the BD model. In particular, we

apply EdgeBox [67] to generate 500 object proposals for

each frame in F . Note that other unsupervised object pro-

posal methods could be used in our framework. Here, we

use EdgeBox due to its efficiency and high object recall.

Since the generated 500 object proposals in each frame

of F might be highly overlapped, we next apply non-

maximum suppression with an overlap threshold of 0.6 to

filter out the highly overlapped proposals with low object-

ness score, finally yielding 64 proposals for each frame (de-

noted as P). For each training epoch, we randomly sample

a patch-based training set E from F , by randomly selecting

12 proposals in one random frame of each video.

Algorithm 1: Anchor-based Hard Negative Mining

Input: Frame set F , rounds R, iterations per round T ,

batch size N and the initial model M0.

Output: Background discrimination model Mb.

1 for i=1:R do

2 Sample patch set E from F ;

3 Randomly select candidate anchors Pi from E ;

4 Candidate anchor evaluation using (5);

5 Get anchor set {Ai}
T
i=1;

6 for t=1:T do

7 Select N -1 nearest neighbors N (At) of At;

8 Use N (At) and At for one mini-batch

contrastive learning with (4);

9 Update the model Mi;

10 end

11 end

3.2.2 Contrastive Learning

Inspired by recent contrastive learning algorithms [7, 16],

we propose to learn a background discrimination (BD)

tracking model in a contrastive learning (CL) way. Given

a tracked instance z, we first create two augmented views

of z through data augmentation operations. Assume that

we randomly sample N object instances from E per itera-

tion, through data augmentation we obtain 2N augmented

tracked instances in one mini-batch. A contrastive loss [7]

is calculated in a softmax formulation:

Lc(i, j) = −log
exp(ϕ(zi) · ϕ(zj)/τ)

∑2N
k=1 I[i 6=k]exp(ϕ(zi) · ϕ(zk)/τ)

, (4)

where zi and zj (i 6= j) are a positive pair of the augmented

instances, τ is a temperature hyper-parameter, ϕ is a fully-

convolutional embedding function, and I[i 6=k] is an indicator

function that returns 1 iff i 6= k and 0 otherwise. Minimiz-

ing the contrastive loss Lc(i, j) encourages the positive re-

sponse between zi and zj to be significantly larger than the

sum of negative responses. That is, the learned embedding

function ϕ should concentrate the positive pairs together,

while separating negative pairs.

Although the above CL method only learns a limited

transformation invariance with data augmentation, it can ef-

fectively facilitate our model to learn features to discrimi-

nate positive and background patches. We denote this back-

ground discrimination (BD) model as Mb. In the optimiza-

tion of Lc(i, j) in (4), a large denominator value can facil-

itate effective feature learning. Following [7], a straight-

forward idea is to use a brute force solution, i.e., using an

extremely large mini-batch size (e.g., 8192), such that many

different negative samples can be used for learning. How-

ever, using an extremely large batch size is not memory-

friendly. We next propose a strategy to alleviate this issue.
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3.2.3 Anchor-based Hard Negative Mining

To effectively facilitate feature learning in CL, we propose

anchor-based hard negative mining (AHM), which selects

neighboring instances that are close to each other in the

learned feature space of ϕ. The selected instances are con-

structed as one mini-batch samples for learning, which can

lead to a large sum in the denominator of (4), even for a

relatively small batch size N . To achieve this, we assume

that an instance that lies in the region with dense samples is

more like to have close nearest neighbors.

Let T denote the iterations per epoch, R be the number

of epochs and N (zi) be the N -1 nearest instances to zi,

where the similarity is measured with the dot product in the

deep embedding space. For (t+1)-th epoch of training, the

anchor instances are selected based on the following accu-

mulated similarity score:

si =

N−1
∑

j=1

ϕt(zi) · ϕt(zj), zi ∈ Pt, zj ∈ N (zi) (5)

where ϕt is the deep embedding function learned in the t-th
epoch, Pt = {zi}

N×E
i=1 contains various candidate anchor

instances randomly selected from E with a scale parameter

E > 1. Since we have T iterations per epoch, we finally

select T anchor instances A = {Ai}
T
i=1, which have top-

ranked accumulated similarities on their nearest neighbors.

The learning pipeline with our AHM is shown in Alg. 1.

For the initial deep embedding model, we first randomly

select mini-batch samples for CL using (4) for 20 epochs,

then the proposed AHM is added for learning with 40

epochs. This can guarantee that our the model can se-

lect close NNs for more effective learning. For AHM, to

speed up the computation of the nearest-neighbors, we add

a global average pooling layer to the end of the deep embed-

ding ϕ to reduce the extracted feature size. For ResPUL, the

overall size of extracted features in E is 108.5MB, which

is stored in main memory. Additionally, different from

SiamRCNN [50], our AHM employs the self-updated back-

bone to adaptively select hard mini-batch samples for con-

trastive learning during each training epoch.
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Figure 4: Modeling observation noises for mined patch pairs. The orange

arrows show a traditional pipeline that uses the estimated center (red x)

to generate a binary response map for training with binary cross-entropy

(BCE) loss. Our approach (the blue arrows) infers a data log-likelihood

(approximated by mean map m̄ and 2nd moment matrix V) for training.

3.3. Temporal Mining

By integrating our learned BD model Mb to a SiamFC

[4] tracker, we find that our BD-SiamFC can achieve com-

petitive results on short video clips (see Fig. 3), but its ac-

curacy drops significantly for longer video clips. This is

mainly because our BD-SiamFC cannot well track objects

with large appearance variations in longer videos, which is

caused by the lack of temporal correspondence (TC) learn-

ing. To further improve the feature discrimination, we per-

form temporal mining to collect temporal corresponding

patches for better learning.

We employ our BD-SiamFC for temporal mining, and

the mining procedure follows the same tracking steps used

in SiamFC without any modifications. In the mining pro-

cess, we first randomly select a start frame in F . Then a pro-

posal patch is randomly picked from this frame to start min-

ing. After tracking along the sampled continuous frames in

the video, we obtained a corresponding tracked patch in the

last frame, which has temporal appearance variations. The

first and last patches are then collected as patch-pairs for

training, denoted as S . Note that the whole mining process

is fully unsupervised and performed in an offline manner.

3.4. Temporal Correspondence Learning

Given the mined set of patch pairs S , the original

Siamese trackers commonly use a binary cross entropy

(BCE) loss in (3) to learn temporal correspondence. How-

ever, the BCE loss is not suitable in our case since the

mined set S is noisy (i.e., a patch pair may not be center-

aligned). Thus, there exists a mismatch between the actual

noise distribution in the response maps, caused by the prac-

tical mining procedure, and the no-noise assumption of the

used BCE loss function (which assumes aligned patches).

To alleviate this, we propose a noise-robust (NR) loss to

model the mining or observation noise in order to more ef-

fectively learn temporal correspondence.

3.4.1 Modeling Observation Noise

The overall pipeline of our observation noise model is

shown in Fig. 4. Formally, given mined patch pair com-
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Figure 5: 2nd-order approximation of response map likelihood p(m): (a)

mean map m̄; (b) 2nd moment matrix V1,1; (c-d) moment maps for dif-

ferent pixels (marked with the circle), corresponding to one row (reshaped

to 32×32) in the 2nd moment matrix. The red “x” is the noisy target center.

prising a template z and a larger searching image I, the

learning of Siamese trackers aims to predict the target map

m(x) = BR(x|y), where x is a pixel location and y is the

true target center position in the map.

Now we consider a noisy patch pair where ỹ is the ob-

served or estimated target center location obtained by tem-

poral mining. Let ỹ = y − ǫ, where ǫ ∼ N (0, αI) is the

observation noise with variance α, and y is the true center

location. We have y = ỹ+ ǫ. Note that y is a random vari-

able, and thus the target label map is also a random variable,

m(x) = BR(x|ỹ + ǫ). Given the noise ǫ, the likelihood of

the target map is a product of independent Bernoulli distri-

butions (equivalent to pixel-wise BCE),

p(m|ǫ) =
∏

x∈X

f(x)m(x)(1− f(x))(1−m(x)), (6)

where f(x) ∈ [0, 1] is the label probability (predicted by a

NN using a sigmoid activation). To estimate the likelihood

of the map m, we integrate over the noise ǫ, yielding

p(m) =

∫

ǫ

p(m|ǫ)p(ǫ)dǫ (7)

=

∫

ǫ

[

∏

x∈X

f(x)m(x)(1− f(x))(1−m(x))
]

p(ǫ)dǫ.

Note that the integration over ǫ induces dependence be-

tween locations in the label map. This integration has no

closed-form solution, and thus we derive efficient approxi-

mations in the next subsection.

3.4.2 2nd-order Taylor Approximation

We first define the term g(ǫ) = log p(m|ǫ):

g(ǫ) = log
∏

x

f(x)m(x)(1− f(x))(1−m(x)). (8)

Then the log-likelihood of (7) can be rewritten as

log p(m) = log

∫

ǫ

eg(ǫ)p(ǫ)dǫ = logEǫ[e
g(ǫ)]. (9)

To approximate the likelihood, we apply 2nd-order Taylor

approximation, eg = 1 + g + 1
2g

2, yielding

log p(m) ≈ log(1 + Eǫ[g(ǫ)] +
1

2
Eǫ[g(ǫ)

2]). (10)

Next we substitute g(ǫ) and compute the expectations. For

convenience, we define the notation:

m1(x) = m(x), m0(x) = 1−m(x),

h1(x) = log f(x), h0(x) = log(1− f(x)),
(11)

and thus g(ǫ) =
∑

x

∑

b∈{0,1} mb(x)hb(x). Substituting

into the first expectation in (10) (see derivations in Supp. B),

Eǫ[g(ǫ)] =
∑

x

∑

b∈{0,1}

m̄b(x)hb(x) (12)

where m̄1(x) denotes the mean map (first moment),

m̄1(x) = Eǫ[m(x)] =

∫

p(ǫ)m(x)dǫ, (13)

and m̄0(x) = 1− m̄1(x). For the 2nd expectation in (10),

Eǫ[g(ǫ)
2] =

∑

x,x′,b,b′

Vb,b′(x,x
′)hb(x)hb′(x

′), (14)

where Vb,b′ is a 2nd-moment matrix,

Vb,b′(x,x
′) = Eǫ[mb(x)mb′(x

′)]. (15)

We compute the mean map m̄b and 2nd moment matrix

Vb,b′ via sampling to approximate the expectation. Note

that these only need to be computed once for a given noise

variance α. An example is shown in Fig. 5.

3.4.3 Noise-Robust Loss

By substituting for the 1st and 2nd-order terms in (12) and

(14) into (10), and removing the log which is monotonically

increasing and does not affect the optimization, we obtain

our noise-robust (NR) loss function:

LNR(f) = −
∑

b

m̄T
b hb −

1

2

∑

b,b′

hT
b Vb,b′hb′ , (16)

where hb = [hb(x)]x and m̄b = [m̄b(x)]x are the vector-

ized maps, and Vb,b′ = [Vb,b′(x,x
′)]x,x′ is the matrix of

the 2nd moments. In the temporal correspondence learn-

ing stage, the mined patch pairs (including templates and

searching images) are used to train the previously learned

BD model using the proposed NR loss. In addition, the

contrastive loss in (4) is jointly used for training. The final

loss for one mini-batch training is:

Lall = LNR(f) + λLc(f), (17)

where λ is a weighting parameter.

3.5. Online Tracking

After training backbone networks using the proposed

PUL, the learned backbone networks can be naturally in-

tegrated to a Siamese tracker without any modifications.

For online tracking, to better measure the learned unsuper-

vised representation, we do not apply any online adaptation

or fine-tuning, keeping the same tracking steps used in the

original trackers, e.g., SiamFC and SiamDW.

2998



Table 1: Consistent improvements of AUCs and EAOs (AUC/EAO)

achieved by BD learning (BDL), AHM and TC learning (TCL) with dif-

ferent mining lengths (10 and 20 frames) on OTB-13 and VOT16.

BDL AHM TCL-10 TCL-20 AlexPUL ResPUL

✓ 0.491/0.151 0.580/0.202

✓ ✓ 0.515/0.165 0.598/0.237

✓ ✓ ✓ 0.567/0.204 -

✓ ✓ ✓ ✓ 0.574/0.219 0.620/0.263

4. Experiments

In this section, we compare PUL-based trackers (PULT)

with state-of-the-art trackers, including both unsupervised

and supervised trackers, and present an ablation study.

4.1. Implementation Details

We use two backbone networks: the Alex-net-like back-

bone network in SiamFC [4], and a CIResNet-22 backbone

network in SiamDW [65]. For fair comparison with the su-

pervised baselines, we use the same network initial parame-

ters as SiamFC and SiamDW, and further train the backbone

networks using our proposed PUL. We denote our PUL-

based trackers as AlexPUL and ResPUL. For BD learning,

we set temperature τ = 0.5 and scale E = 5. We use

the AlexPUL for temporal mining, setting the initial maxi-

mum mining length to 10 frames, and generating 1 million

patch pairs. Each patch is resized to 127 × 127. Note that

the mining only needs to be performed once offline. For

TC learning, we set weight λ = 1 and further train BD-

SiamFC. We then set a larger mining length of 20 frames to

repeat. For ResPUL, we directly use all the patch pairs from

both mining rounds for training, in order to avoid overfitting

on easy patch pairs. In NR loss, we set variance α = 0.5.

We use mini-batches of 196, and Adam optimizer [23] with

learning rates 1e-4 and 1e-5 for AlexPUL and ResPUL. The

weight decay is 5e-4.

4.2. Ablation Study

We first conduct ablation studies on the components of

PUL and the NR loss on the OTB-13 and VOT16 datasets.

4.2.1 Components of PUL

The results of incrementally using the components of PUL

on OTB-13 and VOT-16 are presented in Table 1. In the

first stage, BD learning obtains good initial unsupervised

representations for both AlexPUL and ResPUL from only

static images. ResPUL obtains competitive AUC (0.580)

and EAO (0.202) due to its larger model capacity. Although

AlexPUL is worse than ResPUL, it still has comparable per-

formance to supervised SiamFC on short video clips (see

Fig. 3), which shows its suitability as a temporal miner.

Next, using the proposed AHM further boosts the feature

discrimination in AlexPUL and ResPUL without introduc-

ing new training data, yielding gains of 2.4% and 1.8% on

Table 2: The distance precision and AUC (DP/AUC) obtained by Alex-

PUL trained using our NR loss or the traditional BCE loss for temporal

correspondence learning on OTB-13.

Loss Baseline TCL-10 TCL-20

BCE 0.693 / 0.515 0.714 / 0.530 0.710 / 0.526

Ours 0.693 / 0.515 0.742 / 0.567 0.758 / 0.574

P
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Figure 6: Tracking results when training with spatial annotation noise us-

ing traditional binary cross entropy (BCE) loss and our noise-robust loss.

AUC. We also visualize the mini-batch training samples se-

lected by our AHM and the original random selection in the

Supp. C. The visualization suggests that our AHM can se-

lect similar samples for contrastive learning, which learns

more discriminative features for visual tracking.

Finally, adding TC learning with the proposed NR loss

further improves the performance. For AlexPUL, train-

ing on mined patch-pairs with frame gap 10 (TCL-10)

yields large improvement (5.2%) over the previous stage

(BD+AHM). Enlarging the mining length to 20 frames

(TCL-20) improves AlexPUL to AUC 0.574 and EAO

0.219, which is comparable to the supervised SiamFC

(0.608/0.235). Note that SiamFC selects training patch

pairs with a much larger frame gap (100 frames). Fig. 3

plots the performance of TCL-10 and TCL-20 versus video

clip length, and shows that using TC learning steadily im-

proves tracking in longer video clips. The deeper backbone

of ResPUL also benefits from TC learning, improving the

AUC 2.2% and EAO 2.6% compared to BD+AHM. These

results show that, through TC learning, our model success-

fully learns the temporal variations of the target for tracking,

allowing longer successful tracks.

4.2.2 Robustness to spatial annotation noise

We conduct two experiments to demonstrate our proposed

NR loss can well handle noisy spatial annotations. First, we

use our NR loss and traditional BCE to train the baseline BD

model of AlexPUL on the mined patch pairs. The results are

presented in Table 2. For TCL-10, our NR loss improves

the BD model with large gains of 4.9% and 5.2% in terms

of precision and AUC, while the BCE loss achieves very

limited improvements. Increasing to TCL-20 yields further

improvements when training with our NR loss, even though

there is likely more spatial noise. Training with BCE loss

suffers performance degradation in the presence of noise.

In the second experiment, we compare our NR loss to

BCE on supervised training of SiamFC with noisy annota-

tions. We generate a noisy dataset by randomly moving the

annotated target center by {10, 20, 30, 40, 50} pixels in the
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Table 3: Comparison with state-of-the-art unsupervised and supervised

deep trackers on four tracking benchmarks. The best unsupervised per-

formance is highlighted. U, S, O indicate frameworks using Unsupervised,

Supervised, and Online-updating.

Trackers Year U S O
OTB VOT16 VOT17/18

’13 ’15 A↑ R↓ EAO↑ A↑ R↓ EAO↑

SiamFC [4] 2016 ✗ ✓ ✗ 0.609 0.582 0.530 0.461 0.235 0.503 0.585 0.188

SiamDW [65] 2019 ✗ ✓ ✗ 0.663 0.644 0.540 0.380 0.303 0.500 0.490 0.234

SiamRPN++ [29]2019 ✗ ✓ ✗ - 0.696 0.637 0.177 0.478 0.600 0.234 0.414

ROAM [63] 2020 ✗ ✓✓ - 0.681 0.543 0.195 0.380 0.599 0.174 0.441

UDT [51] 2019 ✓ ✗ ✓ 0.620 0.594 0.539 0.475 0.225 0.472 0.932 0.129

LUDT [52] 2020 ✓ ✗ ✓ 0.641 0.602 0.540 - 0.231 0.460 - 0.154

S2SiamFC [45] 2020 ✓ ✗ ✗ - - 0.493 - 0.215 0.463 0.782 0.180

CycleSiam [2] 2020 ✓ ✗ ✗ - - 0.540 0.735 0.191 0.377 0.750 0.131

AlexPUL Ours ✓ ✗ ✗ 0.574 0.551 0.548 0.545 0.219 0.515 0.693 0.182

ResPUL Ours ✓ ✗ ✗ 0.620 0.584 0.554 0.405 0.263 0.516 0.660 0.203

image space. Note that the total stride in the backbone of

SiamFC is 8. Here we use the original SiamFC framework

and only change the loss function. The results on OTB-13

are plotted in Fig. 6. Our NR loss better handles the spatial

annotation noise, achieving higher AUC scores compared to

the BCE loss. This demonstrates the robustness of our NR

loss to various levels of spatial annotation noise.

4.3. Comparison with Unsupervised Deep Trackers

We compare our AlexPUL and ResPUL trackers with

state-of-the-art unsupervised deep trackers, UDT [51],

LUDT [52], CycleSiam [2] and S2SiamFC [45]. We evalu-

ate on OTB13/15 [57] and VOT16/17/18 [26, 25] datasets,

since most of the unsupervised trackers are evaluated on

these datasets. Performance is measured with AUC on

OTB, and Accuracy (A), Robustness (R) and expected

average overlap (EAO) on VOT. For completeness, we

also compare with the supervised baselines (SiamFC and

SiamDW) and two recently proposed supervised deep track-

ers, i.e., SiamRPN++ [29] and ROAM [63].

The test results are presented in Table 3. Compared with

existing state-of-the-art deep unsupervised trackers, our Re-

sPUL tracker can obtain the leading performance on these

VOT16/17/18. Note that UDT is a recently proposed deep

unsupervised tracker, which uses a correlation filter for on-

line updating. LUDT further improves UDT by trajectory

combination and training sample selection. Without apply-

ing any online fine-tuning or adaptation steps, our trackers

ResPUL and AlexPUL achieve competitive results to UDT

and LUDT on the OTB datasets, and better performance

than UDT/LUDT on VOT16/17/18, which demonstrates the

generalization ability of our offline learned unsupervised

representations. Our AlexPUL and ResPUL significantly

outperform S2Siam and CycleSiam, which do not apply on-

line updating, on the four benchmarks.

Our unsupervised AlexPUL and ResPUL achieve com-

parable results to supervised baselines SiamFC and

SiamDW. Specifically, our AlexPUL tracker can ob-

tain higher accuracy than SiamFC on VOT2016 (0.548

vs. 0.530). ResPUL also outperforms SiamDW in terms

of accuracy on VOT16/17/18 datasets. However the EAOs

Table 4: Comparison with state-of-the-art trackers on TrackingNet [38]

and VOT19 [27]. Supervised methods are italicized.

TrackingNet
MDNet

[39]
ECO
[8]

ECO-HC
[8]

SiamFC
[4]

BACF
[14]

LUDT
[52] ResPUL

Precision 0.565 0.492 0.476 0.533 0.461 0.469 0.485

Norm Prec. 0.705 0.618 0.608 0.663 0.580 0.593 0.630

Succes 0.606 0.554 0.541 0.571 0.523 0.543 0.546

VOT19
DRNet

[27]
SiamFCOSP

[27]
ATOM

[9]
SiamRPN

[30]
RSiamFC

[27] ResPUL

EAO↑ 0.395 0.171 0.292 0.224 0.163 0.198

R↓ 0.261 1.194 0.411 0.552 0.958 0.828

A↑ 0.605 0.508 0.603 0.517 0.470 0.515

of our trackers are still inferior to the supervised base-

lines, which is mainly caused by more tracking failures.

The learned temporal representations of our trackers are

still limited, compared to SiamFC and SiamDW, which

are trained on larger frame gaps between patches, resulting

larger appearance variations. Our trackers have potential to

be improved by using more temporal mined samples.

4.4. Comparison with State­of­the­art Trackers

In this subsection, we compare our unsupervised Re-

sPUL tracker with state-of-the-art tracker on the Track-

ingNet [38] and VOT19 [27] datasets in Table 4.

TrackingNet is a large-scale tracking dataset with 511

test videos. Each test video only gives the ground-truth at

the first frame, and our results are obtained via the official

online evaluation server. Even without online updating, our

ResPUL can outperform the state-of-the-art online updated

unsupervised tracker (LUDT) in terms of all the three met-

rics on TrackingNet. Meanwhile, our ResPUL performs fa-

vorably against supervised ECO and SiamFC.

VOT19. Our ResPUL achieves favorable performance

on VOT19 compared to supervised trackers, e.g., RSi-

amFC and SiamFCOSP, which are based on fully super-

vised SiamFC. Our ResPUL outperforms them in terms of

all the three metrics, which shows the effectiveness of our

unsupervised representation learning.

5. Conclusion

In this paper, we propose a progressive unsupervised

learning (PUL) framework for unsupervised representation

learning in visual tracking. The proposed PUL framework

formulates the representation learning problem in visual

tracking as a combination of background discrimination and

temporal correspondence learning. We propose a noise-

robust loss function to more effectively learn from the noisy

patch-pairs mined for TCL. We show that the proposed PUL

framework can effectively learn unsupervised representa-

tions in Siamese tracking frmeworks. Our Siamese unsu-

pervised trackers can achieve state-of-the-art unsupervised

tracking performance without applying any online adapta-

tion or fine-tuning steps.
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